
Analyzing Security of Korean USIM-Based PKI
Certificate Service

Shinjo Park1(B), Suwan Park1, Insu Yun2, Dongkwan Kim3,
and Yongdae Kim1,3

1 Graduate School of Information Security, KAIST, Daejeon, South Korea
peremen@kaist.ac.kr

2 Department of Computer Science, KAIST, Daejeon, South Korea
3 Department of Electrical Engineering, KAIST, Daejeon, South Korea

Abstract. This paper analyzes security of Korean USIM-based PKI cer-
tificate service. Korean PKI certificate consists of public key and pass-
word encrypted private key on disk. Due to insufficient security provided
by single password, Korean mobile operators introduced USIM-based
PKI system. We found several vulnerabilities inside the system, including
private key’s RSA prime number leakage during certificate installation.
We also suggest possible improvments on designing secure authentication
system (Preliminary work of this paper was published previously [1]. This
work was responsibly disclosed to the vendor and associated government
organizations.).

1 Introduction

PKI certificates are used in several places, including nationwide identification
service in several countries. One of the implementation is smartcard-based PKI.
PKI certificate on smartcard based national ID card is secure due to card operat-
ing system with access control, interfaces to block access of private key and only
provides interfaces for signing functionality, but card reader infrastructure costs
a lot initially. Korean implementation chose public and encrypted private key
on disk, and this caused problem later since it created single point of failure on
certificate encryption password and OS security. Most users set certificate pass-
word as what they use in other web sites. When malware steals them, attacker
can easily decrypt certificate by that password. To mitigate private key leakage
program, Korea introduced USIM-based PKI service.

Advancement of mobile technology enabled certifiate storage in USIM card.
USIM card is a smartcard conforming to ISO/IEC 7816 with telecom func-
tions. Unlike traditional smartcard, mobile phone already has the reader built-
in. Wide penetration of mobile phone enabled USIM-based certificate service in
some countries, including Estonia, Finland, and Korea. Estonia started mobile
PKI service in 2007 [2], aiming 300,000 users (about 25 percent of population)
by 2017 [3]. All Korean mobile operators started commercial USIM-based PKI
service in July 2014. They were certified by KISA (Korea Internet and Security
Agency) before starting service [4]. Korean PKI service was originally developed
c© Springer International Publishing Switzerland 2015
K.-H. Rhee and J.H. Yi (Eds.): WISA 2014, LNCS 8909, pp. 95–106, 2015.
DOI: 10.1007/978-3-319-15087-1 8



96 S. Park et al.

for authentication in online banking, but it is now widely used in about 800
sites for the purpose of financial transactions, government services, foreign trad-
ing, etc.

In this paper, we analyze the security of commercial implementation of
Korean USIM-based certificate service, and find design and implementation
flaws. By intercepting PKI certificate installation, attacker can eavesdrop RSA
private key in both PC and mobile phone. Other implementation flaws such as
not validating SSL certificate, inappropriate debugging message, ineffective code
obfuscation makes current implementation more vulnerable.

Section 2 introduces existing work related to USIM-based PKI service in Esto-
nia. In Sect. 3, we present preliminaries of USIM-based PKI system including
system overview and possible attack models. Our security analysis is presented
in Sect. 4. Section 5 details possible attack scenarios. Discussion and conclusion
is in Sects. 6 and 7.

2 Related Work

Formal security analysis for Estonian Mobile ID has been presented by Peeter
Laud et al. [5] Prerequisites of Estonian Mobile ID are mobile ID enabled USIM
card and activation of the card using smartcard based Estonian ID card. Mobile
ID could be used for both identification and signing, with two separate PIN
numbers for each purpose. During identification and digital sign process, mes-
sage set by institution and control code generated by combination of the nonce
values of institution and certifiate management authority are shown in both
user and USIM application. It provides verification of current action and visual
indicator of channel security. Messages between network operator and USIM
are based on SMS, and encrypted using a symmetric key. They used protocol
analyzer ProVerif, with formal language based on π-calculus. The paper also
presents scenarios when each components are controlled by adversary, and pro-
vides possible protocol modification on each scenario. In general, despite some
weaknesses, Estonian Mobile ID is equal or more secure than smartcard based
authentication.

3 Preliminaries

Unlike typical PKI implementation where private key is stored in secure storage,
Korean nationwide PKI service chose certificate storage based on files in disk.
Certificate of multiple users (UA, UB , · · · ) could be stored in one storage. Cer-
tificate of Ui contains public key PKUi

and encrypted private key EP (SKUi
)

with password P . By default, PKUi
and EP (SKUi

) are stored in fixed location
of Ui’s hard disk. Also, P might be shared among other online services of Ui.
Therefore, if attacker can steal EP (SKUi

) and P , then she can impersonate Ui.
To protect key pair and password from external attacker, Korean PKI imple-

mentation (typically as web browser plugin) includes endpoint protection soft-
ware (anti-keylogger, firewall, etc.) by default. Additional mitigation suggested



Analyzing Security of Korean USIM-Based PKI Certificate Service 97

by Korean government is to store PKUi
and EP (SKUi

) in removable storage,
but it does not increase security. Because of that, Korean government decides to
move the storage to USIM card, which provides hardware-based access control
by design.

According to Korean patents related to USIM-based PKI service, secure
channel exists between smartphone and certificate management server, and com-
munication between smartphone and USIM card is done in plaintext [6]. To
access USIM secure storage during key pair installation and cryptographic oper-
ation, its password PUSIM is used instead of P . Thus, it implies that decryption
of EP (SKUi

) is done either in PC or smartphone application. On the other hand,
additional vulnerability is introduced by certificate management application.

3.1 System Description

Workflow of Korean USIM-based PKI system consists of installation of exist-
ing certificate, and certificate usage. Available installation methods are copy-
ing existing certificate, and direct key pair generation on USIM card. Although
directly generating key pair on USIM card is the most secure method, it is not
feasible for daily usage because current USIM-based PKI is not available on
mobile applications, and using separate key pairs for different application is not
possible. Therefore, most users will retain their PKUi

and EP (SKUi
) on disk,

along with PKUi
and SKUi

installed in USIM card. Figure 1 shows communica-
tion process during certificate installation and usage.

Fig. 1. Key pair installation of Korean USIM-based PKI

On PC side during key pair installation, PC application checks whether
EP (SKUi

) belongs to Ui by decrypting it inside the PC. If the key pair is suc-
cessfully decrypted, additionally encrypted EK′(PKUi

) and EK′(E(SKUi
)) are

sent to relay server via SSL. QR code is generated simultaneously, containing
K ′, address of relay server and session information, encrypted using SEED-CBC
with KQR. They are valid for 3 min. Smartphone captures QR code, downloads,
decrypts and installs the key pair stored in relay server.

To use certificate stored in USIM card, user select Secure Token in certificate
location dialog. Another window asks user’s mobile phone number, to send push



98 S. Park et al.

message and execute certificate management application. The PC application
will display list of public keys in USIM card. After selecting certificate, PUSIM

is typed on PC. Relay server sends encrypted PUSIM using SEED-CBC with
KPIN , along with cleartext to be signed to mobile phone. If PUSIM entered
from PC is correct, then the text is signed by SKUi

in USIM card, and sent
back to the user. Before performing cryptographic operations, a confirmation
dialog is displayed on smartphone by mobile application.

3.2 Threat Model

Memory Hacking on PC. Operating systems provide APIs for accessing other
processes’ memory region and control execution to use in debuggers. Malware
writers, on the other hand, can use the same APIs to access sensitive data of other
application. This technique is called memory hacking. To use memory hacking to
steal private information, malware needs to be installed inside victim’s computer.
Numerous bugs of application and user’s unawareness of possible malware makes
it easy to install the malware.

SSL MitM Attack. Content manipulating proxy like Paros [7] can hijack
HTTPS communication. Paros presents faked SSL certificate to the client, which
may use different domain name and/or signing authority than the real one. With-
out prior register of faked CA root certificate, web browsers will display certifi-
cate warning by default and refuse to continue operation unless explicitly told
to do so. Applications may use certificate pinning to explicitly allow pre-defined
certificate, and reject all other certificates. On Android application, certificate
validity are checked by default, unless application author explicitly disabled the
check.

For navigating bank web pages, security of HTTPS session depends on that
of web browser. Modern web browsers have EV certificate (Extended Valida-
tion Certificate) feature to present visual indicator of certificate validity. This is
still vulnerable when user initially enters HTTP URL first, then redirected to
HTTPS. In most cases, web contents are the same even using different protocol,
SSLstrip [8] uses that property to change all HTTPS requests to HTTP when
user initially used HTTP.

To perform SSL MitM attack, we use rogue AP (Access Point) for Wi-Fi
or ARP spoofing and activate web proxy behind the scenes. Users do not know
what is happened behind, or are hidden from what is actually going on.

Effect of Android Rooting. Numerous vulnerabilities in mobile operating sys-
tem allows user or malware to gain root permissions, which is typically blocked
in general. With rooted phones, Android security measures are not effective since
root user can see everything inside sandbox, deactivate operating system func-
tionalities and mobile vaccine. Application handling sensitive information can
check whether the phone is rooted or not. Common methods are checking exis-
tence of su binary and root permission management application, vendor-specific
warranty bits indicating rooting. Some methods could be bypassed, allowing
rooted phone to execute particular application.



Analyzing Security of Korean USIM-Based PKI Certificate Service 99

3rd-party Malware. Malware can steal private information by collecting user
information using Android API, monitoring system logs to check existence of
private information, and accessing outside of sandbox on rooted phones. If an
application presents its private information using insecure way like printing it
inside Android system log, malware can steal that information. Developers can
access Android logging facility by android.util.log series of API [9], and read
the logs using logcat [10] utility or GUI tools from PC. According to Google, it is
adviced to remove all logging API calls before releasing the application. Android
logging API uses system-wide log buffer to collect all application logs, and log-
cat application shows combined logs of all running applications. Since logcat is
terminal-based application, there are some GUI log management applications
on Play Store. Although Google blocked system wide log access for apps since
Android 4.1, collecting logs via ADB on PC or rooted device is still possible.

Repackaging. Android applications are written in both Java and native codes.
Android Java code is compiled to DEX (Dalvik EXecutable) which could be
converted back to Java code using dex2jar [11] and Java decompiler, or smali [12]
code (Dalvik assembly) using smali/baksmali combination. Repackaging tool like
apktool [13] assists extracting and modifying smali code, creating repackaged
APK of application. Repackaged application is visually the same as original
one. They are distributed through various channels, and when victim executed
particular application, malware injected by attacker is executed.

4 System Analysis

4.1 PC Application

It is easy to write memory hacking application since address of private data is
always the same, due to absence of ASLR (Address Space Layout Randomiza-
tion). By using memory hacking, attacker can obtain user’s information includ-
ing P , PKUi

, EP (SKUi
) and SKUi

. The KQR and IVQR to encrypt K ′, server
address and session information is hard-coded inside application. If attacker
knows KQR, she can hijack the session in behalf of victim. If SSL MitM proxy
changes relay server’s certificate, the application refuses to generate QR code,
probably due to usage of certificate pinning or strict certificate check.

4.2 Mobile Application

The application is obfuscated in custom method involving transformation of
Dalvik bytecode. Figure 2 shows the method to decode obfuscated application
during runtime. Unencrypted bootstrap executes native library to decode obfus-
cated part before executing the real application. By recollecting memory area
using memory map on /proc/PID/maps, we can reassemble the decrypted ODEX
(Optimized DEX) of application. During Android application execution, Dalvik
optimizes functions in device framework before storing application’s DEX inside
Dalvik cache on memory. This optimized ODEX could be converted back to



100 S. Park et al.

DEX file using deodex tools, with framework files of the device where ODEX is
generated. Decoded DEX file is not obfuscated; original names of class, method,
variable names are untouched.

classes.dex

Unencrypted Bootstrap

Encrypted Area

Decryption Library

…

Native Library

Load library’s
decrypt functionDecrypt

Fig. 2. Obfuscation method of application [1]

During key pair installation, Android application uses SD card for tempo-
rary storage of PKUi

and EP (SKUi
). Using application repackaging to retain

temporary files, or create race condition to copy key files from SD card before
its removal, it is possible to hijack PKUi

and EP (SKUi
). Vulnerable version of

application printed out every USIM APDU (Application Protocol Data Unit)
used for communication between phone and USIM, to Android system log. We
implement small malware to read the logs and extract information from it.

The application also lacks some security measurements, or degraded platform
security deliberately. Application integrity is not checked; attacker can distrib-
ute malicious repackaged app to steal private information. While the application
refuses to run in rooted device, it could be easily circumvented by renaming
su binary to other name, and removing root permission management applica-
tion like SuperSU. The application communicates with relay server via HTTPS
channel, whose SSL certificate verification is explicitly turned off. This enables
attacker to perform MitM attack on SSL without knowledge to the user. On
our experiment with rogue AP, we successfully collect private information inside
SSL session.

4.3 USIM Application

To analyze communication between mobile phone and USIM card, we can mod-
ify application to print out logs of USIM communication, or use hardware based
sniffing device like SIMtrace [14]. There is no unified API for accessing USIM
card inside mobile operating system: Apple iOS provides private API (not access-
able for general developers), AOSP (Android Open Source Project) and their



Analyzing Security of Korean USIM-Based PKI Certificate Service 101

derivatives do not include API at all. Example of USIM access API implemen-
tation in Android is SEEK for Android [15], which is often included in stock
ROM of devices. Device manufacturer and mobile network operator may provide
their own private API for accessing USIM card and its applications. SIMtrace
allows eavesdropping of phone-USIM channel without knowledge about APIs for
accessing USIM, and modification of target application.

(a) SIMtrace hardware (b) Phone connection

Fig. 3. SIMtrace hardware and phone connection

Figure 3a shows SIMtrace device. Original USIM card from mobile phone goes
to SIMtrace’s USIM card slot (upper right of figure), and mobile phone is con-
nected to SIMtrace using FPCB (Flexible Printed Circuit Board) cable (lower
right of figure). By connecting device to computer and using SIMtrace applica-
tion, we can eavesdrop channel between phone and USIM card. Figure 3b shows
SIMtrace connected to Samsung Galaxy S III (SHW-M440S) for demonstration.
In this mobile phone, FPCB cable is easy to route since there is no other objects
blocking the cable. Different FPCB cable placing is required when USIM slot is
underneath battery, or USIM card is connected to phone via tray.

With SIMtrace connected to the phone via FPCB cable and PC via USB,
executing simtrace application and powering up the phone gives traces of USIM
communication in GSMTAP format via local UDP socket. When an application
sends command to USIM card, SIMtrace will send the packet containing APDU
of particular application. Packets from SIMtrace and USIM communication logs
of application were the same, making it easier to trace phone-USIM communi-
cation without modification on application or phone firmware.

5 Attack Evaluation

Following attacks were possible in each components:

– PC application: Memory hacking, SSL Hijacking (partially), Circumventing
anti-keylogger



102 S. Park et al.

– Mobile application: Circumventing rooting check, Log sniffing, SSL Hijacking,
No integrity check on message

– USIM application: Unprotected phone-USIM channel.

We implement custom C&C server to collect and display PKUi
and SKUi

,
public and private exponents, phone number, PUSIM , P of victim. It also pro-
vides PKUi

and SKUi
download function, allowing attacker to directly imper-

sonate victim without further processing.
On PC application, we implement memory hacking malware to steal and

upload PKUi
, EP (SKUi

), SKUi
and P during key pair installation. Although

Paros worked on bank web site, Internet Explorer 11 on Windows 7 displayed
certificate warning before actually navigating the site. SSL MitM attack revealed
EKPIN

(PUSIM ) and cleartext to be signed. Hardcoded KPIN and IVPIN inside
application allows attacker to decode PUSIM . Cleartext to be signed could be
changed in theory, but on our tested bank web site only hash of original message
was visible. Anti-keylogger software is ineffective while malware is running with
USB keyboard.

On Mobile application, we implement custom Android log stealing malware
to steal PKUi

, SKUi
(during key pair installation) and PUSIM (all certificate

operation). Some phones required workaround to avoid background application
termination problem, by using a dummy thread to make application as active.
If attacker wants to install key pair on her USIM card, only PKUi

and SKUi

are required. To use key pair on PC, attacker can re-encrypt SKUi
using unre-

lated P ′, because Korean PKI implementation on PC expects encrypted SKUi
.

There is no way to find out whether cleartext to be signed comes from legiti-
mate source. Also, person with headset displayed before cryptographic operation
do not clearly represent secure user operation. As Alma Whitten et al. sug-
gested [16], the image could be replaced to represent cryptographic operation
instead. By hijacking SSL session it is also possible to steal private information
in mobile application.

Using SIMtrace, we found that communication channel between USIM and
phone is not encrypted and showed the same messages as system log during
accessing USIM card. An advanced attacker can create fake signing application
from scratch by analyzing how messages are processed.

6 Discussion

During our research, several new implementations of USIM based certificate in
Korea emerged. Unlike Estonia where one unified solution is used among all
mobile operators, multiple vendors implemented their own solution to mobile
network operators. Android application is different from what we have analyzed
in previous section, but USIM-phone communication method uses the same telco-
specific API and similar USIM APDU structure. If USIM-phone channel is not
properly secured, fundamental problem of information leakage will not be solved.
Although all services were certified by KISA, the certification is limited to USIM



Analyzing Security of Korean USIM-Based PKI Certificate Service 103

itself, not including applications for service. Current certification process is bro-
ken since any vulnerable component in application chain makes whole process
vulnerable.

Since fixing problems in higher level like Android and PC application is triv-
ial, and most problem could be remedied by following secure coding guidelines,
we more focus on lower level design to survive problems in higher level, for
example, rooting of the device and vulnerable applications.

6.1 Mitigation

One mitigation to prevent memory hacking on PC is ASLR (Address Space Lay-
out Randomization), where operating system changes memory layout of binaries
for each execution. From attacker’s point of view, location of sensitive changes
between each execution. Another mitication is anti-debugging techniques like
executable packing (e.g. Themida [17]), self-modifying code, code obfuscation.
This can slow down the application analysis, but not completely prevent it.

To prevent SSLStrip like attack, HSTS (HTTP Strict Transport Security) [18]
uses HTTP header information to tell the browser that it must use HTTPS for
next visit. If web browser has HSTS information for particular web site, then it
will always use HTTPS even user entered HTTP URL. Attacker still can strip
down HSTS header when user visits web site for the first time. To prevent header
strip attack, web browser vendors have whitelist of HSTS-enabled sites to force
HTTPS.

Application repackaging could be mitigated by integrity check. If integrity
check is implemented in Android Java code, attacker still can circumvent it by
modifying application to return fake values for integrity checking routine. Imple-
menting sensitive routine like integrity check in native code makes modification
and repackaging more difficult. Android obfuscation tools like ProGuard [19]
makes application analysis difficult, but not impossible.

Even with these mitigations, running attacker’s code on PC or mobile phone
is still possible. To solve root cause of problem caused by implementing security
operations on PC or mobile platform, dedicated hardware based security is highly
recommended.

6.2 Secure User Interface

First of all, sensitive user interface must be implemented using USIM application
toolkit, or inside TrustZone container for better protection.

Figure 4 shows how USIM application toolkit is handled inside Android, other
mobile platforms have similar structure. Application binary is contained inside
USIM card, secured by card operating system. When mobile operating system is
booted, USIM card tells whether toolkit menu is available or not. Mobile OS then
shows USIM application toolkit “application” to access application inside USIM
card. The “application” in mobile OS can not access application binary directly,
the only interface is USIM toolkit terminal messages sent via RIL and baseband.



104 S. Park et al.

Fig. 4. USIM application toolkit architecture in Android [20]

Android application acts only as wrapper of USIM card’s output and input
messages. When the application is not tempered, it will only display messages
from USIM and pass user’s input values to it. USIM toolkit handling application
is installed as system application, whose modification requires rooting of the
device and may cause unexpected consequences on system operation.

To protect modification of preinstalled system application, we can use Trust-
Zone [21] container to isolate application from other applications. TrustZone-
based application environment like Samsung Knox [22] is not easily tempered
by simple device rooting. Isolating USIM toolkit application will prevent from
application modification to disguise and eavesdrop messages from USIM card.
By this scenario we can provide secure display opened to application. Input event
must be secured too, making no other party except USIM toolkit application can
receive or monitor events to reconstruct user input values.

The application must show confirmation message starting from USIM card.
If confirmation dialog is displayed by Android application, malware can press
OK on the dialog without knowledge of user. If the dialog came from USIM card,
then toolkit message must be passed through USIM card to actually press OK,
which requires extra step to do this.

6.3 Secure Communication Channel

If communication method of phone and USIM is revealed to external attacker,
it is analogous as sending password using HTTP in web application. By using



Analyzing Security of Korean USIM-Based PKI Certificate Service 105

faked certificate application, it can collect necessary information to sign the
plaintext on user’s behalf, and hacker can use stolen identity to cause damages
to user. Moreover, if confirmation steps are only implemented in Android side
and USIM lacks any kind of verification, identity theft is more easy. Secure
channel starting from USIM card can prevent these from happen by preventing
USIM APDU leakage.

Estonian Mobile ID secures communication channel by preshared symmetric
key based encryption on SMS [5]. Binary SMS is typically not passed to mobile
operating system and directly handled inside radio layer and USIM application
of the phone. This provides extra protection layer not provided by Korean USIM-
based certificate services, and eliminiates framework hijacking problem by not
using USIM communication channel on Android application.

7 Conclusion

To implement secure USIM-based authentication service, only securing certifi-
cate itself inside USIM card is not sufficient. There are numerous communication
channel around smartphone and USIM card, including application layer proto-
cols, Android application, and USIM to phone channel. Our analysis showed that
Korean USIM certificate implementation lacks security measures, some of which
is fixable, but some are fundamental problems requiring at least reprogramming
of USIM card and changes on service architecture.

USIM card can host secured application with user interface, additional secu-
rity on mobile phone by using TrustZone can further protect those application
from external attackers. USIM application can survive application modification,
since card operating system prevents direct access of application binary. We
strongly recommend implementing secure user interface inside USIM, instead of
Android application. We also recommend extending certification scope of Korean
USIM-based certificate to the whole system including user interfaces and com-
munication channels.

References

1. Park, S., Park, S., Yun, I., Kim, D., Kim, Y.: Security analysis of USIM-based cer-
tificate service in Korea. In: Conference on Information Security and Cryptography
(2014)

2. ASi Sertifitseerimiskeskus, About SK - History. https://www.sk.ee/en/about/
history/

3. Vaata Maailma, NutiKaitse 2017. http://www.vaatamaailma.ee/en/nutikaitse
4. KISA, Operational Programs (in Korean). http://www.rootca.or.kr/kor/hsm/

hsm.jsp
5. Laud, P., Roos, M.: Formal analysis of the estonian mobile-ID protocol. In: Jøsang,

A., Maseng, T., Knapskog, S.J. (eds.) NordSec 2009. LNCS, vol. 5838, pp. 271–286.
Springer, Heidelberg (2009)

6. Raonsecure Inc., Digital Signature System Using Mobile Device (in Korean),
Patent KR 10–2013-0 065 149, 30 December 2013

https://www.sk.ee/en/about/history/
https://www.sk.ee/en/about/history/
http://www.vaatamaailma.ee/en/nutikaitse
http://www.rootca.or.kr/kor/hsm/hsm.jsp
http://www.rootca.or.kr/kor/hsm/hsm.jsp


106 S. Park et al.

7. Paros. http://sourceforge.net/projects/paros/
8. Marlinspike, M.: SSLstrip. http://www.thoughtcrime.org/software/sslstrip/
9. Android Open Source Project, Android Developers: Log. http://developer.android.

com/reference/android/util/Log.html
10. Android Open Source Project, Android Developers: logcat. http://developer.

android.com/tools/help/logcat.html
11. dex2jar. https://code.google.com/p/dex2jar/
12. smali/baksmali. https://code.google.com/p/smali/
13. apktool. https://code.google.com/p/android-apktool/
14. OsmocomBB Project, SIMtrace. http://bb.osmocom.org/trac/wiki/SIMtrace
15. Secure Element Evaluation Kit for the Android platform. https://code.google.com/

p/seek-for-android/
16. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of

PGP 5.0. In: Proceedings of the 8th USENIX Security Symposium, vol. 99, p. 16.
McGraw-Hill (1999)

17. Themida. http://www.oreans.com/themida.php
18. Hodges, J., Jackson, C., Barth, A.: HTTP Strict Transport Security (HSTS),

RFC 6797 (Proposed Standard), Internet Engineering Task Force, November 2012.
http://www.ietf.org/rfc/rfc6797.txt

19. Android Open Source Project, Android Developers: ProGuard. http://developer.
android.com/tools/help/proguard.html

20. Android Open Source Project, Android Open Source: SIM Toolkit Application.
http://www.kandroid.org/online-pdk/guide/stk.html

21. ARM Inc., TrustZone. http://www.arm.com/products/processors/technologies/
trustzone/index.php

22. Samsung, Samsung KNOX. http://www.samsung.com/global/business/mobile/
platform/mobile-platform/knox/

http://sourceforge.net/projects/paros/
http://www.thoughtcrime.org/software/sslstrip/
http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/help/logcat.html
https://code.google.com/p/dex2jar/
https://code.google.com/p/smali/
https://code.google.com/p/android-apktool/
http://bb.osmocom.org/trac/wiki/SIMtrace
https://code.google.com/p/seek-for-android/
https://code.google.com/p/seek-for-android/
http://www.oreans.com/themida.php
http://www.ietf.org/rfc/rfc6797.txt
http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/proguard.html
http://www.kandroid.org/online-pdk/guide/stk.html
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.samsung.com/global/business/mobile/platform/mobile-platform/knox/
http://www.samsung.com/global/business/mobile/platform/mobile-platform/knox/

	Analyzing Security of Korean USIM-Based PKI Certificate Service
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 System Description
	3.2 Threat Model

	4 System Analysis
	4.1 PC Application
	4.2 Mobile Application
	4.3 USIM Application

	5 Attack Evaluation
	6 Discussion
	6.1 Mitigation
	6.2 Secure User Interface
	6.3 Secure Communication Channel

	7 Conclusion
	References


