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Secure and reliable group communication is an active area of research. Its popularity is fueled
by the growing importance of group-oriented and collaborative applications. The central research
challenge is secure and efficient group key management. While centralized methods are often
appropriate for key distribution in large multicast-style groups, many collaborative group settings
require distributed key agreement techniques. This work investigates a novel group key agreement
approach which blends key trees with Diffie–Hellman key exchange. It yields a secure protocol suite
called Tree-based Group Diffie–Hellman (TGDH) that is both simple and fault-tolerant. Moreover,
the efficiency of TGDH appreciably surpasses that of prior art.
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1. INTRODUCTION

Fault-tolerant, scalable, and reliable communication services have become
critical in modern computing. An important and popular trend is to convert
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traditional centralized services (e.g., file sharing, authentication, web, and
mail) into distributed services spread across multiple systems and networks.
Many of these newly distributed and other inherently collaborative appli-
cations (e.g., conferencing, white-boards, shared instruments, and command-
and-control systems) need secure communication. However, experience shows
that security mechanisms for collaborative and dynamic peer groups (DPGs)
tend to be both expensive and unexpectedly complex. In that regard, DPGs
are very different from non-collaborative, centrally managed, one-to-many
(or few-to-many) broadcast groups such as those encountered in Internet
multicast.

DPGs are common in many layers of the network protocol stack and many
application areas of modern computing. Examples of DPGs include replicated
servers (such as database, web, time), audio and video conferencing and, more
generally, applications supporting collaborative work. In contrast to large mul-
ticast groups, DPGs tend to be relatively small in size, on the order of hundred
members. Larger groups are harder to control on a peer basis and are often
organized in a hierarchy. DPGs typically assume a many-to-many (or, equiv-
alently, any-to-any) communication pattern rather than one-to-many pattern
common of larger hierarchical groups.

Despite their relatively small number, group members in a DPG may be
spread throughout the Internet and must be able to deal with arbitrary par-
titions due to network failures, congestion, and hostile attacks. In essence, a
group can be split into a number of disconnected partitions each of which must
persist and function as an independent peer group.

Security requirements in collaborative DPGs present several interesting re-
search challenges. In this paper, we focus on secure and efficient group key
management. The goal of group key management is to set up and maintain
a shared secret key among the group members. It serves as a cornerstone for
other DPG security services.

1.1 Group Key Management

There are several fundamentally different approaches to group key manage-
ment in peer groups.

One approach relies on a single entity (called a key server) to generate keys
and distribute them to the group. We refer to it as centralized group key dis-
tribution. Essentially, a key server maintains long-term shared keys with each
group member in order to enable secure two-party communication for the ac-
tual key distribution. One form of this solution uses a fixed trusted third party
(TTP) as the key server. This approach has two problems: (1) TTP must be con-
stantly available and (2) TTP must exist in every possible subset of a group in
order to support continued operation in the event of network partitions. The
first problem can be addressed with fault-tolerance and replication techniques.
The second is impossible to solve in a scalable and efficient manner. We note,
however, that the centralized approach works well in one-to-many multicast
scenarios, since a TTP (or a set thereof) placed at, or very near, the source of
communication can support continued operation within an arbitrary partition

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.



62 • Y. Kim et al.

as long as it includes the source. Typically, one-to-many settings only aim to
offer continued operation within a single partition that includes the source.
Whereas, many-to-many environments must offer continued operation in an
arbitrary number of partitions.

Another approach—called decentralized group key distribution—involves dy-
namically selecting a group member to generate and distribute keys to other
group members. This approach is more robust and, thus, more applicable to
many-to-many groups since any partition can continue operation by electing
a key server. The drawback is that, as in the TTP case, a key server must es-
tablish long-term pairwise secure channels with all current group members in
order to distribute group keys. Consequently, each time a new key server comes
into play, significant costs must be incurred to set up these channels. Another
disadvantage, again as in the TTP case, is the reliance on a single entity to
generate good (i.e., cryptographically strong, random) keys.

In contrast to the above approaches, contributory group key management
requires each group member to contribute an equal share to the common group
key (which is then computed as a function of all members’ contributions). This
avoids the problems with the centralized trust and the single point of fail-
ure. Moreover, some contributory methods do not require the establishment of
pairwise secret channels among group members. One significant problem with
current contributory group key agreement1 protocols is that they are not de-
signed to tolerate failures and group membership changes during execution.
In particular, nested (cascaded) failures, partitions and other group events are
not accommodated. This is not surprising, since most multiround cryptographic
protocols do not offer built-in robustness with the notable exception of protocols
for fair exchange [Asokan et al. 2000].

1.2 Overview

In this paper, we focus on contributory group key agreement. In doing so, we
unify two important trends in group key management: (1) key trees to efficiently
compute and update group keys and (2) Diffie–Hellman key exchange to achieve
provably secure and fully distributed protocols. Our main result is a simple,
secure, robust and efficient key management solution, called Tree-based Group
Diffie–Hellman (TGDH).

Organization: The rest of this paper is organized as follows. Section 2
presents our assumptions and requirements for a reliable group communica-
tion system. Section 3 introduces cryptographic requirements of our group key
agreement protocol and Section 4 introduces notation and terminology. The pro-
tocols are described in Section 5, followed by a discussion of practical aspects in
Section 6. Section 7 analyzes both protocol complexity analytically and experi-
mentally. The summary of related work appears in Section 8. Finally, security
arguments of the proposed protocols are provided in Appendix A.

1We use the term “agreement,” as opposed to “distribution,” to emphasize the contributory nature
of the key management.
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2. GROUP COMMUNICATION AND GROUP KEY AGREEMENT

As noted in Section 1, many modern collaborative and distributed applications
require a reliable group communication platform. The latter, in turn, needs
specialized security mechanisms to perform (among other things) group key
management. This dependency is mutual, since practical group key agreement
protocols themselves rely on the underlying group communication semantics
for protocol message transport and strong membership semantics. Implement-
ing multiparty and multiround cryptographic protocols without such support
is foolhardy as, in the end, one winds up reinventing reliable group communi-
cation tools.

In this section, we begin with a brief discussion of reliable group communica-
tion. Next, we summarize the relationship between group membership events
and group key management protocols and conclude with the summary of de-
sired cryptographic properties.

2.1 Group Communication Semantics and Support

There are two commonly used strong group communication semantics: Ex-
tended Virtual Synchrony (EVS) [Moser et al. 1994; Amir 1995] and View Syn-
chrony (VS) [Fekete et al. 1997]. Both guarantee that (1) group members see the
same set of messages between two sequential group membership events and (2)
sender’s requested message order (e.g., FIFO, Causal, or Total) is preserved. VS
provides a stricter service whereas EVS implementations are generally more
efficient.

The main difference between EVS and VS is that EVS guarantees that mes-
sages are delivered to all receivers in the same membership as existed when the
message was originally sent on the network. VS, in contrast, offers a stricter
guarantee that messages are delivered to all recipients in the same membership
as viewed by the sender application when it originally sent the message.

Providing, the latter property requires an extra round of acknowledgment
messages from all members before installing a new membership view. This
need for acknowledgments dictates that the groups be closed, only allowing
members of the group to send messages to it. However, the knowledge that a
message is received in the membership the sender believed it was sent makes
implementing secure group communication easier because every message is en-
crypted with the same key as the receiver believes is current when the message
is delivered to them.

An implementation of any distributed fault-tolerant group key agreement
protocol requires VS. This is because implementing group key agreement on
top of EVS would require the key agreement protocol to incorporate and imple-
ment semantics identical to those of VS in order to correctly keep state of which
messages were sent in which key epoch. (Intuitively, this is because member-
ship events are unpredictable and each triggers an instance of a key agreement
protocol. Thus, multiple key agreement protocols can overlap in time and cause
instability unless significant amount of state is kept within the key agree-
ment protocol implementation.) For this reason, there is no particular benefit
to building key agreement on top of EVS semantics.
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The issues surrounding implementation of key agreement in DGPs are ad-
dressed in detail in Amir et al. [2000]. Suffice it to say that, in the con-
text of this paper, we require the underlying group communication to pro-
vide VS. However, we stress that VS is needed for the sake of fault-tolerance
and robustness; the security of our protocols is in no way affected by the lack
of VS.

2.2 Group Membership Events

A comprehensive group key agreement solution must handle adjustments to
group secrets subsequent to all membership change operations in the underly-
ing group communication system.

We distinguish among single and multiple member operations. Single mem-
ber changes include member join or leave. Leave occurs when a member wants
(or is forced) to leave a group. While there might be different reasons for member
leave—such as voluntary leave, involuntary disconnect or forced expulsion—
we believe that group key agreement must only provide the tools to adjust the
group secrets and leave the rest up to the higher-layer (application-dependent)
security mechanisms.

Multiple member changes can also be additive and subtractive. We refer to
the former operation as group merge, in which case two or more groups merge
into a single group. We refer to the latter as group partition, whereby a group is
split into smaller groups. A group partition can take place for several reasons,
two of which are fairly common:

(1) Network failure—a network event causes disconnection within the group.
Consequently, a group is split into fragments some of which are singletons
while others (those that maintain mutual connectivity) are subgroups.

(2) Explicit (application-driven) partition—the application decides to split the
group into multiple components or exclude multiple members at once.

Similarly, a group merge be either voluntary or involuntary:

(1) Network fault heal—a network event causes previously disconnected net-
work partitions to reconnect. Consequently, groups on all sides (and there
might be more than two sides) of an erstwhile partition are merged into a
single group.

(2) Explicit (application-driven) merge—the application decides to merge mul-
tiple pre-existing groups into a single group. (The case of simultaneous
multiple-member addition is not covered.)

At the first glance, events such as network partitions and fault heals might ap-
pear infrequent and dealing with them might seem a purely academic exercise.
In practice, however, such events are common due to network misconfigurations
and router failures. Moser et al. offer some compelling arguments in support of
these claims [Moser et al. 1994]. We consider coping with group partitions and
merges to be a crucial component of group key agreement.

In addition to the aforementioned membership operations, periodic refreshes
of group secrets are advisable so as to limit the amount of ciphertext generated

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.



Tree-Based Group Key Agreement • 65

with the same key and to recover from potential compromises of members’
contributions or prior session keys.

We acknowledge that group key management without access control mech-
anism is difficult to implement [Kim et al. 2003]. However, we assume such a
mechanism is already in place, since it is out of the scope of this work.

3. CRYPTOGRAPHIC PROPERTIES

One of the most important security requirements of group key agreement is
called key freshness. A key is fresh if it can be guaranteed to be new, as opposed
to possibly an old key being reused by an adversary.

Furthermore, a session key should be known only to the involved parties. We
can now define four important security properties of group key agreement.

Definition 3.1. Assume that a group key is changed m times and the se-
quence of successive group keys is K = {K0, . . . , Km}.
(1) Group Key Secrecy guarantees that it is computationally infeasible for a

passive adversary to discover any group key Ki ∈ K for all i.
(2) Forward Secrecy guarantees that a passive adversary who knows a con-

tiguous subset of old group keys (say {K0, K1, . . . , Ki}) cannot discover any
subsequent group key K j for all i and j , where j > i.

(3) Backward Secrecy guarantees that a passive adversary who knows a con-
tiguous subset group keys (say {Ki, Ki+1, . . . , K j }) cannot discover preced-
ing group key Kl for all l , j , k, where l < i < j .

(4) Key Independence guarantees that a passive adversary who knows a proper
subset of group keys K̂ ⊂ K cannot discover any other group key K̄ ∈
(K − K̂ ).

The relationship among the properties is intuitive. Either of Backward or For-
ward Secrecy subsumes Group Key Secrecy and Key Independence subsumes
the rest. Also, the combination of Backward and Forward Secrecy forms Key
Independence.

Our definition of group key secrecy allows partial leakage of information.
Therefore, it would be more desirable to guarantee that any bit of the group
key is unpredictable. For this reason, we prove a decisional version of group
key secrecy in Appendix A. In other words, decisional version of group key
secrecy guarantees that it is computationally infeasible for a passive adversary
to distinguish any group key Ki from random number.

Our definitions of Backward and Forward Secrecy are stronger than those
typically found in the literature. The two are often defined (respectively) as
[Steiner et al. 2000]:

—Previously used group keys must not be discovered by new group members.
—New keys must remain out of reach of former group members.

The difference is that the adversary here is assumed to be a current or a former
group member. Our definition additionally includes the cases of inadvertently
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leaked or otherwise compromised group keys. We refer to the above as Weak
Forward Secrecy and Weak Backward Secrecy, respectively.

Since no long-term secrets or other keys are used for encryption, we are not
concerned with Perfect Forward Secrecy (PFS), as it is achieved trivially. In this
paper, we do not assume key authentication to be part of group key manage-
ment. All communication channels are thus considered public but authentic.
The latter means that all messages are digitally signed by the sender with some
sufficiently strong public key signature method such as DSA or RSA (and using
a long-term private key).2 All receivers are required to verify signatures on all
received messages and check the aforementioned fields. Consequently, our se-
curity model is different from other related work [Bresson et al. 2001a, 2001b],
which does not assume authentic channels.

4. NOTATION AND DEFINITIONS

We use the following notation:

N number of protocol parties (group members)
C set of current group members
L set of leaving members
J set of newly joining members
Mi ith group member; i ∈ {1, . . . , N }
h height of a tree
〈l , v〉 vth node at level l in a tree
Ti Mi ’s view of the key tree
T̂i Mi ’s modified tree after membership operation
T〈i, j 〉 A subtree rooted at node 〈i, j 〉
bkey blinded key; for key K , if the blinding function is modular

exponentiation in a prime order group, the bkey is αK mod p
BK∗i set of Mi ’s blinded keys (bkeys)
p, q prime integers
α exponentiation base

Key trees have been suggested in the past for centralized group key distribu-
tion systems. The seminal work of Wallner et al. is the earliest for such a pro-
posal [Wallner et al. 1997]. One of the main features of our work is the use of key
trees in fully distributed contributory key agreement. Figure 1 shows an exam-
ple of a key tree. The root is located at level 0 and the lowest leaves are at level
h. Since we use binary trees,3 every node is either a leaf or a parent of two nodes.
The nodes are denoted 〈l , v〉, where 0 ≤ v ≤ 2l−1 since each level l hosts at most
2l nodes.4 Each node 〈l , v〉 is associated with the key K 〈l ,v〉 and the blinded key

2Furthermore, all protocol messages are assumed to contain: (1) sender/group information, (2) a
protocol identifier (i.e., TGDH here) to distinguish among multiple protocols, (3) a unique message
identifier to distinguish among messages within a protocol, and (4) a key epoch identifier to capture
the instance of the protocol.
3Note that the tree needs to be binary, since our protocol uses the two-party Diffie–Hellman key
exchange to derive a node key from the contribution of the two children.
4Even though the key tree is not balanced, we assume a perfectly balanced tree for node numbering.
Thus, a node’s 〈l , v〉 left and right children have indexes 〈l + 1, 2v〉 and 〈l + 1, 2v+ 1〉, respectively.
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Fig. 1. Notation of a key tree.

(bkey) BK〈l ,v〉 = f (K 〈l ,v〉), where the function f (·) is modular exponentiation in
prime order groups, that is, f (k) = αk mod p (analogous to the Diffie–Hellman
protocol). Assuming a leaf node 〈l , v〉 hosts the member Mi, the node 〈l , v〉 has
Mi ’s session random key K 〈l ,v〉. Furthermore, the member Mi at node 〈l , v〉
knows every key along the path from 〈l , v〉 to 〈0, 0〉, referred to as the key-path
and denoted KEY∗i . In Figure 1, if a member M2 owns the tree T2, then M2 knows
every key {K 〈3,1〉, K 〈2,0〉, K 〈1,0〉, K 〈0,0〉} in KEY∗2 = {〈3, 1〉, 〈2, 0〉, 〈1, 0〉, 〈0, 0〉} and
every bkey BK∗2 = {BK〈0,0〉, BK〈1,0〉, . . . , BK〈3,7〉} on T2. Every key K 〈l ,v〉 is com-
puted recursively as follows:

K 〈l ,v〉 =
(
BK〈l+1,2v+1〉

)K 〈l+1,2v〉 mod p = (BK〈l+1,2v〉
)K 〈l+1,2v+1〉 mod p

= αK 〈l+1,2v〉K 〈l+1,2v+1〉 mod p = f
(
K 〈l+1,2v〉K 〈l+1,2v+1〉

)
.

Computing a key at 〈l , v〉 requires the knowledge of the key of one of the two
child nodes and the bkey of the other child node. K 〈0,0〉 at the root node is the
group secret shared by all members. We stress that this value is never used
directly as an encryption or authentication key. Instead, we derive special-
purpose sub-keys from the group secret, for example, by setting Kgroup =
hE (K 〈0,0〉), where hE is a cryptographically strong hash function uniquely in-
dexed with the purpose identifier E, for example, encryption. For example, in
Figure 1, M2 can compute K 〈2,0〉, K 〈1,0〉, and K 〈0,0〉 using BK〈3,0〉, BK〈2,1〉, BK〈1,1〉,
and K 〈3,1〉. The final group key K 〈0,0〉 is

K 〈0,0〉 = α(αr3(αr1r2 ))(αr4(αr5r6 )).

To simplify subsequent protocol description, we introduce the term co-path,
denoted as CO∗i , which is the set of siblings of each node in the key-path of
member Mi. For example, the co-path CO∗2 of member M2 in Figure 1 is the set
of nodes {〈3, 0〉, 〈2, 1〉, 〈1, 1〉}. Every member Mi at leaf node 〈l , v〉 can derive the
group secret K 〈0,0〉 from all bkeys on the co-path CO∗i and its session random
K 〈l ,v〉.
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5. TGDH PROTOCOLS

In this section, we introduce the four basic protocols that form the TGDH proto-
col suite: join, leave, merge, and partition. All protocols share a common frame-
work with the following notable features:

—Each group member contributes an equal share to the group key. The key is
computed as a function of all current group members’ shares.

—Each share is secret (private to each group member) and is never revealed.
—As the group grows, new members’ shares are factored into the group key

and, upon each new member’s joining, one of the old members changes its
share.

—As the group shrinks, departing members’ shares are removed from the new
group key, and at least one remaining member changes its key share.5

—All protocol messages are signed, timestamped, sequence-numbered, and
type-identified by the sender; as discussed at the end of Section 3. (We use
RSA for message signing since the number of receivers is greater than the
number of senders.)

After every membership change, all remaining members independently up-
date the key tree structure. Since we assume that the underlying communi-
cation system provides VS (see Section 2), all members who correctly execute
the protocol, recompute identical key trees after any membership event. The
following is the minimal requirement for computing the group key.

PROPOSITION 5.1. A group key can be computed from any member’s secret
share (i.e., any leaf value) and all bkeys on the co-path to the root.

It is easy to see that knowledge of its own secret share and all sibling bkeys
on the path to the root enables a member to compute all intermediate keys on
its key-path, including the root group key. This is similar to other tree-based
schemes [McGrew and Sherman n.d.], where each member is required to know
all keys on the path from itself (leaf) to the root. Although not strictly necessary
for computing group key, our protocol also requires each member to know all
bkeys in the entire key tree. As will be seen below, this makes the handling of
future membership changes more efficient and robust.

As part of the protocol, a group member can take on a special sponsor role,
which involves computing intermediate keys and broadcasting to the group.
Each broadcasted message contains the sender’s view of the key tree, which
contains each bkey known to the sender. (We stress that intermediate keys are
never broadcasted!) Any member in the group can unilaterally take on this
responsibility, depending on the type of membership event. In some cases, such
as a partition event, multiple sponsors might be involved.

5This prevents the group from reusing old keys. For example, if a member joins and immediately
leaves, the group key would be the same before the join and after the leave. Although, in practice,
this is not always a problem and might even be a desirable feature, we choose to err on the side
of caution and change the key. In more concrete terms, changing the key upon all membership
changes preserves key independence [Steiner et al. 2000; Ateniese et al. 1998].
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5.1 TGDH Membership Events

As discussed in Section 2, a group key agreement method needs to provide
key adjustment protocols to cope with membership changes. TGDH includes
protocols in support of the following operations:

—Join: a new member is added to the group.
—Leave: a member is removed from the group.
—Merge: a group is merged with the current group.
—Partition: a subset of members are split from the group.
—Key refresh: the group key is updated.

Before turning our attention to the actual protocols we stress that, while a
comprehensive protocol suite must address all types of key adjustment oper-
ations, the general policy (or case-by-case decisions) regarding if and when to
change a group key is the responsibility of the application and/or the group
communication system.

Sections 5.2–5.5 present the four protocols. In each section, we assume that
every member can unambiguously determine both the sponsors and the inser-
tion location in the key tree (in case of an additive event). Later in Section 5.6,
we will explain how this works. Note that the key refresh operation can be
considered a special case of leave without any members actually leaving the
group.

5.2 Join Protocol

We assume the group has n members: {M1, . . . , Mn}. The new member Mn+1
initiates the protocol by broadcasting a join request message that contains its
own bkey BK〈0,0〉. This message is distinct from any JOIN messages generated
by the underlying group communication system, although, in practice, the two
might be combined for efficiency’s sake.

Each current member receives this message and determines the insertion
point in the tree. The insertion point is the shallowest rightmost node, where
the join does not increase the height of the key tree. Otherwise, if the key tree
is fully balanced, the new member joins to the root node. The sponsor is the
rightmost leaf in the subtree rooted at the insertion node. Next, each member
creates a new intermediate node and a new member node, and promotes the
new intermediate node to be the parent of both the insertion node and the new
member node. After updating the tree, all members, except the sponsor, block.
The sponsor proceeds to update its share and compute the new group key; it can
do this since it knows all necessary bkeys. Next, the sponsor broadcasts the new
tree that contains all bkeys. All other members update their trees accordingly
and compute the new group key (see Proposition 5.1).

It might appear wasteful to broadcast the entire tree to all members, since
they already know most of the bkeys. However, since the sponsor needs to
send a broadcast message to the group anyhow, it might as well include more
information that is useful to the new member, thus saving one unicast message
to the new member (which would have to contain the entire tree).
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Fig. 2. Tree update: join.

Figure 2 shows an example of member M4 joining a group, where the sponsor
(M3) performs the following actions:

(1) renames node 〈1, 1〉 to 〈2, 2〉,
(2) generates a new intermediate node 〈1, 1〉 and a new member node 〈2, 3〉,
(3) promotes 〈1, 1〉 as the parent node of 〈2, 2〉 and 〈2, 3〉.
Since all members know BK〈2,3〉 and BK〈1,0〉, M3 can compute the new group key
K 〈0,0〉. Every other member also performs step 1 and step 2, but cannot compute
the group key in the first round. Upon receiving the broadcasted bkeys, every
member can compute the new group key.

Overall, a join operation requires two rounds and three messages to finish.
The number of modular exponentiations6 depends on the joining point and
ranges from 6 to 3h − 3 (where h is the height of the resulting key tree). The
maximum cost occurs when the new member joins to the leaf node of a balanced
tree: The sponsor performs 2h − 2 modular exponentiations (to compute h −
1 keys and blinded keys), and other members compute at most h − 1 keys.
The minimum number of modular exponentiations is achieved when the left
or right subtree of the root node has a single node: The sponsor computes four
modular exponentiations and other members compute at most two modular
exponentiations.

5.3 Leave Protocol

Once again, we start with n members and assume that member Md leaves
the group. The sponsor in this case is the rightmost leaf node of the subtree
rooted at the leaving member’s sibling node. First, each member updates its
key tree by deleting the leaf node corresponding to Md . The former sibling of
Md is promoted to replace Md ’s parent node. The sponsor generates a new key
share, computes all [key, bkey] pairs on the key-path up to the root, and broad-
casts the new set of bkeys. This allows all members to compute the new group
key.

Looking at the setting that Figure 3 shows, if member M3 leaves the group,
every remaining member deletes 〈1, 1〉 and 〈2, 2〉. After updating the tree, the

6Hereafter, we count the number of modular exponentiations that need to be computed in sequence.
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Fig. 3. Tree updating in leave operation.

sponsor (M5) picks a new share K 〈2,3〉, recomputes K 〈1,1〉, K 〈0,0〉, BK〈2,3〉, and
BK〈1,1〉, and broadcasts the updated tree T̂5 with BK∗5. Upon receiving the broad-
cast message, all members compute the group key. Note that, M3 cannot com-
pute the group key, though it knows all the bkeys, because its share is no longer
part of the group key.

One round and one message are required to complete a leave protocol. The
number of modular exponentiation depends on the location of the leaving mem-
ber and tree structure. Its upper bound is 3h− 3 if all [key, bkey] pairs on the
key-path of the deepest node need to be recomputed. When either left or right
subtree has single node and it is the sponsor (i.e., its sibling leaves the group),
three modular exponentiations are required (two by the sponsor and one by all
other members).

5.4 Partition Protocol

A network fault may cause a partition of a n-member group. From the viewpoint
of each member, this event appears as a concurrent leave of multiple members.
The partition protocol involves multiple rounds to reconstruct a key tree; it
runs until all members recomputed the new group key.

In the first round, each remaining member updates its tree by deleting all
partitioned members as well as their respective parent nodes and “compacting”
the tree. The procedure is as follows:

All leaving nodes are sorted by depth order. Starting at the deepest level,
each pair of leaving siblings is collapsed into its parent, which is then marked
as leaving. This node is reinserted into the leaving nodes list. The above is
repeated until all leaving nodes are processed, that is, there are no more leav-
ing nodes that can be collapsed. The resulting tree has a number of leaving
(leaf) nodes but every such node has a remaining sibling node. Now, for each
leaving node, we identify a sponsor using the same criteria as described in
Section 5.3.
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Fig. 4. Tree updating in partition operation.

Each sponsor now computes keys and bkeys on the key-path as far up the
tree as possible. Then, each sponsor broadcasts the set of new bkeys. Upon
receiving a broadcast, each member checks whether the message contains new
bkeys. This procedure iterates until all members obtain the group key. (Recall
that a member can compute the group key if it has all the bkeys on its co-path.)

To provide key independence, one of the remaining members needs to change
its key share. For this reason, in the first round of the partition protocol, we
require the shallowest rightmost sponsor to generate a new key share.

Figure 4 shows an example where all remaining members delete all nodes of
leaving members and compute keys and bkeys in the first round. In the figure
on the right, any of M2 or M3 (M5 or M6) cannot compute the new group key,
since they lack the bkey BK〈1,1〉 (BK〈1,0〉), respectively. However, M3 broadcasts
BK〈1,0〉 in the first round, and M6 can thus compute the group key. Finally, every
member knows all bkeys and can compute the group key. As discussed above,
before computing K 〈1,1〉, M6 changes its share K 〈2,3〉.

Note that, if some member Mi computes the new group key in round h′, then
all other members can compute the group key, at the latest, in round h′ + 1,
since Mi ’s broadcast message contains all bkeys in the key tree. Hence, each
member can independently detect the completion of the partition protocol.

The minimum and maximum number of modular exponentiations for the
partition protocol are same as those of the leave protocol. (This is straightfor-
ward, the examples we give for the leave protocol can also be applied here.)
However, the communication costs are different. Two factors that affect the
number of rounds are the number of leaving members and the resulting tree
height. When p members are partitioned from a group of n members, each re-
maining member updates its tree by deleting all partitioned members as well
as their respective parent nodes in the first round. Now, each key tree has at
most p paths with empty bkeys. The expected number of paths with empty keys
is p/2. Filling up these bkeys requires at most min(dlog2 pe+1, h) rounds, since
every sponsor in each subsequent round computes bkeys as far up the tree as
possible, and the number of rounds never exceeds the tree height. Similarly,
the number of messages is min(2p, dn

2 e) in the worst case.
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5.5 Merge Protocol

Network faults can partition a group into several subgroups. After the network
recovers, partitioned subgroups need to be merged back into a single group. We
now describe the merge protocol for merging k groups.

In the first round of the merge protocol, each sponsor (the rightmost member
of each group) broadcasts its tree with all bkeys to all other groups after up-
dating the secret share of the sponsor and relevant [key, bkey] pairs up to the
root node. Upon receiving these messages, all members can uniquely and inde-
pendently determine how to merge those k trees using the tree management
policy, we describe in Section 5.6.

Next, each sponsor computes all [key, bkey] pairs on the key-path until it ei-
ther reaches the root or encounters a dependency.7 It then broadcasts its view
of the tree to the group. All members update their tree views with the new
information. If the broadcasting sponsor computed the root key, then, upon
receiving the broadcast, all other members can compute the root key as well.
In a more general case, a broadcast unblocks exactly one locked sponsor who
can now compute further [key, bkey] pairs. This process is incremental, simi-
lar to the partition protocol. Finally, some sponsor will compute the new root
key and will broadcast the key tree. Now, all members can compute the group
key.

The communication overhead of the merge protocol may appear high at first,
however, the protocol is quite efficient. Consider k merging groups. In the first
round, a sponsor in each group broadcasts its key tree after updating its session
random. Upon receiving these broadcast messages, every member rebuilds a
key tree that has some missing bkeys. At most, k paths will have missing bkeys.
Propagating these bkeys requires at most dlog2 ke rounds, since each sponsor (in
each subsequent round) computes bkeys as far as it can. Therefore, a merge of
k groups takes at most dlog2 ke+1 rounds. The maximum number of messages
is 2k. The number of modular exponentiations for the worst and the best case
is the same as that of the join protocol, since rebuilding the whole key tree
requires the same number of serial modular exponentiations as joining to a
leaf node.

Figure 5 shows an example of two merging groups, where the sponsors M2
and M7 broadcast their trees (T2 and T7). Upon receiving these broadcast mes-
sages, every member checks whether it is the sponsor in the second round.
Every member in both groups merges two trees, and then, M2 (the sponsor in
this example) updates the key tree, computes and broadcasts bkeys.

5.6 Tree Management

Modular exponentiation is computationally the most expensive operation in
TGDH. The number of exponentiations for a membership event depends on
the current tree structure and the distance between the sponsor node and the
root node. If the distance between the sponsor and the root node is l , the join

7If a sponsor cannot compute a new intermediate key, it does not broadcast any message but simply
blocks.
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Fig. 5. Tree update in merge.

and leave protocol requires 3l modular exponentiations. Therefore, a sponsor
should be chosen as close to the root node as possible.

Another important goal of a tree management policy is to maintain the key
tree as balanced as possible. A balanced key tree reduces the overhead of future
leave or partition events.

5.6.1 Policy for Additive and Subtractive Events. Our heuristic for keep-
ing the key tree balanced is to choose the insertion node for a join or merge
operation as the rightmost shallowest node. This usually does not increase the
height. If we have to increase the height of the key tree, we simply join to
the root. (See also Sections 5.2 and 5.5.) We do not employ any tree balanc-
ing scheme for subtractive events or attempt to rebalance when the key tree
becomes unbalanced.

In the rest of this section, we discuss our tree management policy for Merge
(Join is a special case thereof). In particular, we focus on how each member
independently, simultaneously, and unambiguously merges k trees and selects
an insertion point for each merge. Clearly, these properties (independency, con-
currency, and consistency) are crucial to obtain a correct and efficient protocol.

Recall that we have k merging trees. Each member invokes the merge trees
function k − 1 times:

(1) First, the trees are ordered from the highest T1 to the lowest Tk . If multiple
trees are of the same height, we list them in lexicographic order of the first
member in each tree.

(2) Let T̂ = T1.
(3) For i = 2 to k, T̂ ←− merge trees(T̂ , Ti).

Since every member can order the merging trees independently and unam-
biguously, all members can agree on a key tree if the merge trees algorithm
guarantees uniqueness of the result. We now show how to merge two trees.

If two trees are of the same height, we join one tree to the root node (inser-
tion point) of the other. To provide unambiguous ordering we lexicographically

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.



Tree-Based Group Key Agreement • 75

compare the identifiers of the respective sponsors. Otherwise, we join the shal-
lower tree to the deeper tree. To locate the insertion point, we first try to find
the rightmost shallowest node (not necessarily a leaf), where the join would not
increase the overall tree height. If no such node exists, the insertion point is
the root node as the tree height would increase anyway.

5.6.2 Sponsor Selection Summary. Sponsor selection in TGDH takes place
in each protocol round. (Recall that TGDH is a multiround protocol.) As men-
tioned earlier, uniqueness, consistency, and independence of this process are
crucial for protocol correctness. To summarize, we select sponsors for the initial
protocol round as follows:

(1) Additive event: member associated with the rightmost shallowest leaf node
of each key tree becomes the sponsor.

(2) Subtractive event: member associated with the rightmost shallowest leaf
node rooted at the sibling node of each leaving member. In case of partition,
there may be multiple sponsors.

In subsequent rounds, a sponsor is always the rightmost shallowest leaf rooted
at the node that lacks a current bkey.

To summarize, the role of a sponsor is threefold: (1) refresh its key share,8 (2)
compute all [key, bkey] pairs as far on the key-path as possible, and (3) broadcast
the updated key tree to all current group members.

6. PRACTICAL CONSIDERATIONS

In this section, we describe the TGDH implementation issues and then discuss
self-stabilization and self-clustering properties.

6.1 Implementation Architecture

TREE API is a group key agreement API that implements the cryptographic
primitives of TGDH. It contains the following three function calls:

—tree new user: called by any new member to generate its context.
—tree merge req: called by every group member when a join/merge occurs. It

identifies the sponsor unambiguously (as described in Section 5.6). It then
removes all [key, bkey] pairs on its key-path. If the caller is a sponsor, gen-
erates new secret share and computes all keys and bkeys on its key-path.
This function returns an output token, which is then broadcast to the whole
group.

—tree cascade: invoked by every member when a subtractive event happens
or when all members try to compute the group key collaboratively. In the
former case, this function removes all leaving members and their parents,
as described in Section 5.3. If the caller is a sponsor, it also tries to compute
[key, bkey] pairs on the sponsor’s key-path. In the latter case, this function is
called repeatedly until the group key is computed.

8In a join, the new member simply generates its first share.
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The underlying communication system is assumed to deal with group com-
munication and network events such as merges, partitions, failures and other
abnormalities.9 We use OpenSSL 0.9.6 [OpenSSL Project team 2001] as the
underlying cryptographic library.

In Sections 6.2 and 6.3, we show that tree cascade provides robustness
against cascaded network events. Since TREE API does not provide its own
communication facility, the robustness of the API was tested by simulating
random events on a single machine running all group members.

6.2 Protocol Unification

Although described separately in the preceding sections, the four TGDH oper-
ations (join, leave, merge, and partition) actually represent different strands of
a single protocol. We justify this claim with an informal argument below.

Obviously, join and leave are special cases of merge and partition, respec-
tively. We observe that merge and partition can be collapsed into a single pro-
tocol, since, in either case, the key tree changes and remaining group members
lack some number of bkeys. This prevents them from computing the new root
key. In a partition, the remaining members (in any surviving group fragment)
reconstruct the tree where some bkeys are missing. In case of a merge of two
groups, let us suppose that a taller (deeper) tree A is merged with a shorter
(shallower) tree B. Similar to a partition, all members formerly in A construct
the new tree where some bkeys—those in B—are missing. (This view is sym-
metric since the members in B see the same tree but with missing bkeys in the
subtree A.)

We now established that both partition and merge initially result in a new
key tree with a number of missing bkeys. In the first round of merge proto-
col, sponsor in each group broadcasts the key tree after updating its session
random. Upon receiving this broadcast message, every member rebuilds a key
tree, which has some missing bkeys. Filling up this bkeys takes at most log2k
rounds. A partition is very similar except the first broadcast message of merge.

The apparent similarity between partition and merge allows us to collapse
the protocols stemming from all membership events into a single unified pro-
tocol. Figure 6 shows the pseudocode. The incentive for doing this is threefold.
First, unification allows us to simplify the implementation and minimize its
size. Second, the overall security and correctness are easier to demonstrate
with a single protocol. Third, we can now claim that (with a slight modification)
TGDH is self-stabilizing and fault-tolerant as discussed below.

6.3 Cascaded Events

Since network disruptions are usually unpredictable, it is natural to consider
the possibility of so-called cascaded membership events. (In fact, cascaded
events and their impact on group and multiround protocols are often considered
in group communication literature, but, alas, not often enough in the security

9Currently, TGDH is integrated with Spread [Amir and Stanton 1998] group communication
system.
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Fig. 6. Unified protocol pseudocode.

literature.) A cascaded event occurs, in a simplest form, when one membership
change occurs while another is being handled. Here event means any of join,
leave, partition, merge, or any combination thereof. For example, a partition can
occur while a prior partition is being dealt with, resulting in a cascade of size
two. In principle, cascaded events of arbitrary size can occur if the underlying
network is highly volatile.

We claim that the TGDH partition protocol is self-stabilizing, that is, robust
against cascaded network events. This property is quite special, as most multi-
round cryptographic protocols are not geared towards handling such events. In
general, self-stabilization is a very desirable feature since lack thereof requires
extensive and complicated protocol “coating” to either (1) shield the protocol
from cascaded events or (2) harden it sufficiently to make the protocol robust
with respect to cascaded events (essentially, by making it re-entrant).

The high-level pseudocode for the self-stabilizing protocol is shown in
Figure 7. The changes from Figure 6 are minimal (lines 18 and 19 are
added).

We demonstrate the self-stabilization properties of TGDH with an example.
Figure 8 shows an example of a cascaded partition event. The first part of the
figure depicts a partition of M1, M4, and M7 from the prior group of 10 members
{M1, . . ., M10}. This partition normally requires two rounds to complete the key
agreement. As described in Section 5.4, every member constructs the same tree
after completing the initial round. The middle part shows the resulting tree. In
it, all nonleaf nodes except K 〈2,3〉 must be recomputed as follows:

(1) First, M2 and M3 both compute K 〈2,0〉, M5, and M6 compute K 〈2,1〉 while
M8, M9, and M10 compute K 〈1,1〉. All bkeys are broadcasted by each sponsor
M2, M5, and M8.
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Fig. 7. Self-stabilizing protocol pseudocode.

Fig. 8. An example of cascaded partition.

(2) Then, as all broadcasts are received, M2, M3, M5, and M6 compute K 〈1,0〉,
and K 〈0,0〉. The bkeys are broadcasted by the sponsor M6.

(3) Finally, all broadcasts are received and M8, M9, and M10 compute K 〈0,0〉.

Suppose that, in the midst of handling the first partition, another partition
(of M3 and M8) takes place. Note that, regardless of which round (1, 2, 3) of
the first partition is in progress, the departure of M3 and M8 does not affect
the keys (and bkeys) in the subtrees formed by M9 and M10 as well as M5 and
M6. All remaining members update the tree (as shown in the rightmost part
of Figure 8). The bkey of K 〈1,0〉 is the only one missing in all members’ view of
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the tree. It is computed by M2, M5, and M6, and broadcasted by M6. When the
broadcast is received, all members compute the root key.

The only remaining issue is whether a broadcast from the first partition
can be received after the notification of the second (cascaded) partition. Here
we rely on the underlying group communication system to guarantee that all
membership events are delivered in sequence after all outstanding messages are
delivered. In other words, if a message is sent in one membership view and
membership changes while the message is not yet delivered, the membership
change must be postponed until the message is delivered to the (surviving)
subset of the original membership. This is essentially a restatement of VS (as
discussed in Section 2).

6.4 Self-Clustering

The Internet provides sporadic and unstable connectivity, for example, web
users frequently experience unavailable servers. The instability can occur be-
cause of congestion, equipment failures, or lossy links. It can also take place as
a result of denial-of-service attacks, worms, and viruses. It is often the case that
an unstable network component (router or link) tends to have multiple failures.
In other words, an isolated, “once-in-a-blue-moon” type of failure is uncommon.
Repeated failures typically complicate protocol implementation. However, oddly
enough, TGDH not only survives but also benefits from repeated failures.

Similar to other tree-based key management schemes [e.g., Wallner et al.
1997; Wong et al. 2000; McGrew and Sherman n.d.] the key tree in TGDH is
logical: Group members are leaves in a tree and internal nodes are logical. The
initial placement of members (as tree leaves) is not dependent on their relative
physical location. Therefore, members physically close to each other might not
be neighbors in a key tree. When a partition occurs, all members in the same
physical group fragment form a new key tree and a new group. The partition
protocol may cost as many as log n rounds. Then, when the partition heals, the
previously separate groups are merged into a single key tree; however, they are
still clustered along the lines of the partition. If another partition happens on
the same link, the partitioned members are not scattered across the key tree
any longer. Therefore, any subsequent partition on the same link will take only
one round to complete. This property is especially important in high-delay wide
area networks, since clustering lowers the number of communication rounds
as well as the number of modular exponentiations, in many cases.

Figure 9 shows an extreme example of self-clustering. Suppose that a group
has 16 members numbered M1 through M16, where white odd-numbered nodes
are located in one physical cluster (e.g., a LAN) and shaded even-numbered
nodes in another. The two partitions are connected via an unstable link L. If L
fails and a partition occurs, it takes three rounds to complete the partition pro-
tocol. It can be clearly seen that each group forms a cluster after the partition.
When L comes up and the partition heals (i.e., a merge occurs), two rounds are
needed to complete the merge protocol. Subsequently, all partitions on link L
will require only one round and all merges—two rounds.
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Fig. 9. An extreme example of self-clustering.

7. PERFORMANCE ANALYSIS

7.1 Complexity Analysis and Comparison

We analyze the communication and computation costs for the join, leave, merge,
and partition protocols. We focus on the number of rounds, the total number of
messages, the serial number of exponentiations, the serial number of signature
generations, and the serial number of signature verifications. Note that we
use the RSA signature for message authentication, since RSA is particularly
efficient in verification. The serial cost assumes parallelization within each
protocol round and represents the greatest cost incurred by any participant in
a given round. The total cost is the sum of all participants’ costs in a given
round.

We also compare our protocol to other contributory group key agreement
schemes including GDH.3 [Steiner et al. 2000], BD [Burmester and Desmedt
1995], and STR [Kim et al. 2001]. Although BD was originally designed to
support only group formation, we minimally modify the BD protocol to support
dynamic membership operation.

Table I summarizes the communication and computation costs of four pro-
tocols. The numbers of current group members, merging members, merging
groups, and leaving members are denoted as: n, m, k, and p, respectively.

The height of the key tree constructed by the TGDH protocol is h. The over-
head of the TGDH protocol depends on the tree height, the balancedness of the
key tree, the location of the joining tree, and the leaving nodes. In our analysis,
we assume the worst-case configuration and list the worst case cost for TGDH.

The BD protocol has a hidden cost that is not listed in Table I: BD has n− 1
modular exponentiations with a small exponent. Unfortunately, n−1 such expo-
nentiations can be expensive when n is large. For example, BD requires O(n2)
1024-bit modular multiplications, if modular exponentiation is implemented
with the square-and-multiply algorithm. (OpenSSL uses Montgomery reduc-
tion and the sliding window algorithm to implement the modular exponenti-
ation, which is faster than simple square-and-multiply algorithm. However,
the former requires almost the same time as the latter for small exponents.)
Because of this hidden cost, it is hard to compare the computational overhead
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Table I. Communication and Computation Costs

Communication Computation
Rounds Messages Mod exps Signatures Verifications

Join 4 n+ 3 n+ 3 4 n+ 3
Leave 1 1 n− 1 1 1

GDH Merge m+ 3 n+ 2m+ 1 n+ 2m+ 1 m+ 3 n+ 2m+ 1
Partition 1 1 n− p 1 1

Join 2 3 3h− 3 2 3
Leave 1 1 3h− 3 1 1

TGDH merge dlog2 ke + 1 2k 3h− 3 dlog2 ke + 1 dlog2 ke
Partition ρ min(2p, d n

2 e) 3h− 3 ρ min(2p, d n
2 e)

Join 2 3 4 2 3
Leave 1 1 3n

2 + 2 1 1
STR Merge 2 k + 1 3m+ 1 2 3

Partition 1 1 3n
2 + 2 1 1

Join 2 2n+ 2 3 2 n+ 3
Leave 2 2n− 2 3 2 n+ 1

BD Merge 2 2n+ 2m 3 2 n+m+ 2
Partition 2 2n− 2p 3 2 n− p+ 2

Note that ρ stands for min(dlog2 pe + 1, h).

of BD to the other protocols. Below, we compare the four protocols for each
membership event.

Join: All protocols except GDH.3 require two communication rounds. In terms
of communication, the most expensive protocol is BD, which involves n mes-
sages (all broadcast) in each round. Other protocols use a constant number of
messages. GDH is the most expensive in terms of computation, requiring lin-
ear number of exponentiations. TGDH is comparatively efficient, scaling loga-
rithmically in the number of exponentiations. STR has a constant number of
modular exponentiations. BD requires the least exponentiations, but has the
hidden cost.

Leave: BD is the most expensive protocol in terms of communication. The cost
order among others is determined strictly by the computation cost, since they
all have the same communication cost (one round consisting of one message).
Therefore, TGDH is best for handling leave events. STR and GDH scale linearly
with the group size. BD has a hidden cost, which makes it hard to compare.

Merge: We first look at the communication cost. GDH scales linearly with
the number of added members, while BD and STR are more efficient with a
constant number of rounds. Although a merge in TGDH takes multiple rounds,
it depends on the number of merging groups, which is usually small. Since BD
and TGDH have 2n and 2k messages (at most) respectively, STR is the most
communication-efficient for handling merge events. Examining computation
requirements, BD has the lowest cost with only three exponentiations. TGDH
scales logarithmically with the group size. It is more efficient than STR and
GDH, which scale linearly with both the group size and the number of new
members.
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Partition: Both GDH and STR protocols are bandwidth efficient: only one
round consisting of one message. BD is less efficient with two rounds of n mes-
sages each. Partition is the most expensive operation in TGDH requiring a
number of rounds bounded by tree height. Computationwise it is difficult to
compare BD with other protocols because of its hidden cost. TGDH requires a
logarithmic number of exponentiations. GDH and STR scale linearly with the
group size.

7.2 Experimental Results

To compare the actual performance, we implemented the four protocols and
compared their costs in this section. We simulated the total computation delay
from the time when the membership event happens to the time when group
key agreement finishes. Average delay has been measured, since all members
do not finish group key agreement simultaneously.

7.2.1 Test Methodology. We use the following parameters for our
comparisons:

—We use p = 1024 and q = 160 for all measurements. These values are known
to be secure in the current technology [Lenstra and Verheul n.d.].

—We use 1024-bit RSA signature with the fixed public exponent 3 for message
authentication. All protocols have multiple signature verifications that need
to be processed serially. No security risk is known for RSA signatures with
small public exponents [Boneh 1999].

—For TGDH, we first generate a random tree by forcing a number of random
partition/merge events. Since the cost of TGDH depends on the tree struc-
ture, it is fair to generate a random tree instead of a well-balanced or an
imbalanced tree.

We use the following scenario to measure delay. For join and leave, the num-
ber of current group members is n. For partition and merge, n varies among 16
and 128.

Join: We measure the computational delay for a member to join a group of n
members (Figure 10(a)). In case of TGDH, we use a random tree as described
above. The x-axis denotes the number of current group members, while the
y-axis shows the computational delay in seconds.

Leave: We measure the computational delay for a random member to leave
a group of n members. (Figure 10(b)). Note that the delay for GDH and BD
does not depend on the location of the leaving member. However, the number
of modular exponentiations for STR upon a leave event depends on the location
of the leaving node. For TGDH, we pick a random member from the tree, and
measure the average delay for the leave. The x-axis denotes the number of
remaining group members and the y-axis is the computational delay in seconds.

Partition: We measure the computational delay after a partition. If the num-
ber of current group members is n and this group shrinks to group of size
k, we measure the average delay for the remaining group members. For BD
and GDH, the location of the leaving members does not matter. However, it is
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Fig. 10. Join and leave cost comparison: (x, y) = (number of remaining group members after
JOIN/LEAVE, computational overhead in seconds).

Fig. 11. Partition cost comparison: (x, y) = (number of remaining group members after the parti-
tion, computational overhead for an existing member if the original group shrinks to a group of x
members), the original number of group members is 16, 128, respectively.

important in STR and TGDH. We, therefore, choose leaving members at ran-
dom. In Figure 11, the x-axis denotes the number of remaining group members.

Merge: Merge is the trickiest algorithm to measure fairly. First, in BD and
GDH, only the number of resulting members decides the total delay, indepen-
dent of the number of merging groups. Second, the performance of STR merge
depends on the size of the largest group (which decides the number of modu-
lar exponentiation), and the number of groups merging (which determines the
number of signature verifications). Finally, the performance of TGDH merge
depends upon the number of merging groups (which affects the number of sig-
nature generations and verifications) and the key tree structure. The number
of current group members is not important for TGDH.

Since each protocol has different characteristics, we measured the merge
costs as follows:

—The number of resulting group members is 16, and 128.
—We assume the maximum number of merging groups is five. In practice,

merge of two groups is the most frequent event. However, we allow up to five

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.



84 • Y. Kim et al.

groups since some group communication systems may allow (require) more
than two groups to merge at one time.

—For TGDH and STR, values in the x-axis mean the number of current group
members. The resulting group size is 16, 128, respectively. The values in the
y-axis are the average computational delays for a member in the current
group after a merge of 2–5 groups.

Join Results: Figure 10(a) depicts measurement for join. As expected, STR has
the smallest delay. A surprising result comes from the TGDH for a random tree:
The difference between TGDH and STR is small. In case of a random tree, the
joining node is located close to the root node. GDH is the worst performer due
to many modular exponentiations. BD also shows interesting results. Though
it has constant number of exponentiations, the hidden cost evidently plays an
important role.

Leave Results: As expected, STR is the worst performer. Note that the worst
case (when a lowest member leaves the group) cost for STR is almost twice as
much as the current average value. Performance of TGDH looks best overall,
while BD performs very well when the number of group members is less than
25. Leave cost in BD is almost the same as join cost, since the protocol needs to
restart whenever a new membership event occurs.

Partition Results: Figure 11 shows partition cost when the number of current
group members is 16, and 128, respectively. As expected from the conceptual
results, STR has the worst performance due to many modular exponentiations.
TGDH shows an interesting graph: it increases until 40% of the group members
leave the group, and decreases afterwards. This is because (1) as the number of
leaving members increases, the number of modular exponentiations decreases,
(2) when many members leave the group, the resulting group has many empty
bkeys spread over the tree, and, hence, requires more messages. The cost of
BD and GDH decreases almost linearly, because it depends on the number of
resulting group members.

As described in Section 6.4, the cost of partition for TGDH can be improved
when the group experiences repeated network partition on the same link.

Merge Results: Merge costs are shown in Figure 12 when the resulting group
size, is 16, and 128. For a fixed number of resulting group size, TGDH and BD
show almost constant cost meaning that it does not depend on the number of
current group members. In contrast, the performance of GDH strongly depends
on the number of current group members, since the last member in the current
group becomes the sponsor.

7.3 Discussion

Based on the experimental results that measured the computational cost,
TGDH exhibits the best performance despite the relatively high cost of par-
titions. Recall that, in practice, the self-clustering property of TGDH lessens
the actual delay.
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Fig. 12. Merge cost comparison: (x, y) = (number of current group members, computational over-
head for a member located in the group of x members), after the membership event the number of
group members becomes 16, and 128, respectively.

Looking at communication costs, it appears that TGDH also outperforms
other protocols, except for partition events. In a high-delay WAN, the overall
partition cost in TGDH may be high, although this effect can be lessened by
self-clustering.

In high-delay WANs—where round-trip time exceeds 300 msec—it is easy to
see that computation cost for a small group is not so important. For example, if
the group size is 40, the maximum difference in computational delay for a join is
about 300 msec. In other words, communication costs (e.g., multicast vs. unicast,
number of multicast messages, number of rounds) are much more important
in a high-delay network. Based on this consideration, the performance of STR
gets better as communication delay increases. Overall, we conclude that TGDH
performs best over low- and medium-delay networks.

8. RELATED WORK

Group key management protocols come in three different flavors: contribu-
tory key agreement protocols, centralized, decentralized group key distribution
scheme, and server-based key distribution protocols. Since the focus of this work
is to provide common key to the DPG, we only consider the first two below.

8.1 Group Key Agreement Protocols

Research on group key agreement protocols started in 1982. We first summarize
the early (theoretical) group key agreement protocols which did not consider
dynamic membership operations: Most of them only supported group genesis.

The earliest contributory group key agreement built upon the two-party DH
is due to Ingemarsson et al. (ING) [Ingemarsson et al. 1982]. In the fist round
of ING, every member Mi generates its session random Ni and computes αNi .
In the subsequent rounds k to n − 1, Mi computes Ki,k = (Ki−1modn,k−1)Ni ,
where Ki−1 is the message received from Mi−1 in the previous round k−1. The
resulting group key is of the form:

Kn = αN1 N2 N3...Nn .
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The ING protocol is inefficient because: (1) every member has to start syn-
chronously, (2) n− 1 rounds are required to compute a group key, (3) it is hard
to support dynamic membership operations due to its symmetry, and (4) n se-
quential modular exponentiations are required.

Another group key agreement developed for teleconferencing was proposed
by Steer et al. [1988]. This protocol is of particular interest since its group key
structure is similar to that in TGDH:

Kn = αNn(αNn−1 ...(α
N3(αN2 N1 ))···).

This protocol is well suited for adding new group members as it takes only
two rounds and four modular exponentiations. Member exclusion, however, is
relatively difficult (for example, consider excluding N1 from the group key).

Burmester and Desmedt constructed an efficient protocol (called BD), which
takes only two rounds and three modular exponentiations per member to gen-
erate a group key [Burmester and Desmedt 1995]. This efficiency allows all
members to recompute the group key for any membership change by rerunning
the protocol. However, according to Steiner et al. [2000], most (at least half) of
the members need to change their session random on every membership event.
The group key in this protocol is different from STR and TGDH:

Kn = αN1 N2+N2 N3+···+Nn N1 .

One shortcoming of BD is the high communication overhead. It requires 2n
broadcast messages and each member needs to generate two signatures and
verify 2n signatures. BD also has a hidden cost mentioned in Section 7.2.

Becker and Wille analyze the minimal communication complexity of contrib-
utory group key agreement in general [Becker and Wille 1998] and propose two
protocols: octopus and hypercube. Their group key has the same structure as
the key in TGDH. For example, for eight users their group key is

Kn = α(αα
r1r2 αr3r4 )(αα

r5r6 αr7r8 ).

The Becker/Wille protocols handle join and merge operations efficiently, but the
member leave operation is inefficient. Also, the hypercube protocol requires the
group to be of size 2n (for some integer n); otherwise, the efficiency slips. Same
form of the group key is also used by Kurnio et al. [2000]. They considered join
and leave operation only.

Asokan and Ginzboorg look at the problem of small-group key agreement,
where the members do not have previously set up security associations [Asokan
and Ginzboorg 1999]. Their motivating example is a meeting where the partic-
ipants want to bootstrap a secure communication group. They adapt password
authenticated DH key exchange to the group setting. Their setting, however, is
different from ours, since they assume that all members share a secret pass-
word, whereas we assume a PKI where each member can verify any other
members authenticity and authorization to join the group.

Tzeng and Tzeng propose an authenticated key agreement scheme that is
based on secure multiparty computation [Tzeng and Tzeng 2000]. This scheme
also uses 2n broadcast messages. Although the cryptographic mechanisms are
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quite elegant, a shortcoming is that the resulting group key does not provide
PFS. If a long-term secret key is leaked, all previous and future group keys
become insecure.

Steiner et al. first address dynamic membership issues [Ateniese et al. 1998;
Steiner et al. 2000] in group key agreement and propose a family of Group
Diffie–Hellman (GDH) protocols based on straightforward extensions of the
two-party DH. GDH provides contributory authenticated key agreement, key
independence, key integrity, resistance to known key attacks, and PFS. The
GDH protocol suite is fairly efficient in leave and partition operation, but the
merge protocol requires as many rounds as the number of new members to
complete key agreement.

Perrig extends one-way function trees (OFT, originally introduced by
McGrew and Sherman [n.d.]) to design a tree-based key agreement scheme
for peer groups [Perrig 1999]. This served as foundation for the design of our
protocol.

TGDH bears some resemblance to OFT [McGrew and Sherman n.d.]. In fact,
TGDH can be seen as an instance of OFT where f (x) = αx(modp). However,
there are major differences between OFT and TGDH. First, blinded keys in OFT
cannot be revealed, whereas, all blinded keys in TGDH are public. Therefore,
no secure channels are required in TGDH. Second, TGDH is a distributed pro-
tocol, while OFT is centralized. Thus, TGDH requires no centralized entity to
transport secret keys. Third, OFT only handles member join and leave events,
whereas TGDH supports, in addition, merge and partition events. Also, the
join policies for the two protocols are different. Fourth, the security of TGDH is
based on the number-theoretic arguments and assumptions while OFT’s proof is
random oracle-based. Finally, TGDH offers robustness against cascaded events
which is not applicable to OFT.

8.2 Decentralized Group Key Distribution Protocols

Decentralized group key distribution (DGKD) protocols involve dynamically
selecting a group member who generates and distributes keys to other group
members. After subtractive membership events, individual partitions can con-
tinue operation by electing a new key server. The drawback is that a key server
must establish long-term pairwise secure channels (by making use of public
key cryptosystem such as DH) with all current group members in order to dis-
tribute group keys. Consequently, each time a new key server comes into play,
significant costs must be incurred to set up these channels. Another disadvan-
tage is the reliance on a single entity to generate good (i.e., cryptographically
strong and random) keys.

Caronni et al. [1999] present the first DGKD protocol. They propose efficient
protocols for small-group key agreement and large-group key distribution. Un-
fortunately, their scheme for autonomous small group key agreement is insecure
(not collusion resistant).

Dondeti et al. [2000] modified OFT to provide dynamic server election. This
protocol has the same key tree structure and uses the notations (e.g., keys,
blinded keys) similar to ours. Other than expensive maintenance of secure
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channels described above, this protocol has a high communication cost: even for
single join and leave, this protocol can take O(h) rounds. This scheme does not
handle merge and partition event. One advantage different from other DGKD
protocols is that their group key has a contributory nature: whenever a group
member changes its session random, the group key changes.

Rodeh et al. [2000] propose a DGKD protocol derived from the LKH protocol
[Wong et al. 1998]. It tolerates network partitions and other network events.
Even though this approach does not avoid the disadvantages discussed above,
it reduces the communication and computational costs. In addition, it uses AVL
tree to provide provable tree height bound.

9. CONCLUSION

This paper presents a novel, decentralized group key management approach,
TGDH. We unified two important trends in group key management: (1) key trees
to efficiently compute and update group keys, and (2) GDH key exchange to
achieve provably secure and fully distributed protocols. TGDH is a secure, sur-
prisingly simple, and very efficient key management solution. Moreover, TGDH
is inherently robust by virtue of being able to cope with cascaded (nested) key
management operations which can stem from tightly spaced group membership
changes.

APPENDIX: SECURITY PROOF

This section proves the security of TGDH. We introduce the Decisional (binary)
Tree Group Diffie-Hellman problem (DTGDH) and, in a specific group setting,
prove that DTGDH problem is reducible to two-party Decision Diffie-Hellman
(DDH) problem. Later, in Sections A.3 and A.4, this result is used to prove the
security of entire TGDH protocol suite.

A.1 Two-Party Decision Diffie-Hellman Problem

Our proofs require a specific group G. In this section, we introduce the group
G and define the two-party DDH problem on G.

Let k be a security parameter and n be an integer. All algorithm run in
probabilistic polynomial time with k and n as inputs.

For concreteness, we consider a specific G:
On input k, algorithm gen chooses at random a pair (q, α), where q is a 2k-bit

value,10 and q and p = 2q + 1 are both prime. Before introducing G, we first
consider a group Ĝ, which is a group of squares modulo prime p. This group can
be explained more precisely as follows: Consider an element α, which is a square
of a primitive element α̂ of multiplicative group Z∗p, that is, α = α̂2. (Without
loss of generality, we may assume α < q.) Then group Ĝ can be represented as

Ĝ = {αi mod p | i ∈ [1, q]}.
An attractive variation of this group is to represent the elements by the integers
from 0 to q − 1. The group operation is slightly different: Let a function f be

10In order to achieve the security level 2−k , the group size should be at least 22k [Shoup 1997].
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defined as

f (x) =
{

x if x ≤ q,
p− x if q < x < p.

Using this f function, we can introduce the group G as

G = { f (αi mod p) | i ∈ Zq}.
Group operation on group G is defined as a · b = f (a · b (mod p)), where a,
b ∈ G.

PROPOSITION A.1. Let g (x) = αx mod p. Then the function f ◦ g is a bijection
from Zq to Zq.

PROOF. To see this, suppose f ◦ g (x) = f ◦ g ( y). Then this can be written
and f (X ) = f (Y ), where integer X = αx mod p and Y = α y mod p. Now we
can have four different cases:r X ≤ q, Y ≤ q. In this case, f (X ) = X and f (Y ) = Y , and hence X = Y .

Now we have an equation α̂2(x− y) = 1 mod p. Since α̂ is a generator for Z∗p, its
order (i.e., 2q) has to divide 2(x − y). This implies that q has to divide x − y
and finally x = y , since 0 < x, y ≤ q.r X > q, Y > q. In this case, f (X ) = p − X , and f (Y ) = p − Y , and hence
X = Y . Rests are same as above.r X ≤ q, Y > q. This case is impossible, since ( X

p ) = 1 and ( p−Y
p ) = −1 since

p ≡ 3 mod 4 and X = p− Y .r X > q, Y ≤ q. This is also impossible by similar reasoning.

Therefore, f ◦ g is an injection. It is also a surjection, since the sizes of domain
and co-domain are the same.

PROPOSITION A.2. When a distribution r is uniform and random in G, f ◦g (r)
is still uniform and random in G, since f ◦ g is bijective.

Groups of this type are also considered by Chaum [1991]. It is generally
assumed that DDH is intractable in these groups [Boneh 1998]. More concretely,
the two-party DDH assumption on group G is that for all polynomial time
attackersA, for all polynomials Q(k) ∃k0 ∀k > k0, for X 0 := N1N2 and X 1 := N3
with N1, N2, N3 ∈R G uniformly chosen, and for a random bit b, the following
equation holds:∣∣Prob[A(1k ; G;α;αN1 ;αN2 ;αX b) = b]− 1/2

∣∣ < 1/Q(k).

A.2 Decisional Binary Tree Group Diffie-Hellman Problem

In this section, we define the DTGDH problem (and assumption) and prove
this problem is equivalent to two-party decisional Diffie-Hellman problem.
Figure 13 is an example of a key tree when n = 8.

For (q, α) ← gen(k), n ∈ N and X = (N1, N2, . . . , Nn) for Ni ∈ G and a
key tree T with n leaf nodes which correspond to Ni, we define the following
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Fig. 13. Notations for fully balanced binary tree.

random variables:

— K i
j : ith level j th key (secret), each leaf node is associated with a member’s

session random, i.e., K 0
j = Nk for some k ∈ [1, n].

— BK i
j : ith level j th blinded key (public), that is, αK i

j

— K i
j is recursively defined as follows:

K i
j = α

K i−1
2 j−1 K i−1

2 j

= (
BK i−1

2 j−1

)K i−1
2 j

= (
BKi−1

2 j

) K i−1
2 j−1 .

In other words, we consider K i
j = f1(N1, N2, . . . , Nn) for some function f1,

and hence BK i
j = α f1(N1,N2,...,Nn) = f2(N1, N2, . . . , Nn) for some function f2.

For (q, α) ← gen(k), n ∈ N and X = (N1, N2, . . . , Nn) for Ni ∈ G and a key
tree T with n leaf nodes which correspond to Ni, we can define public and secret
values collectively as below:

view(q, α, h, X , T ) := {BK i
j where j and i are defined according to T } (A.1)

= {αK i
j mod p where j and i are defined according to T }

K (q, α, h, X , T ) := αK h−1
1 K h−1

2

Since (q, α) are obvious from the context, we omit them in view(·) and K (·).
Note that view(h, X , T ) is exactly the view of the adversary in TGDH as de-
scribed in Section 5, where the final secret key is K (h, X , T ). Let the following
two random variables be defined by generating (q, α)← gen(k), choosing X ran-
domly from G and choosing key tree T randomly from all binary trees having
n leaf nodes:

— Ah := (view(h, X , T ), y)
— Fh := (view(h, X , T ), K (h, X , T ))

Let the operator “≈poly” denote polynomial indistinguishability.
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PROPOSITION A.3 (STEINER ET AL. 2000). Let K and R be l -bit strings such
that R is a random and K is a Diffie-Hellman key. We say that K and R are
polynomially indistinguishable if, for all polynomial time distinguishers, A, the
probability of distinguishing K and R is smaller than ( 1

2 + 1
Q(k) ), for all polyno-

mial Q(l ).

Now we define DTGDH algorithm concretely:

Definition A.4. Let (q, α) ← gen(k), n ∈ N and X = (N1, N2, . . . , Nn) for
Ni ∈ G and a key tree T with n leaf nodes which correspond to Ni, and Ah
and Fh is defined as above. DTGDH algorithm A for group G is a probabilistic
polynomial time algorithm satisfying, for some fixed k > 0 and sufficiently
large m:

∣∣Prob[A(Ah) = “True′′]− Prob[A(Fh) = “True′′]
∣∣ > 1

mk .

Accordingly, DTGDH problem is to find an Binary Tree DDH algorithm.

Now, we show that DTGDH problem is hard for the passive adversary: If the
two-party DDH in group G defined above is hard, DTGDH problem is hard.

Using polynomial indistinguishability, the DTGDH problem defined in Def-
inition A.4 can be restated as: Find a polynomial distinguisher A that can
distinguish Ah and Fh defined above.

THEOREM A.5. If the two-party DDH on G is hard, then Ah ≈poly Fh.

PROOF. We first note that Ah and Fh can be rewritten as:
If X L = (R1, R2, . . . , Rk) and X R = (Rk+1, Rk+2, . . . , Rn) where R1 through Rk
are associated with leaf node in the left tree TL and Rk+1 through Rh are in the
right tree TR :

Ah := (view(h, X , T ), y) for random y ∈ G
= (

view(h− 1, X L, TL), view(h− 1, X R , TR), BKh−1
1 , BKh−1

2 , y
)

= (
view(h− 1, X L, TL), view(h− 1, X R , TR), αK h−1

1 , αK h−1
2 , y

)
,

Fh := (view(h, X ), K (h, X ))

= (
view(h− 1, X L, TL), view(h− 1, X R , TR), BKh−1

1 , BKh−1
2 , αK h−1

1 K h−1
2
)

= (
view(h− 1, X L, TL), view(h− 1, X R , TR), αK h−1

1 , αK h−1
2 , αK h−1

1 K h−1
2
)
.

We prove this theorem by induction and contradiction. The two-party DDH
problem in G is equivalent to distinguishing A1 and F1. We assume that Ah−1
and Fh−1 are indistinguishable in polynomial time for the induction hypothesis.
We further assume that there exists a polynomial algorithm that can distin-
guish between Ah and Eh for a random binary tree. We will show that this
algorithm can be used to distinguish Ah−1 and Eh−1 or can be used to solve the
two-party DDH problem.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.



92 • Y. Kim et al.

Consider the following:

Ah := (view(h− 1, X L, TL), view
(
h− 1, X R , TR), αK h−1

L , αK h−1
R , y

)
,

Bh := (view(h− 1, X L, TL), view
(
h− 1, X R , TR), αr , αK h−1

R , y
)
,

Ch := (view(h− 1, X L, TL), view
(
h− 1, X R , TR), αr , αr ′ , y

)
,

Dh := (view(h− 1, X L, TL), view
(
h− 1, X R , TR), αr , αr ′ , αrr ′),

Eh := (view(h− 1, X L, TL), view
(
h− 1, X R , TR), αr , αK h−1

2 , αrK h−1
2
)
,

Fh := (view(h− 1, X L, TL), view
(
h− 1, X R , TR), αK h−1

L , αK h−1
R , αK h−1

L K h−1
R
)
.

Since we can distinguish Ah and Fh in polynomial time, we can distinguish
at least one of: (Ah, Bh), (Bh, Ch), (Ch, Dh), (Dh, Eh), or (Eh, Fh).

r Ah and Bh. Suppose we can distinguish Ah and Bh in polynomial time. We will
show that this distinguisherAABh can be used to solve DTGDH problem with
height h−1. Suppose we want to decide whether P ′h−1 = (view(h−1, X ′, T ′), r ′)
is an instance of DTGDH problem or r ′ is a random number. To solve this, we
generate another tree T ′′ of height h − 1 with distribution X ′′. Note that
we know all secret and public information of T ′′. Using P ′h−1 and (T ′′, X ′′),
we generate a distribution:

P ′h =
(
view(h− 1, X ′, T ′), view(h− 1, X ′′, T ′′), αr ′ , αK (h−1,X ′′,T ′′), y

)
,

where y ∈R G. Now we put P ′h as input of AABh . If P ′h is an instance of Ah
(Bh), then P ′h−1 is an instance of Fh−1 (Ah−1) by Proposition A.2.r Bh and Ch. Suppose we can distinguish Bh and Ch in polynomial time. We will
show that this distinguisherABCh can be used to solve DTGDH problem with
height h−1. Suppose we want to decide whether P ′h−1 = (view(h−1, X ′, T ′), r ′)
is an instance of DTGDH problem or r ′ is a random number. To solve this,
we generate another tree T ′′ of height h− 1 with distribution X ′′ and choose
r ′′ ∈R G. As before, we know all secret and public information of T ′′. Using
P ′h−1 and (T ′′, X ′′), we generate a distribution:

P ′h = (view(h− 1, X ′′, T ′′), view(h− 1, X ′, T ′), αr ′′ , αr ′ , y),

where y ∈R G. By Proposition A.2, r ′′ is random and uniform in G. Now
we put P ′h as input of ABCh . If P ′h is an instance of Bh (Ch), then P ′h−1 is an
instance of Fh−1 (Ah−1) by Proposition A.2.r Ch and Dh. Suppose we can distinguish Ch and Dh in polynomial time. Then,
this distinguisher ACDh can be used to solve the two-party DDH problem in
group G. Note that αr , αr ′ are independent variable from view(h− 1, X L, TL)
and view(h − 1, X R , TR). Suppose we want to test whether (αa, αb, αc) is a
DDH triple or not. To solve this, we generate two key trees T1 and T2 of
height h− 1 with distributions X 1 and X 2, respectively. Now we generate a
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new distribution:

P ′h = (view(h− 1, X 1, T1), view(h− 1, X 2, T2), αa, αb, αc).

If P ′h is an instance of Ch (Dh), then (αa, αb, αc) is a valid (invalid) DDH triple.r Dh and Eh. Suppose we can distinguish Dh and Eh in polynomial time. We
argue that this distinguisherADEh can be used to solve DTGDH problem with
height h− 1. Suppose we want to decide if P ′h−1 = (view(h− 1, X ′, T ′), r ′) is
an instance of DTGDH problem or r ′ is a random number. To solve this, we
generate another tree T ′′ of height h − 1 with distribution X ′′. As before,
we know all secret and public information of T ′′. Using P ′h−1 and (T ′′, X ′′),
we generate a distribution:

P ′h = (view(h− 1, X ′, T ′), view(h− 1, X ′′, T ′′), αr ′ , αr ′′ , (αr ′ )r ′′ )

= (view(h− 1, X ′, T ′), view(h− 1, X ′′, T ′′), αr ′ , αr ′′ , αr ′r ′′ ),

where r ′′ ∈R G. Since we generate r ′′, we can compute (αr ′ )r ′′ . Now we put P ′h
as input of ADEh . If P ′h is an instance of Dh (Eh), then P ′h−1 is an instance of
Fh−1 (Ah−1) by Proposition A.2.r Eh and Fh. Suppose we can distinguish Eh and Fh in polynomial time. We
will show that this distinguisher AE Fh can be used to solve DTGDH problem
with height h−1. Suppose we want to decide if P ′h−1 = (view(h−1, X ′, T ′), r ′)
is an instance of DTGDH problem or r ′ is a random number. To solve this,
we generate another tree T ′′ of height h− 1 with distribution X ′′. Again, we
know all secret and public information of T ′′. Using P ′h−1 and (T ′′, X ′′), we
generate a distribution:

P ′h =
(
view(h− 1, X ′, T ′), view(h− 1, X ′′, T ′′), αr ′ ,

αK (h−1.X ′′,T ′′), (αr ′ )K (h−1.X ′′,T ′′))
= (

view(h− 1, X ′, T ′), view(h− 1, X ′′, T ′′), αr ′ ,

αK (h−1.X ′′,T ′′), αr ′K (h−1.X ′′,T ′′)),
where r ′ ∈R G. Since r ′ is given, we can compute (αr ′ )K (h−1.X ′′,T ′′). Now we put
P ′h as input of AE Fh . If P ′h is an instance of Eh (Fh), then P ′h−1 is an instance
of Fh−1 (Ah−1) by Proposition A.2.

A.3 Group Key Secrecy

Before considering the group key secrecy, we briefly examine key freshness.
Every group key is fresh, since at least one member in the group generates its
random key share uniformly for every membership change.11 The probability

11Recall that insider attacks are not our concern. This excludes the case when an insider inten-
tionally generates nonrandom number.
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that new group key is same as any old group key is negligible due to bijectiveness
of ( f ◦ g ) function.

We note that the root (group) key is never used directly for the purposes of
encryption, authentication or integrity. Instead, special-purpose subkeys are
derived from the root key, for example, by applying a cryptographically secure
hash function to the root key, that is, H(group key) is used for such applications.
As discussed in Section 3, decisional group key secrecy is more meaningful if
subkeys are derived from a group key. Decisional group key secrecy of TGDH
protocol is somewhat related to DTGDH assumption mentioned in Section 9.
This assumption ensures that there is no information leakage other that public
blinded key informations.

We can also derive the sub-keys based on Shoup’s hedge [Shoup 2000]: Com-
pute the key as H(group key) ⊕ H(group key) where H is a random oracle. It
follows that in addition to the security in the standard model based on DTGDH
assumption, the derived key is also secure in the random oracle model [Bellare
and Rogaway 1993] based on Computational Tree-based Group Diffie-Hellman
assumption.

A.4 Key Independence

We now give an informal proof that TGDH satisfies forward and backward
secrecy, or equivalently key independence. In order to show that TGDH provides
key independence, we only need to show that the view of the former (prospective)
member to the current tree is exactly same as the view of the passive adversary
respectively, since this shows that the advantage of the former (prospective)
member is same as the passive adversary and by Theorem A.5.

We first consider backward secrecy, which states that a new member who
knows the current group key cannot derive any previous group key. Let Mn+1
be the new member. The sponsor for this join event changes its session random
and, consequently, previous root key is changed. Therefore, the view of Mn+1
with respect to the prior key tree is exactly same as the view of an outsider.
Hence, the new member does not gain any advantage compared to a passive
adversary.

This argument can be easily extended to the merge of two or more groups.
When a merge happens, sponsor in each tree changes its session random. There-
fore, each member’s view on other member’s tree is exactly same as the view
of a passive adversary. This shows that the newly merged member has exactly
same advantage about any of the old key tree as a passive adversary.

Now we consider the forward secrecy, meaning that a passive adversary
who knows a contiguous subset of old group keys cannot discover subsequent
group keys. Here, we consider partition and leave at the same time. Suppose
Md is a former group member. Whenever subtractive event happens, a sponsor
refreshes its session random, and, therefore, all keys known to leaving members
will be changed accordingly. Therefore, Md ’s view is exactly same as the view
of the passive adversary. This proves that TGDH provides decisional version of
key independence.
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