
On the Performance of Group Key
Agreement Protocols

YAIR AMIR
Johns Hopkins University
YONGDAE KIM
University of Minnesota, Twin Cities
CRISTINA NITA-ROTARU
Purdue University
and
GENE TSUDIK
University of California, Irvine

Group key agreement is a fundamental building block for secure peer group communication sys-
tems. Several group key management techniques were proposed in the last decade, all assuming
the existence of an underlying group communication infrastructure to provide reliable and ordered
message delivery as well as group membership information. Despite analysis, implementation,
and deployment of some of these techniques, the actual costs associated with group key manage-
ment have been poorly understood so far. This resulted in an undesirable tendency: on the one
hand, adopting suboptimal security for reliable group communication, while, on the other hand,
constructing excessively costly group key management protocols.

This paper presents a thorough performance evaluation of five notable distributed key manage-
ment techniques (for collaborative peer groups) integrated with a reliable group communication
system. An in-depth comparison and analysis of the five techniques is presented based on ex-
perimental results obtained in actual local- and wide-area networks. The extensive performance
measurement experiments conducted for all methods offer insights into their scalability and prac-
ticality. Furthermore, our analysis of the experimental results highlights several observations that
are not obvious from the theoretical analysis.

This work was supported by grant F30602-00-2-0526 from the Defense Advanced Research Projects
Agency (DARPA).
A two-page abstract related to this work was published at ICDCS 2002 [Amir et al. 2002].
Authors’ addresses: Y. Amir, Department of Computer Science, Johns Hopkins University,
Baltimore, MD 21218, USA; email: yairamir@cs.jhu.edu; Y. Kim, Department of Computer Science
and Engineering, University of Minnesota—Twin Cities, MN 55455, USA; email: kyd@cs.umn.edu.
(Part of this work has been done when he was working at University of California, Irvine.); C. Nita-
Rotaru, Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA;
email: crisn@cs.purdue.edu. (Part of this work has been done when she was a graduate student at
Johns Hopkins University.); G. Tsudik, Information and Computer Science Department, University
of California, Irvine, CA 92697-3425, USA; email: gts@ics.uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1084-4309/04/0800-0457 $5.00

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004, Pages 457–488.

458 • Y. Amir et al.

Categories and Subject Descriptors: C.2.4 [Distributed Systems]: Distributed Applications; D.4.5
[Operating Systems]: Reliability; D.4.6 [Operating Systems]: Security and Protection; D.4.8
[Operating Systems]: Performance

General Terms: Algorithms, Design, Performance, Reliability, Security, Theory

Additional Key Words and Phrases: Group Key Management, Secure Communication, Peer Groups,
Group Communication

1. INTRODUCTION

The Internet is increasingly being used to support collaborative applications
such as voice- and video-conferencing, white-boards, distributed simulations,
as well as games, replicated servers, and databases of all types. To be effec-
tive, these applications need supporting services, such as reliable and ordered
message delivery as well as synchronization and fault-tolerance techniques.
A reliable group communication system can provide an integrated platform
containing such services, thus greatly simplifying the application development
process and application complexity.

Since most communication over the Internet involves the traversal of inse-
cure open networks, basic security services—such as data privacy, integrity, and
authentication—are necessary for collaborative applications. These services,
in turn, are impossible without secure, robust, and efficient group key man-
agement. Clearly, key management is the most basic security service, since,
without it, secure communication is basically impossible. In the context of col-
laborative groups, besides the design of the individual security building blocks,
group security policy is a critical component. A comprehensive set of definitions
and requirements of security policies in groups is presented in Harney et al.
[2001].

1.1 Key Agreement in Peer Groups

A number of group key management techniques have been proposed in the past.
They generally fall into three categories: (1) centralized, (2) distributed, and (3)
contributory.

Centralized group key management is conceptually simple as it involves a
single entity (or a small set of entities) that generates and distributes keys
to group members via a pair-wise secure channel established with each group
member. We view centralized group key management as inappropriate for se-
cure peer group communication, since a central key server must be, at the same
time, continuously available and present in every possible subset of a group in
order to support continued operation in the event of arbitrary network parti-
tions. Continuous availability can be addressed by using fault-tolerance and
replication techniques. Unfortunately, the omni-presence issue is difficult to
solve in a scalable and efficient manner. We note, however, that the centralized
approach works well in one-to-many multicast scenarios since a trusted third
party (or a set thereof) placed at, or very near, the source of communication,
can support continued operation within an arbitrary partition as long as it
includes the source. This is appropriate since most one-to-many settings only

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 459

aim to offer continued secure operation within a single partition containing the
source.

Distributed group key management is more suitable to peer group commu-
nication, especially over unreliable networks. It involves dynamically selecting
a group member that acts as a key distribution server. Although robust, this
approach has a notable drawback in that it requires a key server to maintain
long-term pair-wise secure channels with all current group members in order
to distribute group keys. Some schemes take advantage of data structures to
minimize the number of encryption and messages that must be generated when
the key changes. When a new key server is selected all these data structures
also need to be recreated.

In contrast, contributory group key agreement requires every group mem-
ber to contribute an equal share to the common group secret, computed as a
function of all members’ contributions. These protocols are appropriate for dy-
namic peer groups. This approach avoids the problems with the single point(s)
of trust and failure. Moreover, some contributory methods do not require es-
tablishing pair-wise secret channels among group members. Also, unlike most
group key distribution protocols, they offer strong key management secu-
rity properties such as key independence and perfect forward secrecy (PFS)
[Menezes et al. 1996]. Recent research on authenticated group key agree-
ment protocols provides stronger security guarantees against active attackers
[Bresson et al. 2001a, 2001b]. More detailed discussion can be found in Kim
[2002].

We note that many centralized and distributed key management protocols
(such as the Logical Key Hierarchy (LKH) Protocol [Wallner et al. 1999; Wong
et al. 2000], LKH+ [Caronni et al. 1999], One-Way Function Tree protocol [Sher-
man and McGrew 2003], and Centralized Flat Table [Caronni et al. 1999], to
name just a few) rely on symmetric encryption to distribute group keys, as op-
posed to contributory protocols which rely on modular exponentiations. There-
fore, they do not provide PFS. However, such protocols scale to large groups and
have a lighter overhead than contributory ones.

The cost of group key management is determined by two dominating fac-
tors: communication and computation. Typically, efficiency in one comes at
the expense of the other. Protocols that distribute computation usually require
more communication rounds, while protocols minimizing communication re-
quire more computational effort.

1.2 Focus

Our previous work [Amir et al. 2004] showed how provably secure, multi-
round group key agreement protocols can be integrated with a reliable group
communication system to obtain provably fault-tolerant group key agree-
ment solutions. Specifically, we designed a robust contributory key agree-
ment protocol resilient to any sequence of (possibly cascaded) events and
proved that the resulting protocol preserved group communication member-
ship semantics and ordering guarantees. The resulting protocol was based on
Group Diffie–Hellman (GDH IKA.2) contributory key agreement [Steiner et al.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

460 • Y. Amir et al.

2000] that generalizes the two-party Diffie–Hellman key exchange to groups
[Diffie and Hellman 1976]. The technique used in Amir et al. [2004] can be
adapted for any multiround key management protocol.

Key management has a great impact not only on the security and fault
tolerance of the overall system, but also on its performance. For this reason,
in this work we focus on the performance analysis of group key management
protocols. Moreover, we focus on contributory key agreement protocols because
of their strong security properties. We began by identifying several notable tech-
niques and integrating them with a reliable group communication system [Amir
and Stanton 1998]. In addition to GDH, we analyze four other protocols: Cen-
tralized Key Distribution (CKD) is a centralized scheme where one group mem-
ber group is dynamically chosen to act as a key server; Tree-Based Group
Diffie–Hellman (TGDH) blends a logical tree structure with Diffie–Hellman
key exchange to achieve a protocol more efficient in computation than GDH;
Skinny Tree (STR) trades off lower communication overhead for increased com-
putation; Burmester–Desmedt (BD) distributes and minimizes computation by
using more messages and many-to-many broadcasts. All protocols offer similar
security properties, including group key independence and PFS. Informally, key
independence means that a passive adversary who knows any proper subset of
group keys cannot discover any other (future or previous) group key. PFS means
that a compromise of a member’s long-term key cannot lead to the compromise
of any short-term keys.

The main contributions of this work are:

—A peer group key management framework that supports multiple protocols,
allowing assignment of different key agreement protocols to different groups.

—A detailed theoretical performance analysis of the five notable group key
agreement methods with respect to communication and computation costs.

—An in-depth experimental evaluation obtained from live experiments with
various types of group membership changes over both local- and wide-area
networks. These results provide valuable insights into the protocols’ scala-
bility and practicality. Our experiments show that, in practice, the actual
costs of group key management cannot be trivially extrapolated from the
theoretical analysis (see Section 6).

—A taxonomy of application scenarios for secure group communication systems
and a mapping between broad application classes and appropriate group key
management protocols.

Organization: The rest of this paper is organized as follows. First, we overview
related work in Section 2. Then, in Sections 3 and 4 we present Secure Spread,
the framework we used in our experiments and briefly describe the five key
agreement protocols we evaluate. Next, we analyze the conceptual costs (in
Section 5) of these protocols and present performance results gathered on both
local- and wide-area networks (in Section 6). We conclude in Section 7 with the
discussion of various peer group applications and appropriate key management
techniques.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 461

2. RELATED WORK

Our work is closely related to two distinct areas: group key management and
reliable group communication. This section provides an overview of related
work in each of the two areas.

2.1 Group Key Management

As noted above, the focus of this work is on the performance of group key man-
agement protocols for collaborative peer groups. Therefore, we consider only
distributed key distribution and contributory key agreement protocols.

In looking at the available protocols, we are concerned mostly with the cost
(performance) of the types of group key management operations that occur
most often. At the first glance, it might appear that a typical collaborative group
scenario is as follows: a group forms, functions for some time, and then dissolves
itself. If this were true, we would only need to consider the performance of the
initial key agreement leading to the group’s formation. Moreover, performance
would not be of great concern because the protocol would be invoked only once or
very infrequently in order to rekey the group. However, a typical collaborative
group is formed incrementally and its population can mutate throughout its
lifetime due either to members joining and leaving or to network connectivity
changes.

We begin with the STR protocol proposed by Steer et al. in 1989 [Steer et al.
1990] and originally aimed at teleconferencing. As will be seen later, STR is well
suited for adding new members as it takes only two rounds and two modular ex-
ponentiations. However, member exclusion (rekeying following a member leave
event) is relatively inefficient. Burmester and Desmedt [1994] proposed an effi-
cient protocol which takes only two rounds and three modular exponentiations
per member to generate a group key. This protocol allows all members to recom-
pute the group key for any membership change with a constant CPU cost. The
distribution in computation is obtained at the cost of using 2n broadcast mes-
sages which is expensive on a wide-area network. Tzeng and Tzeng proposed
an authenticated key agreement scheme based on secure multiparty computa-
tion [Tzeng and Tzeng 2000]. This protocol uses two communication rounds, but
each round consists of n simultaneous broadcast messages. Although the crypto-
graphic mechanisms are quite elegant, the main shortcoming is the lack of PFS.

Steiner et al. addressed dynamic membership issues [Steiner et al. 2000] in
group key agreement as part of developing a family of GDH protocols based on
straightforward extensions of the two-party Diffie–Hellman protocol. GDH pro-
tocols are relatively efficient for member leave and group partition operations,
but the merge protocol requires the number of rounds equal to the number of
new (merging) members. Follow-on work by Kim et al. yielded a TGDH protocol,
which is more efficient than GDH in both communication and computation [Kim
et al. 2000].

Kronos [Setia et al. 2000] has performed an in-depth performance analysis
on CKD protocols. The authors show that refreshing group key periodically
by aggregating membership events provides better efficiency than refreshing

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

462 • Y. Amir et al.

group key for every membership event. In general, this can be true for peer
group scenario. However, the former provide weaker security than the latter.
Note that our focus is on group key management over peer group, while their
focus is on centralized key management.

2.2 Reliable Group Communication

Reliable group communication systems in LANs have a solid history beginning
with ISIS [Birman and Renesse 1994] and followed by more recent systems such
as Transis [Amir et al. 1992], RMP [Whetten et al. 1994], Totem [Amir et al.
1995], and Horus [Renesse et al. 1996]. These systems explored several different
group communication models such as Virtual Synchrony [Birman and Joseph
1987] and Extended Virtual Synchrony [Moser et al. 1994]. More recent work in
this area focuses on scaling group membership to wide-area networks [Anker
et al. 1998; Keidar et al. 2000].

Research in securing group communication is relatively new. Previous im-
plementations of group communication systems that focus on security are the
Rampart system at AT&T [Reiter 1994], the SecureRing [Kihlstrom et al. 1998]
project at UCSB, and the Horus/Ensemble work at Cornell [Rodeh et al. 2001,
2002]. Rampart [Reiter 1994] is the first system providing atomic and reli-
able services in a model where some servers can get corrupted. The system
builds group multicast protocols over a secure group membership protocol. The
SecureRing system protects a low-level ring protocol by using cryptographic
techniques to authenticate each transmission of the token and each data mes-
sage received.

The Ensemble system is the state of the art in secure reliable group com-
munication. It allows application-dependent trust models and optimizes cer-
tain aspects of the group key generation and distribution protocols. Ensemble
achieves data confidentiality by using a shared group key obtained by means
of group key distribution protocols. In comparison with our approach, although
efficient, the scheme does not provide forward secrecy, key independence and
PFS.

Some other approaches focus on building highly configurable dynamic dis-
tributed protocols. Cactus [Hiltunen and Schlichting 1996] is a framework that
allows the implementation of configurable protocols as composition of micro-
protocols. Survivability of the security services is enhanced by using redun-
dancy [Hiltunen et al. 2001].

Another toolkit that can be used to build secure group oriented applica-
tions is Enclaves [Gong 1997]. It provides group control and communica-
tion, and data confidentiality using a shared key. The group utilizes a CKD
scheme where a group leader selects a new key every time the group changes
and securely distributes it to all members of the group. The main drawback
of the system is that it does not address failure recovery when the leader
fails.

Antigone [McDaniel et al. 1999] is a framework aimed to provide mech-
anisms which allow flexible application security policies. It implements
group rekeying mechanisms in two flavors: (1) session rekeying whereby all

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 463

members receive a new key, and (2) session key distribution whereby the ses-
sion leader transmits an existing session key. Both schemes have problems: dis-
tributing the same key when the group membership changes negates any notion
of PFS, while the session rekeying mechanism cannot recover from a leader’s
failure.

3. SECURE SPREAD FRAMEWORK

The work presented in this paper evolved from integrating security services
with the Spread wide-area group communication system. Specifically, multiple
key agreement protocols were integrated resulting in the Secure Spread library.
As its building blocks, our implementation uses key agreement primitives pro-
vided by the Cliques key management library. In this section, we overview the
Spread group communication system, the Cliques toolkit and the Secure Spread
library.

3.1 Spread Group Communication System

Spread [Amir and Stanton 1998] is a group communication system for wide- and
local-area networks. It provides reliability and message ordering (FIFO, causal,
agreed/total ordering) as well as a membership service. The toolkit supports two
different semantics: Virtual Synchrony [Fekete et al. 1997; Schultz 2001] and
Extended Virtual Synchrony [Moser et al. 1994]. In this paper, and for our
implementation, we use only the former.

Spread consists of a server and a library linked with the application. The
process and server memberships correspond to the model of light-weight and
heavy-weight groups [Floyd et al. 1997]. This approach amortizes the cost of
expensive distributed protocols, since these protocols are executed only by a
relatively small number of servers, as opposed to (a much larger number of) all
clients.

Spread operates in a many-to-many communication paradigm, where each
member of the group can be both a sender and a receiver. Although designed to
support small- to medium-size groups, Spread can accommodate a large number
of different collaboration sessions, each spanning the Internet. Spread scales
well with the number of groups used by the application without imposing any
overhead on network routers. The Spread toolkit is publicly available and is
being used by several organizations for both research and practical projects.
The toolkit supports cross-platform applications and has been ported to several
Unix platforms as well as Windows and Java environments.

3.2 Cliques Toolkit

Cliques is a cryptographic toolkit that supports a menu of key management
techniques for dynamic peer groups. It performs all computations required
to achieve a shared key in a group and is built atop the popular OpenSSL
library [OpenSSL Project team 1999]. The toolkit assumes the existence of a
reliable group communication platform to transport and order protocol mes-
sages as well as to maintain group membership.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

464 • Y. Amir et al.

Currently, Cliques includes five group key agreement protocols: GDH, CKD,
TGDH, STR, and BD. All these protocols provide key independence and PFS.
We briefly overview each protocol below and discuss them in more detail in
Section 4.

GDH is a protocol based on group extensions of the two-party Diffie–Hellman
key exchange [Steiner et al. 2000] and provides fully contributory key agree-
ment. GDH is fairly computation-intensive, requiring O(n) cryptographic oper-
ations for each key change. It is, however, bandwidth efficient. CKD is a central-
ized key distribution technique with the key server dynamically chosen among
the group members [Amir et al. 2004]. The key server uses pair-wise Diffie–
Hellman key exchange to distribute keys. CKD is comparable to GDH in terms
of both computation and bandwidth costs. TGDH combines a binary key tree
structure with the GDH technique [Kim et al. 2000, 2004b]. TGDH is efficient
in terms of computation as most membership changes require O(log n) cryp-
tographic operations. STR [Kim et al. 2001, 2004a] is a special case of TGDH
with a so-called “skinny” or imbalanced tree. It is based on the protocol by Steer
et al. [1990]. STR is more efficient than the above protocols in terms of commu-
nication; whereas, its computation costs are comparable to those of GDH and
CKD. BD is another variation of GDH proposed by Burmester and Desmedt
[1994]. It is efficient in computation, requiring a constant number of exponen-
tiations (three) upon any membership change. However, communication costs
are significant.

As far as security, only protection against outside adversaries (both passive
and active) is considered in Cliques. In this model, any entity who is not a cur-
rent group member is considered an outsider.1 Attacks emanating from within
the group are not considered, as the focus is on the secrecy of group keys and
the integrity of group membership. Consequently, insider attacks are not ger-
mane because a malicious insider can always reveal the group key and/or its
own private key(s), thus allowing for fraudulent membership.

All of the aforementioned protocols are proven secure with respect to passive
outsider (eavesdropping) attacks [Steiner et al. 2000; Kim et al. 2000, 2001;
Burmester and Desmedt 1994]. Active outsider attacks consist of injecting,
deleting, delaying, and modifying protocol messages. Some of these attacks
aim to cause denial of service and we do not address them. Attacks aiming to
impersonate a group member are prevented by the use of public key signatures:
every protocol message is signed by its sender and verified by all receivers.
Other, more subtle, active attacks aim to introduce a known (to the attacker)
or old key. These are prevented by the combined use of timestamps, unique
protocol message identifiers, and sequence numbers identifying the particular
protocol instance (group key epoch).

3.3 Secure Spread Library

Secure Spread [Amir et al. 2001] library is a client library providing data
confidentiality and integrity, in addition to reliable and ordered message

1Note that any former or future member is also an outsider according to this definition.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 465

dissemination and membership services. The library uses Spread as communi-
cation infrastructure and Cliques library primitives for group key management.
A client who wants to communicate securely is required to connect to a server
and then join a group before proceeding with the communication. The library
provides an API allowing a client to connect/disconnect to a server, join/leave a
group, and send/receive messages.

The Virtual Synchrony model enables the use of a shared group view-specific
key to encrypt client data, since the receiver is guaranteed to have the same
view as the sender and, hence, the same key.

The main functionality of Secure Spread is to encrypt/decrypt client data
using a group shared key and to ensure the freshness of this key. The group key
is computed using a key agreement protocol and refreshed every time the group
membership changes. Secure Spread detects group membership changes and
initiates the execution of a group key agreement protocol, ensuring its correct
execution. When it terminates, Secure Spread notifies the application about the
membership change and the new key.

The architecture of Secure Spread allows using different key agreement al-
gorithms for different groups. A client can be a member of different groups, each
group managing keys using its own key agreement protocol. The initial creator
of the group decides on the specific key agreement protocol for the group. Once
selected, the key agreement protocol cannot be modified throughout the group’s
lifetime.

Secure Spread currently supports all five key agreement protocols supported
by the Cliques library: BD, CKD, GDH, STR, and TGDH. This allows us to
evaluate and compare these protocols in the same common framework. The
selection of the key management protocol is a component of the group policy.
When such a policy is in place, group members must reach agreement on the
policy.

We note that our framework might not be the best architecture for peer group
applications, as it addresses only client security. Therefore, additional measures
must be taken to protect the server-to-server communication. In this paper, we
are not trying to determine the right (or the best) architecture for secure group
communication in general. We acknowledge that it is a very important topic
and we addressed it in previous work [Amir et al. 2003; Nita-Rotaru 2003].

4. KEY AGREEMENT PROTOCOLS IN SECURE SPREAD

In this section, we overview the key agreement protocols currently supported
in Secure Spread which are the subject of our performance evaluation.

With the exception of the BD protocol, all other protocols we consider optimize
their cost by taking advantage of the nature of the group change. A group can
change because a single member joins or leaves, or a set of members leave or join
simultaneously. The latter can be caused by changes in network connectivity,
such as network partitions and network reheals. We refer to such events as
partition and merge. For brevity’s sake, we only describe how each of the five
protocols handle merge and partition events, since single-member join and leave
events can be seen as special cases of merge and partition, respectively.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

466 • Y. Amir et al.

Fig. 1. GDH—Merge protocol.

4.1 GDH Protocol

GDH is a contributory group key agreement protocol which generalizes upon
the well-known 2-party Diffie–Hellman key exchange. The basic idea is that the
shared key is never transmitted over the network (in the clear or otherwise).
Instead, a list of partial keys, one for each member, is generated and sent.
Upon receipt, each member uses its partial key to compute the group secret.
One particular member of the group (controller) is charged with the task of
building and distributing this list. The controller is not fixed and has no special
security privileges.

The protocol runs as follows. When a merge event occurs (see Figure 1), the
current controller generates a new key token by refreshing its contribution to
the group key and passes the token to one of the new members. When the new
member receives the token, it adds its own contribution and passes the token
to the next new member.2 Eventually, the token reaches the last new member.
This new member, who is slated to become the new controller, broadcasts the
token to the group without adding its contribution. Upon receiving the broad-
cast token, each group member (old and new) factors out its contribution and
unicasts the result (called a factor-out token) to the new controller. The new
controller collects all the factor-out tokens and adds its own contribution to
each. Every thus modified factor-out token (to which the new controller added
its contribution) represents a partial key. Once all the partial keys are com-
puted, the list of partial keys is broadcast to the group. Every member obtains
the group key by factoring in its contribution into the corresponding partial key
in the broadcasted list.

When some of the members leave the group (Figure 2), the controller (who,
at all times, is the most recent remaining group member) removes their corre-
sponding partial keys from the list of partial keys, refreshes each partial key
in the list and broadcasts the list to the group. Each remaining member can

2The new member list and its ordering is decided by the underlying group communication system;
Spread in our case. The actual order is irrelevant to GDH.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 467

Fig. 2. GDH—Partition protocol.

Fig. 3. CKD—Merge protocol.

then compute the shared key. Note that if the current controller leaves, the last
remaining member becomes the controller of the group.

4.2 CKD Protocol

The CKD protocol is a simple group key management scheme. In CKD,
the group key is not contributory; it is always generated by the current
controller.3

The controller establishes a separate secure channel with each current group
member by using authenticated two-party Diffie–Hellman key exchange. Each
such key stays unchanged as long as both parties (controller and regular group
member) remain in the group. The controller is always the oldest member of
the group. (The oldest member is picked in order to reduce expensive estab-
lishment of pair-wise secure channels necessary upon each controller change.)
Whenever group membership changes, the controller generates a new secret
and distributes it to every member encrypted under the long-term pair-wise
key it shares with that member. In case of a join or merge event (see Figure 3),
the controller initially establishes a secure channel with each incoming
member.

Note that an efficient symmetric cipher can be used to securely distribute
the group key. However, the security would differ from that of our group key
agreement protocol which relies solely on the Decision Diffie–Hellman assump-
tion [Boneh 1998] and the Discrete Logarithm problem [Menezes et al. 1996].
Therefore, to provide equivalent level of security, we encrypt the group key via
modular exponentiation.

When a partition occurs (see Figure 4), in addition to refreshing and dis-
tributing the group key, the controller discards the long-term key it shared
with each leaving member. A special case is when the controller itself leaves the

3We use the term current to capture that, even in CKD, a controller is a regular member which can
fail or become partitioned out. Thus, the controller role must be reassigned to another member.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

468 • Y. Amir et al.

Fig. 4. CKD—Partition protocol.

group. In this case, the oldest remaining member becomes the new controller.
Significant additional cost is incurred, since, before distributing the new key,
the new controller must first establish a secure channel with every remaining
group member.

4.3 TGDH Protocol

TGDH is an adaptation of key trees [Wallner et al. 1999; Sherman and McGrew
2003] in the context of fully distributed, contributory group key agreement.
TGDH computes a group key derived from individual contributions of all group
members using a logical binary key tree [Kim et al. 2000, 2004b].

The key tree is organized as follows: each node 〈l , v〉 is associated with a
key K 〈l ,v〉 and a corresponding blinded key BK 〈l ,v〉 = g K 〈l ,v〉 mod p. The root
is associated with the group and each leaf—with a distinct member. The root
key represents the group key shared by all members, and a leaf key represents
the random contribution by of a group member. Each internal node has an
associated secret key and a public blinded key. The secret key is the result of a
Diffie–Hellman key agreement between the node’s two children. Every member
knows all keys on the path from its leaf node to the root as well as all blinded
keys of the entire key tree.

The protocol relies on the fact that every member can compute a group key
if it knows all blinded keys in the key tree.4

Following every group membership change, each member independently and
unambiguously modifies its view of the key tree. Depending on the type of the
event, it adds or removes tree nodes related to the event, and invalidates all
keys and blinded keys related with the affected nodes (always including the
root node). As a result, some nodes may not be able to compute the root key
by themselves. However, the protocol guarantees that at least one member can
compute at least one new key corresponding to either an internal node or to the
root. Every such member (called a sponsor) computes all keys and blinded keys
as far up the tree as possible and then broadcasts its key tree (only blinded keys)
to the group. If a sponsor cannot compute the root key, the protocol guarantees
the existence of at least one member which can proceed further up the tree, and
so on. After at most two rounds (in case of a merge) or log(n) rounds (in case
of a worst-case partition), the protocol terminates with all members computing
the same new group (root) key.

After a partition, the protocol operates as follows. First, each remaining mem-
ber updates its view of the tree by deleting all leaf nodes associated with the

4Actually, this is sufficient but not necessary: a member does not need to know all blinded keys to
compute the root key, however, as discussed in [Kim et al. 2000], knowing all is useful for handling
merge events.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 469

Fig. 5. TGDH—Partition operation.

partitioned members and (recursively) their respective parent nodes. To pre-
vent reuse of old group keys, one of the remaining members (the shallowest
rightmost sponsor) changes its key share. Each sponsor computes all keys and
blinded keys as far up the tree as possible and then broadcasts its view of the
key tree with the new blinded keys. Upon receiving the broadcast, each member
checks whether the message contains a new blinded key. This procedure iter-
ates until all members obtain the new group key. Figure 5 shows an example
where members M1 and M4 are partitioned out of the group.

When a merge happens, the sponsor (the rightmost member of each merging
group) broadcasts its tree view to the merging subgroup after refreshing its
key share (leaf key) and recomputing all affected blinded keys. Upon receiving
this message, all members uniquely and independently determine the merge
position of the two trees.5

As described above, all keys and blinded keys on the path from the merge
point to the root are invalidated. The rightmost member of the subtree rooted
at the merge point becomes the sponsor. The sponsor computes all keys and
blinded keys and broadcasts the key tree (with only blinded keys) to the group.
All members now have the complete set of new blinded keys which allows them
to compute all keys on their key path. Figure 6 shows an example of the merge
protocol. Members M6 and M7 are added to the group consisting of members
M1, M2, . . . , M5.

4.4 STR Protocol

The STR protocol [Steer et al. 1990; Kim et al. 2004a] is an “extreme” version of
TGDH with the underlying key tree completely unbalanced or stretched out. In
other words, the height of the key tree is always (n−1), as opposed to (roughly)
log(n) in TGDH. All other features of the key tree are the same as in TGDH.

After a partition, the sponsor is defined as the member corresponding to
the leaf node just below the lowest leaving member. After deleting all leaving
nodes (see Figure 7), the sponsor refreshes its key share, computes all (key,
blinded key) pairs up to the level just below the root node. Finally, the sponsor

5We choose the merge node as the rightmost “shallowest” node, which does not increase the tree
height. For more details see Kim et al. [2000].

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

470 • Y. Amir et al.

Fig. 6. TGDH—Merge operation.

Fig. 7. STR—Partition operation.

broadcasts the updated key tree thus allowing each member to compute the
new group key.

STR merge runs in two rounds. In the first round, each sponsor (topmost
leaf node in each of the two merging tree) first refreshes its key share and
computes the new root key and root blinded key. Then, the sponsors exchange
their respective key tree views containing all blinded keys. The topmost leaf
of the larger tree becomes the sole sponsor in the second round in the protocol
(see Figure 8). Using the blinded keys from the key tree it received in the first
round, the sponsor computes every (key, blinded key) pair up to the level just
below the root node. It then broadcasts the new key tree to the entire group.
All members now have the complete set of blinded keys which allows them to
compute the new group key.

4.5 BD Protocol

Unlike other protocols discussed thus far, the BD protocol [Burmester and
Desmedt 1994] is stateless. Therefore, the same key management protocol is
performed regardless of the type of group membership change. Furthermore,
BD is completely decentralized and has no sponsors, controllers, or any other
members charged with any special duties.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 471

Fig. 8. STR—Merge operation.

Fig. 9. BD protocol.

The main idea in BD is to distribute the computation among members, such
that each member performs only three exponentiations. This is performed in
two communication rounds, each consisting of n broadcasts. Figure 9 depicts
the protocol.

5. COST EVALUATION

In this section, we estimate and analyze the costs of the five protocols pre-
sented above. We first evaluate the time to compute a new group key when a
membership change occurs. Four types of events can lead to a change in group
membership. The first two are the single-member join and leave events. A join
is always voluntary, whereas, a leave can be voluntary, forced (by other mem-
bers), or involuntary, for example, due to a processor crash or a disconnect. For
the purpose of this discussion, we do not differentiate between the three possi-
ble causes of a leave event. (We assume that, regardless of the cause, the group
key must be changed.)

Another category of membership change events is related with network con-
nectivity. An unreliable network can split into disjoint components such that
communication is still possible within a component but not between compo-
nents. For all members in a component, it appears that the rest of the members
have left. After the network fault heals, members previously in different com-
ponents can communicate again. From the group perspective, it appears as if a
set of new members is added to the group. We refer to these events as partition
and merge, respectively.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

472 • Y. Amir et al.

Table I. Communication Cost

Protocols Rounds Messages Unicast Multicast

Join 4 n + 3 n + 1 2
GDH Leave 1 1 0 1

Merge m + 3 n + 2m + 1 n + 2m − 1 2
Partition 1 1 0 1

Join, merge 2 3 0 3
TGDH Leave 1 1 0 1

Partition h 2h 0 2h

Join 2 3 0 3
STR Leave, partition 1 1 0 1

Merge 2 3 0 3

Join 2 2n + 2 0 2n + 2
BD Leave 2 2n − 2 0 2n − 2

Merge 2 2n + 2m 0 2n + 2m
Partition 2 2n − 2p 0 2n − 2p

Join 3 3 2 1
Leave 1 1 0 1

CKD Merge 3 m + 2 m 2
Partition 1 1 0 1

Controller leave 3 3n − 6 2n−4 2

We are interested in two cost aspects: (1) communication in number of pro-
tocol rounds as well as number and type of messages, and (2) computation in
number of fine-grained integer operations (such as modular exponentiations)
as well as coarser-grained operations (such as signature generation and ver-
ifications). Although the cost of communication in modern high-speed LANs
can appear negligible in comparison with the cost of, say, modular exponentia-
tions, we consider it important since it becomes more meaningful even in LANs
for protocols that trade off lower computation for higher communication costs.
Of course, communication cost is very important in high-delay networks (e.g.,
WANs or low-bandwidth wireless). Because of the distributed nature of group
communication systems, we consider only serial computation cost.6 Thus, we
stress that the number of cryptographic operations reflected in Table II is not
the sum total for all participants.

Tables I and II summarize the communication and the computation costs for
the five protocols we consider. The numbers of current group members, merging
members, and leaving members are denoted as n, m, and p, respectively.

The height of the key tree constructed by the TGDH protocol is denoted by
h.7 TGDH costs depend on the tree height, the balanceness of the key tree,
the insertion point of the joining tree (or node) and the location of the leaving
node(s). The results we present for TGDH are conservative, we compute the

6Computation that can be processed in parallel is collapsed accordingly.
7Instead of always maintaining a fully balanced key tree, TGDH uses a best-effort approach: it tries
to balance the tree only upon additive events. Prior experiments [Kim et al. 2000] demonstrated
that, in the presence of random events, the height of the key tree remains smaller than 2 log n.
The tree can be better balanced with the AVL tree management described in Rodeh et al. [2002].
However, AVL incurs a higher communication cost for subtractive events.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 473

Table II. Computation Cost

Protocols Exponentiations Signatures Verifications

Join n + 3 4 n + 3
GDH Leave n − 1 1 1

Merge n + 2m + 1 m + 3 n + 2m + 1
Partition n − p 1 1

Join, merge 3h
2 2 3

TGDH Leave 3h
2 1 1

Partition 3h h h

Join 7 2 3
STR Leave, partition 3n

2 + 2 1 1
Merge 3m + 4 2 3

Join 3 2 n + 3
BD Leave 3 2 n + 1

Merge 3 2 n + m + 2
Partition 3 2 n − p + 2

Join n + 2 3 3
Leave n − 2 1 1

CKD Merge n + 2m 3 m + 2
Partition n − p − 1 1 1

Controller leaves 2n − 3 2n − 2 n

worst-case costs for the TGDH. We provide details on this cost will differ from
average case cost when we discuss each group event.

The number of modular exponentiations in STR after a leave event is deter-
mined by the location of the lowest leaving leaf node. To be fair, we compute the
average cost, i.e., for the case when lowest leaving leaf is in the middle of the
tree (at level n

2). All other protocols, except TGDH and STR, show exact costs.
Current implementations of TGDH and STR recompute a blinded key even

though it has been computed already by the sponsor. This provides a form
of key confirmation, since a user who receives a token from another member
can check whether his blinded key computation is correct. This computation,
however, can be removed for better efficiency and we consider this optimization
when counting the number of exponentiations.

The BD protocol has a hidden computation cost not reflected in Table II.
In Step 3 (see Figure 9), BD incurs n − 1 modular exponentiations with small
exponents—ranging between p and 2 (where p is the modulus)—as well as
(n−1) modular multiplications. Although a single small exponentiation is neg-
ligible, the sum of (n − 1) exponentiations is clearly not. Because of this hidden
cost, it is difficult to compare the computational overhead of BD to that of other
protocols.

Join: All protocols except CKD require two communication rounds. CKD uses
three rounds because the new member must first establish a secure channel
(via Diffie–Hellman key exchange) with the current group controller. The most
expensive protocol in terms of messages is BD, which uses n broadcast messages
for each round. The rest of the protocols use a constant number of messages:
either two or three.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

474 • Y. Amir et al.

GDH and CKD are the most expensive in terms of computation, requiring a
linear (in terms of group size) number of exponentiations. TGDH is relatively
efficient, scaling logarithmically in the number of exponentiations. We note that
best case for TGDH for join is when the node will join at the root, while average
case will be more expensive. STR has a constant number of exponentiations and
BD requires the fewest exponentiations, but has the aforementioned hidden
cost.

Leave: Table I shows that BD is most expensive for a leave operation in
terms of communication. The cost order between CKD, GDH, STR, and TGDH
is determined strictly by the computation cost, since they all have the same
communication cost (one round consisting of one message). Therefore, TGDH
is best for handling leave events because of its logarithmic scaling with group
size. Best case for TGDH leave is when the node leaving the group is positioned
near the root.

STR, GDH, and CKD scale linearly with the group size. We note that the
cost of CKD is actually higher than the cost reflected in Tables I and II, since
in case of the controller leaving, the new controller must establish new secure
channels with all group members. As in join, BD has a hidden cost thus making
it difficult to compare it with the other protocols.

Merge: We first consider the communication cost. In terms of communication
rounds, GDH scales linearly with the number of merging members (smaller
group is assumed to merge into larger one). Whereas, BD, CKD, STR, and
TGDH are more efficient as each requires a constant number of rounds. Since
BD has n messages for each round and CKD uses (m + 1) messages, STR and
TGDH are the most communication efficient for merge events.

Looking at the computation, it seems that BD has the lowest cost amounting
to only three exponentiations. However, the impact of the number of small
exponent exponentiations is difficult to evaluate. TGDH scales logarithmically
with the group size; it is clearly more efficient than STR, CKD, and GDH which
all scale linearly with both the group size and the number of new members.
The comparison is done best on worst case of TGDH. Note that for the average
case, the performance of TGDH will be better.

Partition: Table I shows that GDH, STR, and CKD are bandwidth efficient:
only one round consisting of one message. BD is less efficient with two rounds of
n messages each. Partition is the most expensive operation in TGDH, requiring
a number of rounds upper bounded by the resulting tree height. As before,
computationwise it is difficult to compare BD with others due to its hidden cost
in Step 3. As TGDH requires a logarithmic number of exponentiations, it has
a lower computation cost than GDH, STR, and CKD which scale linearly with
the group size.

6. EXPERIMENTAL RESULTS

In this section, we present, compare, and evaluate experimental costs of the five
protocols discussed above. We do so in the context of two network environments:
high-speed LAN and high-delay WAN.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 475

Fig. 10. Join—Average time (LAN).

We measure the “total elapsed time” from the moment the group membership
event happens until the time when the group key agreement finishes and the
application is notified about the group change and the new key. For all events
initiated by clients (voluntary events), this time includes all communication and
computation costs of the underlying key agreement protocol as well as the cost of
the membership service provided by the group communication system. In other
words, the total time represents the actual delay experienced by an application.
For all events triggered by network connectivity changes (involuntary events),
the total time includes all the same costs as for voluntary events. However, it
does not include the time needed by Spread to detect that a network connectivity
change occurred.

6.1 Experimental Results in LAN

We begin by presenting performance results of the five protocols discussed above
in a LAN setting. We first describe the experimental testbed and discuss the
particulars of the scenarios we considered. Then, we present results for join,
leave, partition, and merge operations.

6.1.1 Testbed and Basic Parameters. We used an experimental testbed con-
sisting of a cluster of thirteen 666 MHz Pentium III dual-processor PCs running
Linux. A Spread server runs on each PC and group members are uniformly dis-
tributed across all 13 PCs. Therefore, more than one process can be running on
a single machine, which is frequent in many collaborative applications.

For communication services we used FIFO and Agreed ordering. Tests per-
formed on our testbed show that the average cost of sending and delivering
one Agreed multicast message is almost constant, ranging anywhere from 0.75
to 0.92 ms for a group size ranging from 2 to 50 members. Also, in a scenario
(similar to a single round in the BD protocol) where each member of the group
sends an Agreed broadcast message and receives all the (n − 1) similar mes-
sages from all other members, the average cost is about 2 ms for a group of
2 members and about 21 ms for a group of 50. The cost of the membership
service (see Figures 10 and 11) is negligible with respect to the key agreement
overhead, varying between 2 and 8 ms for a group between 2 and 50 members.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

476 • Y. Amir et al.

Fig. 11. Leave—Average time (LAN).

The results we present are the average time needed to recompute a key when
the group changes. The size of the group determines indirectly the size of some
of the messages part of the group key agreement (the size of the tree or the
list structures used by TGDH, STR, and GDH protocols). For the group size we
considered the size of the message is relatively small, therefore will not affect
significantly the results. More details about Spread performance can be found
in Amir et al. [2004].

Message origin and data authentication are obtained via RSA [Rivest et al.
1978] signatures. We chose RSA because it allows for very inexpensive signature
verification and all group key agreement protocols described in this paper rely
heavily on source authentication, that is, all protocol messages must be verified
by all receivers. If all processes are located on different CPUs, verification is
performed in parallel. In practice, however, a CPU may have multiple group
processes and expensive signature verification (e.g., as in DSA [NIST 2000])
noticeably degrades performance.

We used 1024-bit RSA signatures with the public exponent of 3, to reduce
verification costs, albeit, a quasi-standard in RSA parameter selection is to use
65, 537 as the public exponent. This is because (1) there are no security risks
in using 3 as a public exponent in RSA signature scheme [Boneh 1999], (2) BD
and GDH require n simultaneous signature verifications, and (3) in our current
topology, some machines can have multiple group member processes. On our
hardware platform, the RSA sign and verify operations take 9.6 and 0.2 ms,
respectively.8

For short-term group keys, we use both 512- and 1024-bit Diffie–Hellman
parameter p and 160-bit q. The cost of a single exponentiation is 1.7 and 5.3
ms for a 512- and a 1024-bit modulus, respectively.

6.1.2 Test Scenarios. The cost of each protocol depends on a number of
factors. We tried to design our tests such that we take into account all the
factors, keeping experiments as similar and as simple as possible.

Some protocols maintain specific data structures: GDH and CKD main-
tain a list, TGDH, and STR—a tree, and BD is stateless. Communication and

8This is not surprising since OpenSSL uses the Chinese Remainder Theorem to speed up RSA
signatures.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 477

computation costs vary depending on the operations performed on these data
structures, For example, the costs of GDH and BD do not depend on the posi-
tion of the joining or leaving member, all leave and all join operations cost the
same in these protocols, while CKD can be expensive for a leave event if the
leaving member is the current controller. For STR, the computation cost of a
leave depends on the position (in the tree) of the leaving member. The cost of
TGDH depends on many factors: location of the leaving or joining node, tree
height, and the balanceness of the tree.

Based by the above observations, we designed our tests as follows. For CKD,
we factor in the 1/n probability of the group controller leaving the group. Since
the estimated cost presented for STR leave is the average cost, we tested the
average case: the leaving member is the leaf node at height n/2, in the STR key
tree.

TGDH is the most difficult protocol to evaluate because its cost depends
on the location of the leave (or join) node, tree height, and the balanceness of
the tree. For a truly fair comparison, Secure Spread must be first run with
TGDH for a long time (with a random sequence of joins and leaves) in order to
generate a random-looking tree. The experiments must then be conducted on
this random tree. However, such tests are very difficult to perform. Instead, we
chose a less complex experimental setting by measuring join and leave costs
on an artificially balanced TGDH key tree with n members. We note that for
a random tree, the cost of join would be lower. This is because a random tree
is more sparse than an artificially balanced tree. Therefore, the joining point
would be located closer to the root in the former. The best case for the join is
when the joining node is added in tree at the root. On the other hand, leave cost
can be greater since the height of a random tree would normally exceeds that
of a balanced one. The way we add and remove clients from the group captures
both the best case and the worst case.

In cases of partition and merge we ran the same scenarios for all protocols:
we partition the group into two subgroups of the same size, and then merge
them back. STR and TGDH exhibit a clustering effect (see Section 6.1.5) when
partition events are repeated in the same configuration. To emphasize this
property, we partitioned the group into two subgroups, merge it back, and then
partition it again.

6.1.3 Join Results. Figure 10 shows the total average time for a group to
establish secure membership following a join event. From the left-side graph
(512-bit modulus) it looks, overall, that STR outperforms other protocols. Closer
inspection reveals that BD is actually the most efficient for small group sizes
(roughly less than 7). Recall that BD involves only three full-blown exponentia-
tions as opposed to STRs seven. However, BD has (n+3) signature verifications,
whereas, STR only has 3. Furthermore, BD requires O(n log n) modular mul-
tiplications in Step 3 (to compute the key, see Figure 9). Finally, BD has two
rounds of all-to-all broadcasts. Small group size makes all of these factors neg-
ligible. However, as the group size grows, BD deteriorates rapidly, since both
modular multiplications, RSA signature verifications and broadcasts add up.
In fact, after passing the group size of thirty, BD becomes the worst performer

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

478 • Y. Amir et al.

if we use a 512-bit Diffie–Hellman modulus. For 1024-bit modulus, GDH is the
worst due to the sharp increase in the cost of modular exponentiation.

Another interesting observation about BDs performance is that its cost
roughly doubles as the group size grows in increments of 13. Recall that 13
is the number of machines used in the experiments. Because BD is fully sym-
metric, as soon as just one machine starts running one additional group member
(process), the cost of BD doubles. Moreover, it can be noted that starting with
the group size of 26, the performance degrades significantly. As mentioned be-
fore, all machines we used are dual processor, thus, up to a group size of 26 it
can be assumed that there is one client per processor. For other protocols, this
behavior is less obvious, since the most costly tasks are performed by a single
member (controller or sponsor).

The right-side graph in Figure 10 (1024-bit modulus) does not show the same
deterioration in BD. In fact, BD remains the best for groups up to 14 members.
This is because the cost of exponentiations rises sharply as we go from 512 to
1024 bits, while the cost of RSA signature verifications and broadcasts (which
weighs BD down in the 512-bit case) is not felt nearly as much. In the meantime,
other protocols are more affected, since their cost is mainly determined by the
number of exponentiations.

In both graphs, TGDH and STR are fairly close with the latter performing
slightly better. Although the numbers in Table II show constant cost for STR,
the measured cost increases slightly because a CPU may experience an increas-
ing number of processes as the group increases, and other overhead factors such
as tree management. Conceptually, TGDH can never outperform STR in a join,
since the latter’s design includes the optimal case (i.e., join at the root) of the
former. Experimental results, however, show that TGDH can sometimes out-
perform STR (see small dips in TGDH graph at around 18 and 34 members).
This is because most members in a fully balanced TGDH tree compute two
modular exponentiations in the last protocol round, as opposed to four in STR.
We also note that the “saw-like” aspect of the TGDH graph is due to the fact
that the tree is artificially balanced. The dip corresponds to the case when the
group member joins at the root, while the highest cost corresponds to the case
when the node joins at a leaf.

The difference between CKD and GDH comes from exponentiation and sig-
nature verifications: extra operations in GDH include n verifications, one RSA
signature and one (DH) modular exponentiation. GDH and BD each have (n+3)
signature verifications, which is, as mentioned above, relatively expensive.

6.1.4 Leave Results. Figure 11 shows the average time for a group to estab-
lish secure membership following a leave event. In line with the prior analysis,
TGDH outperforms the rest, requiring the fewest (O(log n)) modular exponen-
tiations. This sublinear behavior becomes more evident for a group size greater
than 30. Note that, for a random tree, a leave would be more expensive, how-
ever, it will still remain less expensive than a leave in GDH [Kim et al. 2000],
which is second best.

BD is the worst performer in 512-bit leave. Recall that, leave and join incur
the same cost in BD. STR, CKD, and GDH exhibit linear increase in cost. CKD

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 479

Fig. 12. Partition—Average time (LAN).

and GDH costs are very close, while STR’s linear factor is (2n) which makes the
graph’s slope steeper. In addition, while STR, TGDH, CKD, and GDH require
only one broadcast, BD uses two rounds of n messages each.

In case of 1024-bit modulus, STR is the most expensive since it involves
the most exponentiations. The cost of TGDH roughly doubles from that in the
512-bit case, however, TGDH remains the leader. Surprisingly, BD is no longer
the worst and, at least for small group sizes (less than 37 or so), performs close
to, or better than, GDH. Once again, we attribute this to the relatively low
cost of RSA signature verifications and the commensurately small number of
full-blown 1024-bit exponentiations in BD.

6.1.5 Partition Results. Figure 12 presents measurements of the elapsed
time to establish a new secure membership when a group is split into two
smaller groups of roughly equal size. The event is generated by simulating a
network partition between the servers. The evaluated time does not include the
time needed by Spread servers to detect a network partition.

GDH clearly outperforms all others. The main reason that STR and TGDH
are very costly in this scenario is because they need to rebuild the key tree.
STR is the most expensive because it also scales linearly in computation with
respect to the new group size. The CKD cost is higher than we estimated in
Table II. This is because, when the group is partitioned into two subgroups,
the controller ends up in one of the partitions, while, in the other partition, the
new controller needs to establish pair-wise secure channels with all remaining
members.

TGDH and STR have an interesting advantage over other protocols in case of
partition. Due to the tree structure, both TGDH and STR have a clustering effect
(visible also in Figures 5 and 7) that basically decreases the cost of a partition
when it occurs multiple times in the same configuration (statistical results show
that this is a common case). To illustrate this feature, we ran the following
experiment. We partitioned a group in two equal groups, such that, all odd-
numbered members are in one group (G1) and all even-numbered (in another
(G2)). We then merged the two groups and repeated the same partition event.
In other words, the two partitions (P1 and P2) are identical. The time needed
to establish a key and install secure membership in G1 and G2 after events

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

480 • Y. Amir et al.

Fig. 13. Partition—Clustering effect.

Fig. 14. Merge—Average time (LAN).

P1 and P2 are presented in Figure 13. For BD and GDH, the only important
cost factor is the number of the remaining members. Hence, they take about
the same time, since the cost of partition depends only on the group size and
the number of leaving members. For CKD, there is a difference between the
respective costs in G1 and G2, since in the latter the new controller needs to
set up pair-wise secure channels.

Looking at STR, a cost decrease is evident for handling P2 for G2. This is
because the merge event injected between P1 and P2 changed the structure of
the key tree, and the key share change after P2 happens at a higher level in the
tree. However, there is no similar cost reduction for G1 because the key share
change takes place very low in the tree. For TGDH, the partition protocol may
involve as many as log n rounds. When a partition heals, two previously sepa-
rate groups are merged into a single key tree. However, they are still clustered
along the lines of the first partition. When another partition happens on the
same link, the partitioned members are no longer scattered across the leaves
of the key tree. Therefore, subsequent partition on the same link take only one
round to complete. This drastically improves the communication cost (and the
number of signature computations).

6.1.6 Merge Results. Figure 14 presents the measurements of the time re-
quired to establish a new secure membership when two groups of about the

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 481

Fig. 15. WAN testbed.

same size merge. GDH is evidently the most expensive protocol as its com-
putation cost scales linearly in the number of new members (in the smaller
group), Moreover, GDH has the highest number of communication rounds, also
related to the number of new members. CKD has fewer rounds, however, its
computation cost is quite high since each new member needs to establish a
secure channel with the controller. STR exhibits costs comparable to those of
CKD owing to the fact that an STR tree actually resembles a list. Thus, when
n/2 members are merged, the key share change happens very low in the tree
and results in a heavy computational load. The high costs of STR and GDH,
make BD look quite good in comparison. Nonetheless, balanced tree structure
and small number of communication rounds make TGDH the best performer
in this event class.

6.2 Experimental Results in WAN: An Extreme Case

In this section, we present experimental results obtained in a high-delay WAN
environment. We first describe the testbed used in the WAN experiments and
then present and discuss the actual results. We only conducted experiments
for join and leave operations. Merge and partition were not included in our
experiments because of the logistical difficulty in replicating the same parti-
tion/merge scenarios as used in our LAN setting. We provide an analysis of the
behavior of merge and partition based on the experimental results for join and
leave.

6.2.1 Testbed and Basic Parameters. Figure 15 shows the network config-
uration used in the WAN experiments. To achieve the same computation dis-
tribution as in the LAN experiments, we configured an experimental testbed
of 13 PCs running Linux: ten 666 MHz Pentium III dual-processor PCs, one
1.1 MHz Athlon and one 930 MHz Pentium III PCs. The PCs were located as
follows: 11 machines at Johns Hopkins University (JHU), Maryland, one ma-
chine at University of California at Irvine (UCI) and one at Information and
Communications University (ICU), Korea. As before, members were uniformly
distributed among the 13 PCs often with multiple group member processes
running on a single PC. Each PC ran a Spread server. Approximate round-trip
latencies as measured via the ping program are (in ms): JHU–UCI 70, UCI–ICU
300, and ICU–JHU 270. We emphasize that the determining factor in the per-
formance of our communication infrastructure is the diameter of the network.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

482 • Y. Amir et al.

Fig. 16. Join and Leave—Average time (WAN).

The average delay of sending and delivering one Agreed multicast mes-
sage depends on the sender’s location. The actual delay (in ms) is sender at
JHU—392, sender at UCI—328, and sender at ICU—334. When a group mem-
ber sends a broadcast and waits to receive (n − 1) broadcasts from the rest of
the group (as in each BD round), the average cost is about 1000 ms for a group
of size 50.

We point out that, in a LAN, the cost of the group membership service pro-
vided by Spread (about 7 ms) is negligible in comparison with the key agree-
ment overhead (hundreds of ms). However, the former cost becomes signifi-
cantly higher in a WAN. As can be seen in Figure 16, the cost varies between
400 and 670 ms for a join and between 250 and 650 for a leave, for a group size
ranging from 2 to 50.

As in LAN experiments, we used 1024-bit RSA with the public exponent of
3 to compute message signatures. On our test PCs, RSA sign and verify oper-
ations take 6.9–17.9 and 0.2–0.4 ms, respectively, depending on the platform.
For short-term keys, we use 512-bit Diffie–Hellman modulus p and 160-bit q.
The cost of a single modular exponentiation is between 0.8 and 1.7 ms.

6.2.2 Join Results. The left side of Figure 16 presents the average time
results for a join event. The graph also separately plots the cost of the insecure
group membership service. The difference between the total time required by
each protocol and the insecure group membership service cost, represents the
overhead of the key agreement, both communication and computation.

The first observation is that GDH performs significantly worse than others.
The main difference between GDH and other protocols comes from communi-
cation. First, the number of rounds is greater than in other protocols, as shown
in Table I. GDH requires 4 rounds while others require only 2.

Other protocols are more or less in the same range, with BD becoming more
expensive for group sizes over 30, while STR and TGDH are very similar. It
is interesting to note that STR and TGDH come closer to BD. This is mainly
due to the communication aspect of the protocols. As evident from Table I and
Sections 4.4 and 4.3, STR and TGDH each have two rounds and the first round
consists of two “simultaneous” broadcasts. In our implementation, these broad-
casts are not simultaneous, since, to achieve ordered message delivery, Spread

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 483

uses a mechanism, whereby a token is passed between participants and only
the entity that has the token is allowed to send. Recall that our WAN setup
has three wide-area sites: JHU, UCI, and ICU. (The cost of passing the to-
ken inside a site is significantly less than the cost of doing the same between
sites.) Therefore, STR and TGDH costs—2 members sending broadcasts and all
other members receiving them—is close to the cost of BD—n members broad-
cast and each member receives (n − 1) messages.9 BD deteriorates faster than
other protocols due to the number of broadcast messages. Though CKD, has
three rounds, two involve single-message unicasts. This helps CKD to remain
competitive with respect to other protocols.

We can clearly conclude that communication costs of group key agreement
(number of rounds and numbers of messages sent in each round) greatly influ-
ence the overall performance on a high-delay WAN.

6.2.3 Leave Results. Our leave results are shown on the right side of
Figure 16. BD is evidently the most expensive protocol in our WAN setup, due
to its two rounds of n broadcasts and its computation cost.

GDH, CKD, and TGDH require only a single broadcast. Thus, they ex-
hibit similar performance results. Although STR also requires only one broad-
cast, it has significantly higher computation cost in comparison to the other
“contenders.”

TGDH exhibits more dynamic behavior than GDH and CKD. We attribute
this to the fact that, in CKD and GDH, the controller (who does the bulk of
computation and broadcasts) was running on a fixed PC. Whereas, in TGDH,
the sponsor (who also does most of computation and broadcasts) was running
on any of the 13 testbed machines. If tested with a fixed sponsor, we suspect
that TGDH, GDH, and CKD would have almost identical costs.

6.3 Partition and Merge Results

Although merge and partition were not included in our experiments because
of the logistical difficulty in replicating the same partition/merge scenarios as
used in our LAN setting, it is relatively easy to guess the behavior of partition
and merge for WAN from join and leave results for WAN.

The latter results clearly show that the number of rounds is the determi-
nant factor of the overall cost. Therefore, in case of partitions, protocols with
a small number of rounds (e.g. STR, GDH) will outperform other protocols.
Note that the expensive computational cost of STR and GDH would not be
seen easily as in the join or leave case for WAN. TGDH would have poor per-
formance for partition mainly because it requires multiple rounds, while self-
clustering effect would help amortize its expensive partition cost. For CKD, at
least one partition needs to elect new controller, and then the new controller
has to set up secure channels with all of the current members, which requires
several communication rounds. The partition/merge cost of BD would not be

9This is because if one member missed the token, it needs to wait for the token to pass the whole
ring, while in the BD scenario if the token completes a cycle, no matter where it started, everybody
succeeds to send.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

484 • Y. Amir et al.

different from the join/leave cost, since the same protocol is used in all these
cases.

Any merge takes at least two communication rounds. STR, TGDH, and BD
achieve this bound, and therefore will be the most efficient for merge events. The
performance of BD will deteriorate as the number of users increases as shown
in Figure 16, since the probability of message loss increases as the group size
grows.

6.4 Summary of Experimental Results

Our experiment results show some notable differences between theoretical and
measured (experimental) complexity of the protocols:

—The importance of the communication costs: Our experiments clearly show
that communication cost for group-oriented cryptographic protocols over long
delay network can dominate the computational cost.

—Cost of simultaneous n broadcast messages: When designing group-oriented
cryptographic protocols, most cryptographers focused on computational over-
head and number of rounds (even the most recent results [Katz and Yung
2003]). We show that simultaneous n broadcast message for relatively large
n is also very expensive in practice, and it, therefore, is recommended to be
avoided.

—Cost of BD: The cost of BD roughly doubles as the group size grows in incre-
ment of the total number of machines and degrades significantly when the
group size hits the number of processors. This is not visible from the table
also.

—Cost of TGDH: The best and worst case costs for TGDH can be theoretically
analyzed. (Most notably, its worst case communication cost is quite expensive
compared to STR.) The results show that TGDH is the best overall protocol
in practice, if only one protocol has to be selected. We showed that its self-
clustering effect (not visible from the theoretical cost table) can reduce its
complexity.

7. COMMON APPLICATIONS CLASSES AND GROUP KEY AGREEMENT

Our long-term experience with group communication systems (in particular,
with the Spread toolkit) shows that there are several common communica-
tion patterns used by group-oriented applications. Below, we introduce major
Spread applications focusing on the type of groups they use, and, for each, iden-
tify the most suitable group key agreement protocol. Since 512-bit key size is
not considered secure enough for many mission-critical applications, we only
consider experimental results for 1024-bit keys. (Note that we do not consider
other security services, such as message authentication or authorization.)

Peer groups of long-running servers: This group type usually connects repli-
cated servers that provide a service, as if they were one logical server. The entire
group of servers can reside on one LAN, or they may be spread across a WAN.
These servers join the group upon startup, and never voluntarily leave the
group. The most prevalent membership events in such a group are partitions

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 485

and merges. There may also be a limited number of server shutdown and
startups, usually for maintenance reasons. When a small number of servers
is considered, BD would fit best. However, when the number of servers in-
creases, TGDH would perform much better. Especially in a WAN setting, the
self-clustering effect of TGDH would play a major role in reducing its inefficient
partition cost. When servers are distributed over a high-delay WAN, STR can
be also considered, as it has the most efficient communication cost.

Conferencing: In this group type, membership is built over time as partic-
ipants join the conference, with an occasional participant joining or leaving.
The group usually dissolves when most participants leave at roughly the same
time, although the time to complete the mass leave event is not very important
to the participants. Again, for small number of participants, BD would fit best.
Since most hosts in this application type are expected to run a single member
process, BD would not show stepping behavior. However, STR would fit better
for a large number of participants. Note that the cost of a subtractive event does
not matter much in this case, since the group dissolves almost at the same time.

One-to-many broadcast: In this group type there is one source multicasting
to many receivers. The group has no value without the presence of the source;
while receivers join and leave at will. It is obvious that group key distribution
protocols are most appropriate for this application class. However, CKD would
fit better for applications that require strong security properties such as PFS.

Distributed logging: This group type has several logging servers that accept
updates from many participants, which may frequently join or leave the group.
For example, we have observed such systems with hundreds of participants,
each of which with a lifespan of several minutes. This translates into several join
or leave operations per second globally. This model requires the most scalable
and efficient solution; therefore, TGDH would fit best.

Mobile state transfer: This group type has up to a few tens of participants
that share soft state. From time to time, participants join the group, exchange
state, stay connected for a while, and temporarily leave the group. In such a
setting, there are no long-term participants in the group, but the group changes
are usually less frequent than in the distributed logging case. However, this
also requires relatively frequent joins and leaves. Therefore, once again, TGDH
would work best.

8. CONCLUSIONS

We presented a framework for cost evaluation of group key agreement proto-
cols in a realistic network setting. Our focus was on five notable group key
agreement protocols integrated with a reliable group communication system
(Spread). After analyzing the protocols’ conceptual costs, we measured their
behavior in both LAN and WAN settings. Based on these extensive experi-
ments, we confirm that computation is the most important cost factor in LANs
and communication is the most cost factor in high-delay WANs.

In a LAN setting, TGDH performs the best overall. However, we also note
that for small groups—no greater than, say, a dozen members—BD is a better

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

486 • Y. Amir et al.

performer. Another factor in BD’s favor is its simplicity: all operations are sym-
metric and are implemented via the same protocol with few data structures to
manage. In contrast, TGDH involves nontrivial tree management [Kim et al.
2000]. An additional factor can skew the relative performance of the evaluated
protocols: TGDH was evaluated with a well-balanced tree. In a random (un-
balanced) tree the join cost would have been less expensive since the joining
node would have been inserted nearer the root. At the same time, the leave cost
would have been more expensive, yet still less expensive than that in GDH [Kim
et al. 2000].

In a high-delay WAN setting, TGDH and CKD exhibited the best perfor-
mance. Since TGDH has smaller computation overhead, we expect it to outper-
form CKD in a medium-delay WAN (70–100 ms round-trip).

ACKNOWLEDGMENTS

We would like to thank Dang Nguyen Duc and Taekyoung Kwon for providing
machines at ICU and Sejong University (Korea) used in our experiments. We
also thank Ryan Caudy for providing a tool to generate partitions and merges
for Spread servers. Finally, we are very grateful to the ACM TISSEC anonymous
referees for their insightful comments and suggestions on a previous version of
this paper.

REFERENCES

AMIR, Y., DANILOV, C., MISKIN-AMIR, M., SCHULTZ, J., AND STANTON, J. 2004. The Spread Toolkit:
Architecture and Performance. Tech. rep., CNDS-2004-1, Johns Hopkins University.

AMIR, Y., DOLEV, D., KRAMER, S., AND MALKI, D. 1992. Transis: A communication sub-system for high
availability. In Digest of Papers, The 22nd International Symposium on Fault-Tolerant Computing
Systems. 76–84.

AMIR, Y., KIM, Y., NITA-ROTARU, C., SCHULTZ, J., STANTON, J., AND TSUDIK, G. 2001. Exploring ro-
bustness in group key agreement. In The 21st IEEE International Conference on Distributed
Computing Systems. IEEE Computer Society Press, 399–408.

AMIR, Y., KIM, Y., NITA-ROTARU, C., SCHULTZ, J., STANTON, J., AND TSUDIK, G. 2004. Secure group
communication using robust contributory key agreement. IEEE Trans. Parallel and Distrib.
Syst. 15, 5, 468–480.

AMIR, Y., KIM, Y., NITA-ROTARU, C., AND TSUDIK, G. 2002. On the performance of group key agree-
ment protocols (short paper). In The 22nd IEEE International Conference on Distributed Com-
puting Systems. IEEE Computer Society Press.

AMIR, Y., MOSER, L. E., MELLIAR-SMITH, P. M., AGARWAL, D., AND CIARFELLA, P. 1995. The Totem
single-ring ordering and membership protocol. ACM Trans. Comput. Syst. 13, 4 (Nov.), 311–342.

AMIR, Y., NITA-ROTARU, C., STANTON, J., AND TSUDIK, G. 2003. Scaling secure group communica-
tion systems: Beyond peer-to-peer. In The 3rd DARPA Information Survivability Conference and
Exposition (DISCEX III), Washington, D.C.

AMIR, Y. AND STANTON, J. 1998. The Spread wide area group communication system. Tech. rep.,
98-4, Johns Hopkins University.

ANKER, T., CHOCKLER, G. V., DOLEV, D., AND KEIDAR, I. 1998. Scalable group membership services
for novel applications. In Workshop on Networks in Distributed Computing.

BIRMAN, K. P. AND JOSEPH, T. 1987. Exploiting virtual synchrony in distributed systems. In The
11th Annual Symposium on Operating Systems Principles. 123–138.

BIRMAN, K. P. AND RENESSE, R. V. 1994. Reliable Distributed Computing with the ISIS Toolkit.
IEEE Computer Society Press.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

Group Key Agreement Protocols • 487

BONEH, D. 1998. The decision Diffie-Hellman problem. In Third Algorithmic Number Theory
Symposium. Lecture Notes in Computer Science, vol. 1423. Springer-Verlag, Berlin Germany,
48–63.

BONEH, D. 1999. Twenty years of attacks on the RSA cryptosystem. Not. Am. Math. Soc.
(AMS) 46, 2, 203–213.

BRESSON, E., CHEVASSUT, O., AND POINTCHEVAL, D. 2001a. Provably authenticated group
Diffie-Hellman key exchange—The dynamic case. In Asiacrypt 2001. Lecture Notes in Computer
Science.

BRESSON, E., CHEVASSUT, O., POINTCHEVAL, D., AND QUISQUATER, J.-J. 2001b. Provably authenticated
group Diffie-Hellman key exchange. In The 8th ACM Conference on Computer and Communica-
tions Security. ACM Press.

BURMESTER, M. AND DESMEDT, Y. 1994. A secure and efficient conference key distribution system.
Advances in Cryptology—EUROCRYPT’94.

CARONNI, G., WALDVOGEL, M., SUN, D., WEILER, N., AND PLATTNER, B. 1999. The VersaKey framework:
Versatile group key management. IEEE J. Select. Areas Commun. 17, 9 (Sep.).

DIFFIE, W. AND HELLMAN, M. E. 1976. New directions in cryptography. IEEE Trans. Inform.
Theory IT-22, 644–654.

FEKETE, A., LYNCH, N., AND SHVARTSMAN, A. 1997. Specifying and using a partitionable group com-
munication service. In The 16th ACM Symposium on Principles of Distributed Computing, Santa
Barbara, CA. 53–62.

FLOYD, S., JACOBSON, V., LIU, C., MCCANNE, S., AND ZHANG, L. 1997. A reliable multicast framework
for light-weight sessions and application level framing. IEEE/ACM Trans. Netw. 5, 6 (Dec.),
784–803.

GONG, L. 1997. Enclaves: Enabling secure collaboration over the Internet. IEEE J. Select. Areas
Commun. 15, 3 (Apr.), 567–575.

HARNEY, H., COLEGROVE, A., AND MCDANIEL, P. 2001. Principles of policy in secure groups. In Net-
work and Distributed Systems Security Symposium.

HILTUNEN, M. A. AND SCHLICHTING, R. D. 1996. Adaptive distributed and fault-tolerant systems.
Int. J. Comput. Syst. Sci. Engng. 11, 5 (Sep.), 125–133.

HILTUNEN, M. A., SCHLICHTING, R. D., AND UGARTE, C. 2001. Enhancing survivability of se-
curity services using redundancy. In International Conference on Dependable Systems and
Networks.

KATZ, J. AND YUNG, M. 2003. Scalable protocols for authenticated group key exchange. Advances
in Cryptology—CRYPTO’03.

KEIDAR, I., MARZULLO, K., SUSSMAN, J., AND DOLEV, D. 2000. A client-server oriented algorithm
for virtually synchronous group membership in WANs. In The 20th International Conference on
Distributed Computing Systems. 356–365.

KIHLSTROM, K. P., MOSER, L. E., AND MELLIAR-SMITH, P. M. 1998. The SecureRing protocols for
securing group communication. In The 31st Hawaii International Conference on System Sciences,
Vol. 3. Kona, Hawaii, 317–326.

KIM, Y. 2002. Group Key Agreement—Theory and Practice. Ph.D. thesis, Department of Com-
puter Science, University of Southern California.

KIM, Y., PERRIG, A., AND TSUDIK, G. 2000. Simple and fault-tolerant key agreement for dynamic
collaborative groups. In The 7th ACM Conference on Computer and Communications Security.
ACM Press, 235–244.

KIM, Y., PERRIG, A., AND TSUDIK, G. 2001. Communication-efficient group key agreement. In IFIP
SEC 2001.

KIM, Y., PERRIG, A., AND TSUDIK, G. 2004a. Group key agreement efficient in communication. IEEE
Trans. Comput. 33, 7.

KIM, Y., PERRIG, A., AND TSUDIK, G. 2004b. Tree-based group key agreement. ACM Trans. Inf. Syst.
Secur. 7, 1.

MCDANIEL, P., PRAKASH, A., AND HONEYMAN, P. 1999. Antigone: A flexible framework for secure
group communication. In The 8th USENIX Security Symposium. 99–114.

MENEZES, A., VAN OORSCHOT, P., AND VANSTONE, S. 1996. Handbook of Applied Cryptography. CRC
Press.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

488 • Y. Amir et al.

MOSER, L. E., AMIR, Y., MELLIAR-SMITH, P. M., AND AGARWAL, D. A. 1994. Extended virtual syn-
chrony. In The 14th International Conference on Distributed Computing Systems. IEEE Computer
Society Press, Los Alamitos, CA, 56–65.

NATIONAL INSTITUTE FOR STANDARDS AND TECHNOLOGY (NIST). 2000. Digital Signature Stan-
dard (DSS). Number FIPS 186-2. National Institute for Standards and Technology (NIST).
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf.

NITA-ROTARU, C. 2003. High Performance Secure Group Communication. Ph.D. thesis, Depart-
ment of Computer Science, Johns Hopkins University.

OPENSSL PROJECT TEAM. 1999. OpenSSL. http://www.OpenSSL.org/.
REITER, M. K. 1994. Secure agreement protocols: reliable and atomic group multicast in RAM-

PART. In The 2nd ACM Conference on Computer and Communications Security. 68–80.
RENESSE, R. V., BIRMAN, K., AND MAFFEIS, S. 1996. Horus: A flexible group communication system.

Commun. ACM 39, 76–83.
RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. M. 1978. A method for obtaining digital signatures and

public-key cryptosystems. Commun. ACM 21, 2 (Feb.), 120–126.
RODEH, O., BIRMAN, K., AND DOLEV, D. 2001. The architecture and performance of security protocols

in the Ensemble Group Communication System. ACM Trans. Inf. Syst. Secur. 4, 3 (Aug.), 289–
319.

RODEH, O., BIRMAN, K., AND DOLEV, D. 2002. Using AVL trees for fault tolerant group key man-
agement. Int. J. Inf. Secur. 1, 2 (Feb.).

SCHULTZ, J. 2001. Partitionable Virtual Synchrony using Extended Virtual Synchrony. M.S. the-
sis, Department of Computer Science, Johns Hopkins University.

SETIA, S., KOUSSIH, S., JAJODIA, S., AND HARDER, E. 2000. Kronos: A scalable group re-keying ap-
proach for secure multicast. In The 2000 IEEE Symposium on Security and Privacy. IEEE,
215–218. Oakland, CA.

SHERMAN, A. T. AND MCGREW, D. A. 2003. Key establishment in large dynamic groups using one-
way function trees. IEEE Trans. Softw. Engng. 444–458.

STEER, D., STRAWCZYNSKI, L., DIFFIE, W., AND WIENER, M. 1990. A secure audio teleconference sys-
tem. Advances in Cryptology—CRYPTO’88.

STEINER, M., TSUDIK, G., AND WAIDNER, M. 2000. Key agreement in dynamic peer groups. IEEE
Trans. Parallel Distrib. Syst..

TZENG, W.-G. AND TZENG, Z.-J. 2000. Round-efficient conference-key agreement protocols with
provable security. In Advances in Cryptology—ASIACRYPT ’2000. Lecture Notes in Computer
Science. Springer-Verlag, Kyoto, Japan.

WALLNER, D., HARDER, E., AND AGEE, R. 1999. Key management for multicast: Issues and archi-
tectures. RFC 2627.

WHETTEN, B., MONTGOMERY, T., AND KAPLAN, S. 1994. A high performance totally ordered multicast
protocol. In Theory and Practice in Distributed Systems, International Workshop. Lecture Notes
in Computer Science, vol. 938.

WONG, C. K., GOUDA, M. G., AND LAM, S. S. 2000. Secure group communications using key graphs.
Trans. Netw. 8, 1, 16–30.

Received November 2003; revised May 2004 and June 2004; accepted June 2004

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.

