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ABSTRACT
Key management is one of the fundamental building blocks
of security services. In a network with resource constrained
nodes like sensor networks, traditional key management
techniques, such as public key cryptography or key distri-
bution center (e.g., Kerberos), are often not effective. To
solve this problem, several key pre-distribution schemes have
been proposed for sensor networks based on random graph
theory. In these schemes, a set of randomly chosen keys
or secret information is pre-distributed to each sensor node
and a network is securely formed based on this information.
Most of the schemes assumed that the underlying physical
network is dense enough, that is, the degree of each node is
high.

In this paper, we revisit the random graph theory and use
giant component theory by Erdös and Rényi to show that
even if the node degree is small, most of the nodes in the net-
work can be connected. Further, we use this fact to analyze
the Eschenhauer et. al’s, Du et. al’s, and Chan et. al’s key
pre-distribution schemes and evaluate the relation between
connectivity, memory size, and security. We show that we
can reduce the amount of memory required or improve se-
curity by trading-off a very small number of isolated nodes.
Our simulation results show that the communication over-
head does not increase significantly even after reducing the
node degree. In addition, we present an approach by which
nodes can dynamically adjust their transmission power to
establish secure links with the targeted networked neigh-
bors. Finally, we propose an efficient path-key identification
algorithm and compare it with the existing schemes.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral—security and protection
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1. INTRODUCTION
Distributed sensor networks have received a lot of atten-

tion recently due to their wide range of applications in mili-
tary as well as civilian operations. Examples include target
tracking, scientific exploration, and monitoring of nuclear
power plants. Sensor nodes are typically low-cost, battery
powered, highly resource constrained, and usually collabo-
rate with each other to accomplish their tasks.

Security services, such as authentication and confidential-
ity, are critical to secure the communication between sen-
sors in hostile environments. For these security services,
key management is a fundamental building block. Since
each node has constrained resources and can be captured,
traditional key management techniques using public key in-
frastructure or centralized key management techniques may
not be appropriate for sensor networks.

To solve this problem Eschenhauer and Gligor [10] first
proposed a random key pre-distribution scheme, which let
each sensor node randomly pick a set of keys from a key pool
before deployment such that two sensor nodes share a key
with a certain probability after deployment. Chan et. al. [6],
Du et al. [8], Liu et. al. [15], and Zhu et. al. [21] extended
this scheme to further strengthen the security or improve the
efficiency. Du et. al. [7] and Liu et. al. [15] provided a ran-
dom key pre-distribution scheme using deployment knowl-
edge which reduces memory size significantly. Most of the
works are based on Erdös and Rényi’s random graph theory.
The theory explains the relation between the local connec-
tivity (i.e., the probability that two nodes are connected)
and the global connectivity (i.e., the probability that the
whole network is connected) [8]. More precisely, for a given
global connectivity, they could compute the required local
connectivity. Given the average number of physical neigh-
bors (we call this number the network node degree), this
probability gives us the expected number of secure links per
node (we call this number the secure node degree).

All of the above papers provide reasonably strong secu-
rity. However, they assumed that the underlying physical
network is dense enough to enable their key pre-distribution
to be effective. For example, in the network with 10,000
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nodes, the node degree required by [17] for the network to
be connected with 99% certainty is around 14. In [10, 6] they
assumed each node has at least 20 (even 40 or 50) physical
neighbors among which 14 neighbors should be securely con-
nected. This highly dense connection, we believe, may not
be practical in certain sensor networks. In theory, the rec-
ommended optimal node degree for best network capacity
is between 5 and 8 [11, 14, 18]. Or it may be dynamically
controlled so that the power consumption for transmission
is minimized. The exact optimal node degree for the whole
graph to be connected, however, is known to be an open
problem [20]. From this we can notice some gap between
the physical node degree which is suggested as optimal in
networking and which is required in the existing key pre-
distribution scheme. Overall, the focus of our work is to
reduce the gap.

This paper deals with the relation among connectivity, se-
curity and memory size in key pre-distribution scheme. We
first re-establish the required secure node degree using gi-
ant component theory of Erdös and Rényi, by which the
tighter lower bound on the required node degree will be
computed. In non-uniform node distribution Du et al. [7]
obtained the largest isolated components by simulation and
used it as global connectivity. However, to the best of our
knowledge the theoretical analysis on the isolated compo-
nent based on random graph theory has not been studied.
By providing this analysis, we can control the parameters
of key pre-distribution scheme, for example, we can increase
security, reduce memory size, or increase the connectivity.
The analysis also shows that the network can be connected
with a reasonable memory size even in a very sparse net-
work, the evaluation of which was impossible previously.
Second, we provide an effective way to utilize the current
sensor hardware capability to control transmission power
in order to obtain both the desirable number of neighbors
and the required number of secure links. Given a desired
network transmission range, to securely connect to the tar-
geted neighbor nodes in that range, it temporarily adjusts its
transmission range. We provide two ways to control trans-
mission ranges, the computation overhead and communica-
tion overhead of which will be compared.

The remainder of the paper is organized as follows. We
introduce the set of notations in Section 2. We give an
overview of the existing key pre-distribution schemes based
on random graph theory in Section 3. In Section 4, we
present new analysis using giant component theory and re-
evaluate the scheme using theoretical analysis and simu-
lation of giant component size. In Section 5, we examine
the way to utilize the sensor hardware capability to control
transmission range. Finally, we conclude in Section 6.

2. NOTATION
The following notations are used throughout the rest of

this paper.

− d: the expected degree of a node-i.e., the expected
number of secure links a node can establish during
key-setup

− k: number of keys in a node’s key ring
− n: network size, in nodes
− r: communication radius
− n′: the expected number of neighbor nodes within

communication radius of a given node

− p: probability that two nodes share a key
− Pc: probability that graph is connected
− β: ratio of largest component size to network size
− P : size of the key pool
− A: area of the field
− ω: number of key spaces constructed in networks
− τ : number of key spaces carried by each node
− x: number of nodes captured

3. BACKGROUND
In this section, we introduce some background for this pa-

per. We first review the three key pre-distribution schemes
for sensor networks [10, 8, 6] that we are focusing on
throughout this paper. Second, we overview random graph
theory and its relation to each scheme. Next, we intro-
duce previous results on desired node degree for wireless
networks. We finish this section with an example of a sen-
sor with the hardware capability of dynamically controlling
its transmission power.

3.1 Key pre-distribution in wireless sensor
network

Eschenauer and Gligor. (called basic scheme or EG for
simplicity) first introduced a key pre-distribution scheme to
the area of wireless sensor networks [10]. In EG, each node
randomly picks a subset (called key ring) of keys from a
large key pool and any pair of nodes can establish a secure
connection if they share at least one common key. More
specifically, EG consists of three different phases:

• initialization: Before the sensor nodes are deployed, a
set of keys randomly selected from a pool of keys are
inserted to the sensor nodes.

• key set-up: After the sensor nodes are deployed, each
node first performs a shared key discovery to find out
which of its neighbors shares a key with it. When
one finds another node, they mutually authenticate to
verify that the other party actually owns the key.

• path key identification: After the key set-up is com-
plete, a securely connected graph is formed. A node
tries to securely connect all of its neighbors using path
key identification methods. In other words, a node can
find out the path to all of its neighbors (not securely
connected) by means of its securely connected neigh-
bors, and a key is securely delivered from the source
node to its targeted neighbor via an indirect path.

Chan, Perrig and Song. (called CPS for simplicity) Chan
et. al. further extended this idea and developed two key pre-
distribution techniques [6]: q-composite key pre-distribution
and a random pair-wise keys scheme. The difference of the
q-composite scheme from [10] is that it requires any two
nodes to share at least q common keys to establish a secure
link.

The random pair-wise keys scheme is a modification of the
traditional pair-wise keys scheme based on the observation
that not all n−1 keys need to be stored in the node’s key ring
to have a connected random graph with high probability.
Each node identity is paired with m other randomly selected
distinct node id and a pair-wise key is pre-generated for each
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pair of nodes. The key is stored in both nodes’ key ring along
with the id of the other node that also knows the key. This
provides much improved security, since any captured node
reveals no information about links in which it is not directly
involved. The main drawback of the random pair-wise key
pre-distribution scheme is its scalability.

Du, Deng, Han and Varshney. (called DDHV for simplic-
ity) Du et. al. combined the basic scheme [8] with Blom’s
key management scheme [4]. Blom’s scheme allows that any
pair of (n − 1) nodes to find a secret pair-wise key between
them with much smaller number (they use λ, λ << n) of
keys than the actual number of nodes. The tradeoff is that,
unlike the (n−1)-pairwise key scheme, Blom’s scheme is not
perfectly resilient against node capture. As long as an adver-
sary compromises at most λ nodes, uncompromised nodes
are perfectly secure. When an adversary compromises more
than λ nodes, all pairwise keys in the entire network are
compromised. While Blom’s scheme uses a single key space
to ensure that any pair of nodes can compute a shared key,
Du et. al. construct ω spaces, and each sensor node car-
ries key information from (2 ≤ τ < ω) randomly selected
key spaces. If two nodes carry key information from a com-
mon key space, they can compute a pairwise key. A similar
method is also developed by Liu and Ning [15] based on
polynomial-based key pre-distribution [5].

In all of the above schemes it is not certain that two nodes
can generate a pairwise key. Instead, they have only a guar-
antee with probability p that this will be possible. To find
p so that n nodes in the sensor network are connected, they
use a random graph theory.

3.2 Random Graph Theory and Key
Pre-distribution Scheme

A random graph G(n, p) is a graph of n nodes for which
the probability that a link exists between two nodes is p.
In a large sensor network with size n, p denotes the prob-
ability that two neighboring nodes share a common key or
key information, which we call local connectivity. Let Pc

be the probability that the graph is connected, which we
call global connectivity. Erdös and Rényi [9, 17] provided a
theory how to determine p so that Pc is almost 1 (i.e. the
graph is almost surely connected). In wireless sensor net-
works, p changes according to the key ring size or key pool
size. Thus, for a network to be connected with probability
Pc, p, as determined by the key information (key ring or pool
size), should be greater than p as obtained from Erdös and
Rényi’s Theory. We denote the former by pactual and the
latter by prequired. In this section we show how to compute
prequired and introduce pactual in EG, DDHV, CPS.

Computing required local connectivity
Erdös and Rényi [9, 17] showed that, for monotone proper-
ties, there exists a value of p such that the property moves
from“nonexistent” to “certainly true” in a very large random
graph G(n, p). We find p such that it is “almost certainly
true” that the graph is connected. The function defining p is
called the threshold function of a property. Given a desired
probability Pc for graph connectivity, the threshold function
p is defined by:

Theorem 1.

Pc = lim
n→∞

Pr[G(n, p) is connected ] = e−e−c

where p =
ln(n)

n
+

c

n
and c is any real constant.

We define the average node degree d = p(n − 1) as the
average number of edges connected to each node. For a
given density of sensor network deployment, let n′ be the
expected number of neighbors within the wireless commu-
nication range of a node. Since the expected node degree
should be at least d as calculated above, the required local
connectivity prequired can be estimated as prequired = d

n′

Computing actual local connectivity
The actual local connectivity is determined by key ring size
and key pool size in EG, by the key space in DDHV and by
the number of pairwise keys stored in each node in CPS.
Following is the detailed description.

EG: We set the probability that two nodes share at least
one key in their key rings of size k chosen from a
given pool of P keys to pactual. Since pactual =
1 − Pr[two nodes do not share any key],

pactual = 1 −
((P − k)!)2

(P − 2k)!P !
. (1)

DDHV: pactual is the actual probability of any two neigh-
boring nodes sharing at least one space (i.e., the prob-
ability that they can establish a common key). Since
pactual = 1 − Pr[two nodes do not share any space],

pactual = 1 −
((ω − τ )!)2

(ω − 2τ )!ω!
. (2)

CPS: pactual is the actual probability of any two neighbor-
ing nodes sharing a pairwise key. If a node can store
m keys in the network with size n, then the actual
probability is

pactual =
m

n
. (3)

3.3 Desirable node degree in the network
The desirable node degree is discussed on the context

of network connectivity, network capacity and energy con-
sumption by controlling transmission power. With a high
node degree, the network connectivity increases, but the
interference between the neighboring nodes increases, and,
therefore, the network capacity decreases. On the other
hand, if we decrease the node degree the connectivity de-
creases, which in the extreme case results in the network
being disconnected. The low degree reduces the communi-
cation interference, but since the connectivity is poor the
number of hops will be increased, which will decrease the
network capacity. The node degree is controlled by adjust-
ing transmission power. Higher node degree requires higher
transmission power, which increases the energy consump-
tion. The optimal node degree to maximize the network
capacity was considered in the papers [14, 18, 11]. Klein-
rock et. al. [14] proposed that six is the magic number for
network in the slotted ALOHA protocol. Takagi et. al. [18]
revised this number to 8 and suggested that 5 and 7 is op-
timal in the other protocol. Hou et. al. [11] considered the
magic number when the transmission range can be adjusted
and suggested 6 and 8 is optimal. Xue et. al. [20] investigate
the node degree for the network to be connected. Accord-
ing to their study, if each node is connected to less than
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0.074 log n nearest neighbors then the network is asymptot-
ically disconnected with probability 1 as n increases, while
if each node is connected to more than 5.1774 log n near-
est neighbors then the network is asymptotically connected
with probability approaching 1 as n increases. The exact
constant remains as an open problem.

3.4 Sensor Hardware
Examples of sensor network projects include Smart Dust,

WINS and µAMPS [19, 2, 13, 1]. Some of sensor node plat-
forms have a fixed radio range but some others have the
capability to adjust radio range. For example, the second
prototype of a power-aware microsensor developed for the
µAMPS project set the transmission power to one of six dif-
ferent levels by the processor. The maximum bit-rate of a
point-to-point wireless link is 1Mbps. The power aware fea-
tures of the µAMPS board allow for thirteen relevant power
consumption stages. Among those thirteen states are six
states of different power amplifier gains to support trans-
mission distances from 10 meters to 100 meters. In the off
state, the radio consumes no power. In the idle state, the
radio consumes 60 mW. In the receive state, the radio con-
sumes 280 mW. In the lowest transmission state, the radio
consumes 330mW. In the highest transmission state, the
radio consumes 1.1W. There are other minor intermediate
stages. For example, the MAC protocol can change the ra-
dio range to include only the optimal number of nodes. In
our work, we utilize this transmission power control feature
to bridge the gap between network transmission range and
secure transmission range.

4. REVISITING RANDOM GRAPH
THEORY AND ITS APPLICATION

In this section, we investigate Erdös-Rényi’s random
graph theory in detail and re-evaluate the key pre-distribution
schemes.

4.1 Calculation of a giant component
Erdös and Rényi [9] discovered that the random graph un-

dergoes four phase transitions with changes of p. The theory
in the previous section corresponds to the third phase tran-
sition, where the probability that the graph is connected
approaches 1. We need to note that this is the probability
that the whole graph is connected, not the ratio of the giant
component to the network size. In this section we shift our
main focus to compute the required local connectivity to ob-
tain a sufficiently large giant component. For this purpose,
the second phase transition of Erdös and Rényi’s theory is
applicable [3]. The theory is as follows: Let p = a/n with
a < 1. Then G(n, p) will consist of small components, the
largest of which is of size Θ(lnn). Now, suppose p = a/n
with a > 1. With this small change, many components
will join together to form a giant component of size Θ(n).
Except for the giant component, the other components are
relatively small, the largest of which has size Θ(ln n). The
reason for this sudden change is because bigger giant com-
ponent tend to absorb larger number of small components.
The size of a giant component can be computed by the fol-
lowing Theorem 2 [12].

Theorem 2. Consider an Erdös-Rényi random graph
G(n, p). For fixed a > 0, let p = a/n. The following Asser-
tions hold with probability → 1 as n → ∞

1. If a < 1, the largest component size is at most
3

(1−a)2
log n.

2. If a > 1, there is a unique giant component with
(1 + o(1))βn nodes, where β = β(a) > 0 solves
β + e−βa = 1. The second largest component size is
at most 16a

a−12 log n.

In the above theorem, β is the number of nodes belonging
to the giant component divided by the number of nodes
provided. Since p = a

n
, then a = pn ' d, and we can say

that a represents node degree d. Given a desired ratio β for
a giant component size, the required local connectivity can
be estimated as

prequired =
a

n′
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Figure 1: a − β, a − Pc relation, where a is node de-
gree, β is the ratio of largest component size to net-
work size and Pc is the probability that graph is
connected.

Figure 1 shows the relation between a and β and a and
Pc with network size 10000. When node degree is around
6, β is close to 1. When the node degree is increased to
around 14 or more, Pc approaches 1. This means that even
with very small node degree most of nodes are connected
to each other. Increasing the node degree to make Pc very
close to 1 causes only a small number of isolated nodes to
be connected.

4.2 Re-evaluation of EG

Given k and P we can compute β and Pc when pactual =
prequired from Theorem 1, 2 and equation (1). Figure 2
shows the relation between k and β and the relation be-
tween k and Pc for P = 100, 000 and n = 10, 000. The-
orem 1 determines k where Pc is very near probability 1
and Theorem 2 determines k where β is very near 1. Fol-
lowing are specific examples in which we can compare the
basic scheme when Theorem 1 is applied with the one when
Theorem 2 is applied. Less than 2% isolated nodes is as-
sumed as a reasonable trade-off for reducing memory size.
To create a giant component with size more than 98%, we
choose constrained parameters a = 3.9918 where β = 0.98.
Given n = 10, 000, A = 1000 × 1000 and r = 40, prequired =
0.3664 is computed by Theorem 1 when Pc = 0.9999 and
prequired = 0.0794 by Theorem 2 when β = 0.98 respec-

tively. (n′ is computed by r2π
A

×n). With P = 100, 000, k is
determined by equation (1) such that pactual ≥ prequired. To
make pactual larger than prequired = 0.3664, k = 214 is re-
quired, while to make pactual larger than prequired = 0.0794,
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Figure 2: k − β, k − Pc relation, where k is key ring size, β is the ratio of largest component size to network
size, Pc is the probability that graph is connected and r is communication radius.

k = 91 is enough. Theorem 2 gives a reduction of half of
the original memory size with the trade-off of 2% isolated
nodes. The reduction of memory size is related to the re-
silience against node capture. If a node v is captured, k keys
are compromised. The probability that a random link be-
tween two random nodes i, j, (v 6= i, j) is not compromised is
(1− k

P
). When x number of nodes are captured the expected

fraction of the links compromised is 1 − (1 − k
P

)
x
. Figure 3

shows the comparison of this estimation for the different key
ring size. Since we can reduce k by Theorem 2, the num-
ber of links an adversary could attack decreases and we can
say that a reduction of k leads to a higher resilience against
node capture.
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Figure 3: Probability that a random link between
two random nodes i, j can be decrypted by the ad-
versary when the adversary has captured some set
of x nodes except i or j, where k is key ring size and
r is communication radius.

4.3 Re-evaluation of DDHV

Given τ, ω and n′ we can compute β and Pc when pactual =
prequired from Theorem 1, 2 and equation (2). Figure 4
shows the relation between ω and β, and relation between
ω and Pc for the fixed τ = 2. Theorem 1 computes ω where
Pc is very close to probability 1 and Theorem 2 computes
ω where β almost m reaches 1. As we can see in the fig-
ure, by applying Theorem 2 we can increase the range of
ω, the increase of which is more significant as r is bigger.
In the basic scheme, prequired decides the minimum pactual,
which decides k and P . The key ring size k determines mem-
ory size and security about resilience against node capture.

However, in the Du’s pairwise scheme, pactual is controlled
by ω and τ and memory size k is parameterized by the de-
ployer. The parameters τ, ω, k and security are related to
each other. According to [8], the security level is linearly
related to k ω

τ2 . Thus, among pairs of ω and τ which sat-
isfy pactual, the deployer selects the one which maximizes
ω
τ2 . Apart from the selected ω and τ , the memory size k
is selected, where larger k provides better resilience against
node captures. By increasing ω by Theorem 2, we can ei-
ther reduce the memory size or increase the security level or
both. For example, with r = 40 for fixed τ = 2, to satisfy
Pc = 0.9999 by Theorem 1, at most ω = 10 can be selected.
But, to create a giant component with size more than 98%
by Theorem 2, ω = 49 can be selected. If the memory size k
is fixed, the security level computed by ω

τ2 = 49
22 is 4.9 times

higher than ω

τ2 = 10
22 . Conversely, if we fix the security level

k ω

τ2 , we can reduce the memory size 4.9 times.

4.4 Re-evaluation of CPS

A drawback of CPS is that the supportable network size
is smaller than in other schemes. From equation (3), the
maximum supportable network size is determined by

n =
m

p
.

Figure 5 shows the supportable network size for different
local connectivity. By applying Theorem 2, instead of The-
orem 1, we can increase the supportable network size. For
example, for fixed m = 200, to satisfy Pc = 0.9999 by The-
orem 1, p = 0.3664 and n = 545. But to create a giant
component with size more than 98%, p = 0.0794 is enough
and this increases the supportable network size to n = 2518.

4.5 Communication Overhead
In the previous section, by reducing the shared key infor-

mation we could save the memory size. However after the
key set-up phase, the graph connected via secure links must
have a very sparse node degree. The two neighboring nodes
which a priori did not establish a secure link should find a
path to each other over the graph, in order to do path key
identification. However, the sparse node degree will increase
the path length which will affect the communication over-
head. In this section we discuss the communication overhead
in the path key identification phase, by the number of hops
increased when we apply Theorem 2. We first describe two
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Figure 4: ω − β, ω −Pc relation, where ω is number of key spaces constructed in networks, τ is number of key
spaces carried by each node, β is the ratio of largest component size to network size, Pc is the probability
that graph is connected and r is communication radius.
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Figure 5: Network size for Chan’s random pairwise
scheme, where k is key ring size and p is probability
that two nodes share a key.

ways to set up a path key identification, called cascade-off
counting and cascade-on counting.

Cascade-off Counting After the key set-up phase, some
of the neighbors are already connected via a shared key.
We denote the graph consisting of the nodes and the links
established by the shared key in the key set-up phase by
Gs1. Then, in the path key identification phase, i discovers
the route to j using only Gs1. This route is used to establish
a shared key.

Cascade-on Counting As in the above counting, after a
key set-up phase the Gs1 is created. During the path key
identification phase, some of the neighboring nodes will es-
tablish additional secure link via the path on Gs1. We add
those secure links to Gs1 and denote it by Gs2. Now the
path key identification is performed on Gs2 while new links
are continuously added. The process will be repeated until
all neighboring nodes are securely connected.

While the Cascade-off Counting gives us a well-defined
bound of delay for each pair of nodes to reach each other,
there is no reason why we should not use the previously
established secure paths. 1

We use simulation to measure the communication over-
head when we apply Theorem 2 to the basic scheme. The

1Eschenhauer et. al. [10] seems to use Cascade-off for their
simulation, while Du et. al. [8] provided theoretical analysis
for Cascade-off.

number of hops required during path key identification is
simulated based on the two counting methods above. We
assume a network of 10,000 nodes in the monitored area
1000 × 1000 with transmission range 40 whose correspond-
ing average number of neighbors is 50.26. 2

Figure 6 and 7 show the ratio of the number of nodes
that are isolated, unreachable in 3 hops, reachable in 3 and
2 hops, and directly connected for each counting method.
As observed in the Cascade-off Counting in figure, when the
key ring size is very small, the ratio of reachable nodes (ratio
of the colored area) is small also. In some case, even if most
of the nodes are reachable, many neighbors are not reachable
within three hops (e.g. r = 40, k = 100). In the cascade-on
counting, most of neighbors are reachable in two hops and
at most within 3 hops.

The reason why the ratio of two hops increases in Cascade-
on Counting is as follows: To be connected within two hops,
the neighboring nodes i and j must have at least one com-
mon secure neighbor h. In the Cascade-off Counting, h
should be the one having the shared key with i and j in their
key ring. However, in the Cascade-on Counting, h should
be the one either having a shared key or having a newly
generated key during the path key identification phase with
i and j. Thus, the probability to have at least one common
neighbor h between i and j increases. The slight increase
of secure links established during the path key identification
helps to find common secure neighbors, the effects of which
are small initially, but as the secure links increase, the effects
increase.

4.6 Isolated Nodes
Theorem 2 provides a tighter lower bound on the connec-

tivity condition. As a result, as we have shown in the previ-
ous section, we can reduce the memory size or improve secu-
rity. While this idea is based on the assumption that a small
fraction of isolated nodes is reasonable trade-off, in certain
environments we might need to connect these isolated nodes
to the network. To connect isolated nodes to the network,
the isolated nodes need to detect it is isolated. Existing
network partition detection algorithms may be used for this
purpose. But according to Theorem 2, when the graph gets
into the second phase transition, except for the giant com-
ponent, the size of the remaining components is very small,

2This setting was used in [7].
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Figure 6: Ratio of hops: cascade-on, * reachable with more than 3 hops, ** Isolat ed, k is key ring size, r is
communication radius.
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Figure 7: Ratio of hops: cascade-off, * reachable with more than 3 hops, ** Isola ted, k is key ring size, r is
communication radius.

usually 1 in our simulation setting. Thus the cost for the
partition detection algorithm is not expensive, or when the
component size is 1, it can recognize itself as isolated with-
out any partition detection algorithm. The isolated nodes
can be securely connected to the giant component by find-
ing one of the nodes in the giant component which shares
a common key with it. To do this it should either increase
transmission range or broadcast the message to find a pair
with 2 or more hops.

5. KEY PRE-DISTRIBUTION USING TRANS-
MISSION RANGE ADJUSTMENT

In this section, we introduce a modified key pre-distribution
scheme, when we can control the transmission range. To
save energy consumption, it is desirable to minimize the
transmission power such that the interference and energy
consumption is minimized while enough links capacity for
transmission should be maintained. Previous works [18, 14,
11] indicate that the transmission power to keep 5–8 node
degree is optimal. However, for key pre-distribution scheme
to be used effectively on the sensor network, this optimal
node degree (in terms of networking) is not sufficient. In this
section, we introduce a way to provide key pre-distribution
under this optimal node degree and analyze its efficiency.
We assume the sensor hardware to be capable of control-
ling its transmission range. (The example sensor hardware
is introduced in Section 3.)

We use the following notations: Desired network trans-
mission range is denoted as rt, and the average number of

neighbors from a node within radius rt is denoted as nt.
We denote secure transmission range as rf , secure
neighbor as nf , which are the transmission range
and the number of neighbors required in the key
pre-distribution scheme. The network transmission rt

will be provided a priori, and the sensor will increase trans-
mission range temporarily after the deployment so that its
range rf is bigger than rt.

The protocol description and simulation results intro-
duced in the rest of this section is based upon EG. However,
these can be easily applied to DDHV and CPS.

5.1 Protocol
The EG protocol changes slightly as follows. In the key

set-up phase, the neighboring nodes in the secure trans-
mission range rf who have a shared key, set up a secure
link using the key. In the path key identification phase, if
the neighboring nodes i and j in the range rt do not share
a key, node i generates a new key and seds this key to j
via the already established secure links. In other words, 1)
node i tries to share a common key with all neighbors in the
large disk with radius rf in the key set-up phase, and 2)
if it could not connect to node j in the small disk with
radius rt, it uses the secure channels in the large disk to
set up a common key with the node j. For 2), we introduce
two possible ways to send the generated key to the neighbor
j (see path key identification below), and use them as part
of path key identification phase. If there are still remaining
neighboring nodes which are not connected after path key
set-up, it can select whether to repeat the process again or
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Figure 8: b, rt, k relation, when desired node degree d = 6,12 and 20 used, rt is desired network transmission
range, k is key ring size, b is the required range extension.

Table 1: Required range extension b
When p′′ = 0.99 When p′′ = 0.90

H
H

H
HH

k
rt 15 30 45

H
H

H
HH

k
rt 15 30 45

200 2.6 1.4 1.2 200 1.8 1.2 1.0
180 3.0 1.8 1.2 180 2.2 1.2 1.0
160 3.8 2.0 1.4 160 2.6 1.4 1.2
140 4.8 2.6 1.8 140 3.4 1.6 1.4
120 6.2 3.2 2.4 120 4.4 2.4 1.8
100 8.8 4.4 3.2 100 6.2 3.2 2.2

not. The overall protocol is described as below:

Key Set-up

1. Each node broadcasts its id and the list of id of the keys
on their key ring.

2. Neighboring nodes which discover a shared key in their
rings verify that their neighbor actually holds the key
through a challenge response protocol. 3

Path Key Identification Either of the below can be used
(and can be repeated if needed).

Flood with TTL (FTTL in short) Neighboring nodes i and j
which do not share a common key establish an indirect
route using an algorithm that involves local flooding.
Node i broadcasts its id and the neighbor’s id not con-
nected with TTL = t via the secure channels that have
been established in the key set-up phase. Node i picks
an unused key (or generates a random key) K and
sends it to j using the route. Node i and j use this se-
cret key K as their pair-wise key. If there is a neighbor
not connected, try path key identification again with
increased TTL.

Common Secure Neighbor (CSN in short) Neighboring nodes
i and j which do not share a key find a common secure
neighbor from the message in 1 (in Key set-up phase)
without any additional packets. Node i compares the
key rings in the broadcast message with its own and j’s
and find the secret common neighbor h which shares
a key with both of i and j. Node i generates a ran-
dom key K and sends it to j via the common secret

3Different schemes can be used in key set-up phase, i.e.,
pseudo random key index transformation [16].

neighbor. Nodes i and j use this secret key K as their
pair-wise key. If there is a neighbor not connected, run
path key identification again.

5.2 Computing Secure Transmission Range rf

Given the desired rt we can compute necessary rf as fol-
lows depending on the path key set-up schemes.

Flood with TTL
Given a certain network transmission range rt, we calculate
secure transmission range rf = b × rt. The simplest way
to decide the secure node degree is to use Theorem 1 or
2. Given the desired node degree, we find the ratio of the
required rf to the given rt. That is,

d = pr2
fπρ = pb2r2

t πρ,

when ρ is the number of nodes per unit area. Thus,

b =
1

rt

s

d

ρpπ
.

Figure 8 shows the necessary b in EG according to the vari-
ous rt and k. For a desired node degree d = 12, and network
transmission range rt = 20, if we use the same secure trans-
mission range rf = rt, b = 1, we cannot obtain the desired
node degree 12 even with k = 200. However, by temporar-
ily increasing secure transmission range (rf = 63, b = 3.16)
we can significantly reduce memory size to around k = 100.
This increases the transmission interference temporarily in
the key establishment process. However, this trade-off seems
to be reasonable in the case where additional node deploy-
ment is considered (since, each node needs to maintain the
whole key ring for the additional nodes).
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Figure 9: Communication overhead in path key set-up for d = 12, rt = 15 and p′′ = 0.9 (a) Broadcast cost in
FTTL (b) Unicast cost in FTTL and CSN

Common Secure Neighbor
We first find the probability that two neighboring nodes are
reachable with two hops. We follow the analysis provided
by [8] and apply it to EG. We assume the distance between
two nodes i and j is z. To establish a path key in two hops,
a pair of nodes must set up a shared key through a common
neighbor. The common neighbor must be in the overlapped
region of the transmission range of node i and node j. The
size of this overlapped region is:

A(z) = 2r2
f cos−1(z/2rf ) − z

q

r2
f − z2/4.

Thus, the total number of nodes in the overlapped region is
ρAoverlap(z). The probability distribution function of the
distance between two nodes within network transmission
range rt is given F (z) = ( distance < z) = z2/r2

t . The
probability density function is thus f(z) = F ′(z) = 2z/r2

t .
The probability that i and j are either directly connected or
i and j are not connected directly but there exists at least
one common neighbor connecting them is:

p′′ =

Z rt

0

(1 − p)(1 − (p′)ρA(z))
2z

r2
t

dz + p

where p′ is the probability that the common neighbors of i
and j is not securely connected to both of them.

p′ = 1 −

`

P

k

´

− 2
`

P−k

k

´

+
`

P−2k

k

´

`

P

k

´ .

Table 1 shows the necessary b in EG according to the var-
ious rt and k.

5.3 Overhead Comparison
The metric used to evaluate the performance of our pro-

tocol are the computational and communication costs of key
establishment. Since the key set-up phase is in common, we
compare the cost for path key identification only.

Computational cost
The main computational cost is the cost of encrypting and
decrypting the newly generated key in both schemes. A
single encryption in the sender and decryption in the receiver
is used whenever the unicast message is transmitted. In
FTTL, if the number of hops in the path between i and j is
h, the total number of encryptions and decryptions are both
h. In CSN, the number of hops the unicast message traverses

is always 2, so a total of 2 encryptions and 2 decryptions are
used.

Communication cost
We tested the bandwidth required for the path key set-up
phase. For comparison purposes, we performed a simulation
either using only FTTL or only CSN. In FTTL, the commu-
nication overhead consists of the broadcast packet for route
discovery and unicast of the newly generated secret key. The
cost of broadcast packets is large, especially when TTL=t
is large. The bandwidth for broadcasting its own id and
neighbor’s id which are not connected in a network of size
n is

(i+(nt−d×
nt

nf

)×i)×(1+d+d×(d−1)+· · ·+d×(d − 1)t−2)×n

where i is the size of id. The bandwidth all the nodes uni-
casting its own id, destination’s id and key in network size
n is

(i + i + Ks) × t′ × (nt − d ×
nt

nf

) × n/2

where Ks is the key size, t is the average path length, where
t′ ≤ t.
In CSN, there is no communication cost for route discov-
ery. But a unicast message is used to transmit the newly
generated secret key. Since the number of hops it traverses
is always 2, the total bandwidth for unicasting its own id,
destination’s id and key in network size n is

(i + i + Ks) × 2 × (nt − d ×
nt

nf

) × n/2

Figure 9 shows the simulation results where the above com-
putation is used. The basic scheme is used with a fixed
network transmission range rt = 15, P = 100, 000 and
n = 10, 000. For a different key ring size k, rf is determined
by the two ways introduced in the previous section.

As can be observed in the Figure 9, the unicast cost of
FTTL is bigger than the unicast cost of CSN. Moreover,
while there is no broadcasting cost in CSN, the broadcast-
ing cost in FTTL is not negligible. While CSN has much less
communication cost, it has the following problem. First,
if we use CSN, some fraction of neighboring nodes are not
connected. For example, with the key ring size 140 and the
8 targeted neighbors, each node has about 9.12% neighbors
that are not connected. (Of course, this was the theoret-
ical bound we computed.) Second, CSN has an additional
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computation cost. As explained in the protocol, each node
compares the key rings in the every broadcast message it re-
ceives with its own and the targeted neighbor’s (in the small
disk). Thus, if the key ring size is large or it receives a lot
of broadcast messages, the computation complexity can be
significant. In other words, CSN trades off communication
with computation.

To solve the problems of FTTL and CSN, we have designed
a protocol, the details of which (including the simulation
and theoretical analysis) will be provided in the extended
version of this paper. First, key set-up phase is the same
as the original protocol. Second, after the key set-up phase,
each node i broadcasts its own id and the id of unconnected
neighbors (in the small disk). Its secure neighbor node j
checks if one of the unconnected neighbors of i is its neighbor
or not. If so, it replies to i to connect the unconnected
node through itself. After the first broadcast message of
each node, some of the neighboring nodes will be connected.
Node i, on the other hand, checks its neighbors’ unconnected
list to see if it can find others to help. Note that this may
not require any additional broadcast message after the first
broadcast of unconnected node list set. As time goes by,
more neighbor nodes are connected.

6. CONCLUDING REMARKS
This paper analyzes relation between connectivity, mem-

ory size, and security of key pre-distribution schemes for the
sensor networks. Using the giant component analysis, we
have shown that we can trade-off connectivity, memory size,
and security in the various density of sensor networks. We
can reduce the key ring size, improve the security or the scal-
ability of the previous schemes. Our simulation results show
that the actual performance of the path key identification
can be significantly improved by using cascade-on counting
method. Lastly, we introduce ways to narrow the gap be-
tween the “optimal” network degree given by the networking
community and the “required” network degree given by the
security community. We believe our techniques can improve
the practicality of the existing key pre-distribution schemes
for sensor networks.

7. REFERENCES
[1] µamps: µ-adaptive multi-domain power aware sensors.

http:

//www-mtl.mit.edu/research/icsystems/uamps.

[2] Wireless integrated network sensors, ucla.
http://www.janet.ucla.edu/WINS.

[3] N. Alon and J. Spencer. The probabilistic method. In
Wiley-Interscience, 2000.

[4] R. Blom. An optimal class of symmetric key
generation systems. In EUROCRYPT 84, 1985.

[5] C. Blundo, A. D. Santis, A. Herzberg, S. Kutten,
U. Vaccaro, and M. Yung. Perfectly-secure key
distribution for dynamic conferences. In Crypto, 1992.

[6] H. Chan, A. Perrig, and D. Song. Random key
predistribution schemes for sensor networks. In IEEE
Symposium on Research in Security and Privacy, 2003.

[7] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K.
Varshney. A key management scheme for wireless
sensor networks using deployment knowledge. In
Conference of the IEEE Communications Society
(Infocom), 2004.

[8] W. Du, J. Deng, Y. S. Han, and P. K. Varshney. A
pairwise key pre-distribution scheme for wireless
sensor networks. In ACM Conference on Computer
and Communications Security (CCS), 2003.
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