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Abstract—The ever-increasing popularity of social networks
opens new directions for leveraging social networks to build
primitives for security and communication, in many contexts.
Such primitives utilize the trust in these social networks to
ensure collaboration and algorithmic properties exhibited in
such networks to argue for the effectiveness of such primitives.
Despite the importance of such properties and their quality to
the operation of these primitives, less effort is made to measure
these properties and understand the relationship among them
and to other characteristics of social networks.

We extend our earlier results measuring the mixing time,
to investigate a new property used for building Sybil defenses,
namely the expansion of social graphs. We measure the expansion
of social graphs, and show quantitatively that, with a few
exceptions, it is sufficient to support Sybil defense mechanisms
based on expansion. We relate the mixing time of social graphs to
graph degeneracy, which captures cohesiveness of the graph. We
experimentally show that fast-mixing graphs tend to have a larger
single core whereas slow mixing graphs tend to have smaller
multiple cores. While this study provides quantitive evidence
relating the mixing time to coreness of the graph, it also agrees
with our previous observations about the tight-knit community
structure in slow mixing social graphs.

Index Terms—Social networks, mixing time, expanders, mea-
surements, Sybil defenses.

I. INTRODUCTION

Leveraging social ties for building trustworthy comput-
ing services is becoming quite popular, and promises many
primitives and applications for communication and security.
Such applications and primitives benefit from both the trust
exhibited in the underlying social networks—which rational-
izes collaboration among nodes in the services built on top
of social networks—and other algorithmic properties, which
support the argument for the effectiveness of applications built
on top of the social network. While most applications and
primitives built on top of social networks share a commonality
of purpose in using trust in the underlying graph (e.g., ensuring
collaboration, rationalizing assumptions about the the nature of
the underlying social graph and attackers’ capabilities, among
many others), the algorithmic properties used in them differ
greatly [16]. In the following, we elaborate on some of these
properties and the rationale of using them in building such
applications and primitives.

One example of such applications is social network based
Sybil defenses, which is a well-established vein of research,
where several designs have been proposed in the literature [4],
[10], [19], [22], [26], [27]. In these designs, trust is used
to rationalize the difficulty of penetrating the social graph

and establishing arbitrarily many links that thwart the utility
of the defense mechanism, whereas the fast-mixing property
is used to argue for the effectiveness of the detection of
Sybil identities, and to yield a feasible solution. The same
algorithmic property, of fast mixing social graphs, is used in a
closely related direction for demonstrating the utility of social
graphs as good mixers for potential deployment of anonymous
communication networks on top of them [18]. An even more
strict property than fast mixing, namely “good” expansion, is
used for building a Sybil defense mechanism in [23].

Other examples of applications and properties used in build-
ing them include (node) betweenness for Sybil defense [19],
betweenness and similarity for improving routing in delay tol-
erant networks [2], and closeness for efficient content sharing
and anonymity [6], among others.

Despite their importance to the usability of such applications
and primitives, less effort is spent understanding the quality
of such properties in real-world social graphs, and even less
effort is made to understand such properties and to relate
them to other topological characteristics of such graphs. Most
recently, we considered two such properties, and examined
their quality in real-world social graphs: the mixing time of
social graphs [17] and quality (and distribution) of shortest-
path betweenness [15]. Both studies were motivated by the
use of these properties for Sybil defenses and the assumptions
made on the value of these properties in that context.

In this work, we extend upon our previous results to better
understand these properties in social graphs. We consider both
the mixing time and expansion of social graphs. We measure
the expansion, as required by Sybil defenses such as [23],
and show quantitatively that most social graphs have good
expansion. We also relate the mixing time of social graphs
to graph degeneracy, which captures the cohesiveness of the
graph. We experimentally show that fast mixing graphs tend
to have larger cores (formally defined below) whereas slow
mixing graphs tend to have smaller cores.

This paper is organized as follows. In section II, we review
related work to motivate for our measurements. In section III
we outline the preliminaries and theoretical tools required for
understanding the measurements and results in the paper. In
section IV we outline measurements on both expansion and
mixing characteristics of social graphs, and relate the latter
one to coreness of nodes in the social graph. In section V
we outline discussions headlines. In section VI, we draw
concluding remarks and outline open directions of research.
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II. RELATED WORK

Using social networks to build primitives and services by
exploiting social structures, social network properties, and trust
in social graphs has been a growing area of research, where
several directions are investigated to solve challenging prob-
lems using social networks. Here, we limit ourselves to the
recent work on using Social networks for Sybil defenses, and
follow-up work on examining assumptions in such defenses.

While the idea of using social networks to improve security
in distributed systems has been investigated earlier in [12]
and [3], the first formal attempt to use social networks for
defending attacks is seen in SybilGuard [27], which pioneered
the use of fast-mixing graphs for Sybil detection. The same
work has been extended and improved in SybilLimit [26]. Both
SybilGuard and SybilLimit did not measure the mixing time,
which is necessary for their operation. However, SybilLimit
showed end-to-end results demonstrating that real-world so-
cial graphs mix well enough to support the requirements of
SybilLimit. Also using fast-mixing graphs, Danezis and Mittal
introduced SybilInfer, an inference mechanism for Sybil nodes
detection [4]. Tran et al. used the fast-mixing social graphs,
and a ticket distribution mechanism that benefits from the
mixing characteristics of social graphs, for building a Sybil
resistant voting system called SumUp [22]. Lesniewski-Laas
and Kaashoek used the same property to build a Sybil-proof
DHT system. Though the authors of most of these designs
performed experiments to show that their designs operate on
real-world social graphs, none of these papers measured the
mixing time directly from social graphs.

Using a slightly different assumption than the mixing time,
namely the graph expansion assumption, Tran et al. introduced
GateKeeper [23] that improves the guarantees of SybilLimit by
reducing the number of Sybil identities introduced per attack
edge to O(1). While they provided experiments to demonstrate
the operation of their design on real-world social graphs,
the authors of GateKeepers did not attempt to measure the
expansion of the graphs they used in their experiments, though
that is doable as shown in earlier.

The use of assumptions in building Sybil defenses on top of
social networks—like the “fast-mixing”—without verification
motivated for investigating whether such systems work on var-
ious social graphs or not. In [24], Viswanath et al. conducted
an experimental analysis of Sybil defenses based on social
networks by comparing different defenses (SybilGuard [27],
SybilLimit [26], SybilInfer [4], and SumUp [22]). They show
that the different Sybil defenses work by ranking different
nodes based on how well-connected are these nodes to a
trusted node. Also, they demonstrate that the different Sybil
defenses are sensitive to community structure in social net-
works whereas community detection algorithms can be used
to replace the random walk based Sybil defenses.

In [17], Mohaisen et al. measured the mixing time in
several social graphs (mostly in Table I) and demonstrated
that social graphs are slower mixing than believed in literature.
Furthermore, they noticed that mixing patterns in social graphs

are associated with the underlying social model, where social
networks with confined social models, and strict trust proper-
ties, are slow mixing whereas social networks with less strict
trust properties are fast mixing. This observation is used in [16]
to account for trust in social network-based Sybil defenses
using modulated random walks.

Finally, Dell’amico et al. [5] measured the mixing time in
four datasets (Epinion, OpenPGP, DBLP, and Advogato) using
the sampling method and the model in (2). Their work is
motivated by evaluating the effectiveness of wide range of
work based on both the mixing time and transitive trust, for
which the authors claim that real-world social networks meet
theoretical assumptions of these defenses without showing that
on any particular Sybil defense. The main conclusion made
in [5] is that the mixing time is not associated with any of the
known characteristics of the social graphs.

Our work is motivated by the latter part of the related work.
In this paper we are interested in understanding the assump-
tions used for building systems on top of social networks.
For that, we investigate two directions. The first direction is
to understand what makes a given graph fast mixing, while
another graph is not. We relate this to the core structure of
the social graph. The second direction is measurement of the
expansion of social graphs, and relating it to the mixing time.

III. PRELIMINARIES AND THEORETICAL BACKGROUND

A. Graph (network) model

Let G = (V,E) be a simple undirected and unweighted
graph, where V is the set of vertices of G (correspond to social
actors in the social graph) such that |V | = n and E is the set
of edges in G (correspond to the interrelationships between
the social actors in the social graph) such that |E| = m. For
every node vi ∈ V , let the number of nodes in V adjacent to
vi be deg(vi). For such G, we define the stochastic transition
probability matrix P = [pij ] of size n × n where the (i, j)th

entry in P is the probability of transitioning from node vi to
node vj in one step, which is defined as follows

pij =

{
1

deg(vi)
if vi is adjacent to vj ,

0 otherwise.
(1)

B. Graph cores and node coreness

For the same graph model defined above, and for any k
where 1 ≤ k ≤ kmax, let Gk = (Vk, Ek) be a subset of G
such that |Vk| = nk and |Ek| = mk, and with the constraint
that for all vi ∈ V , min{deg(vi)} = k; i.e., minimum degree
of any node vj ∈ Vk = k. Gk is said to be a k−core of G if, in
addition to the above condition, it is a maximal and connected
graph. If we relax the connectivity condition of the k−core,
we get a set of cores (≥ 1) where each of such cores satisfy
the degree condition. Such set of cores is represented as a
(possibly disconnected) graph G′k = (V ′k, E

′
k) where |V ′k| =

n′k and |E′k| = m′k. An efficient algorithm for decomposing a
simple graph to its k−cores by iteratively pruning nodes with
degree less than k has the complexity of O(m) where m is the
number of edges in the graph [1]. We define the node-relative
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size of Gk as νk = nk
n and the edge-relative size of Gk as

τk = mk
m . Similarly, for G′k we define ν′k =

n′
k

n and τ ′k = mk
m .

Finally, for every node vi ∈ V , we define the coreness c as
the largest c s.t. vi ∈ Gc where Gc is a c−core.

C. Mixing time

Moving from a node to another on G is captured by the
Markov chain which represents a random walk over G. A
random walk of length w over G is a sequence of vertices in G
such that each node is selected at its predecessor in the random
walk following the transition probability defined in (1). The
Markov chain is said to be ergodic if it is irreducible and
aperiodic, where in such case it has a unique stationary
distribution π and the distribution after w steps converges to π.
The stationary distribution of the Markov chain is a probability
distribution that is invariant to the transition matrix P (i.e.,
πP = π). The mixing time, T , is defined as the minimal
length of the random walk to reach the stationary distribution.
More precisely, the mixing time of a Markov chain on G
parameterized by a variation distance ε is defined as

T (ε) = max
i

min{t : |π − π(i)P t|1 < ε}, (2)

where π = [deg(vi)/2m]1×n, for all vi ∈ V , (for simple
graph) is the stationary distribution, π(i) is the initial distri-
bution concentrated at vertex vi, P t is the transition matrix
after t steps, and | · |1 is the total variation distance, defined
as 1

2 |
∑n
j=1 |π

(i)
j − πj |. We say that a Markov chain is “fast

mixing” for the graph [4], [10], [26], [27] when ε = Θ( 1
n ),

and T (ε) = O(log n). An interesting result on bounding the
mixing time for simple graphs is provided in [21], and used
in [17] for measuring the mixing time of several real world
social graphs. In short, the method uses the second largest
eigenvalue, µ, where the mixing time of the social graph is
bounded by µ

2(1−µ) log( 1
2ε ) ≤ T (ε) ≤ log(n)+log( 1

ε )

1−µ .
Measuring the mixing time can be done using both defini-

tions [17]. However, since using the second largest eigenvalue
modulus accounts only for the poorest mixing source in the
social graph (correspond to the maxi in Eq. (2)), measuring the
mixing time using the definition in Eq. (2) is highly desirable
to observe the richer patterns of mixing presenting various
sources in the social graph. In [17], we used this observation
to variety of mixing patterns in the same social graph. By
varying sources of walks, and sampling such sources from
G, one can get a good estimate about the distribution of the
mixing across different sources, and thus the entire graph.

D. Graph expansion

Let S ⊂ V , where 0 < |S| ≤ 1/2|V |, be any set of vertices
in the graph. The (vertex) expansion factor α is defined as

α = min
0<|S|≤n2

|N(S)|
|S|

(3)

Where the minimum is over all nonempty sets S of at most
n/2 vertices—S need not be connected and thus the number
of possible configurations of S is exponential in n—and N(S)

is the set of vertices not in S but each of which is connected
by an edge to another node in S. In [23], where this property is
used for building a Sybil defense, the definition of S is further
restricted so as S is connected. Such restriction reduces the
number configurations of S to a linear factor of n. Here, we
elaborate on how to measure α in such setting.

We estimate the expansion factor of a graph by constructing
an envelope Envd (the same terminology used in [23]) formed
by all nodes that are within a (shortest-path) distance i from
a core node. The expansion Expi of the envelope consists
of all of its immediate neighbors. We define the expansion
factor as αi = |Expi|/|Envi|. In our experiments, by letting
each of the nodes in the graph to be the core, we calculate
the expansion factor αi, with 0 ≤ i ≤ d − 1, where d is the
diameter of the graph, by building a tree rooted at the core
that expands in the breadth-firth search manner. Let Li be the
number of nodes at level i in the tree, we have

αi =
Li+1∑i
j=0 Lj

(4)

To estimate the expansion characteristics of the social
graphs, we run our experiment by letting each node in the
graph to be the core and build a breadth-first search tree rooted
at that core. We then count the number of nodes in each level
of the tree to calculate the expansion factor as in Eq. (4).

IV. RESULTS

A. Social graphs

The social graphs which we use in this work are in Table I.
These graphs are considered benchmarks and are used in many
recent studies including [10], [16], [17], [23], [24], [26] for
studying their mixing characteristics, or bringing insight on
the usability of social network-based Sybil defenses. These
graphs are shown to possess various mixing characteristic,
and different underlying social models. First, these graphs
represent variety of social network sizes, making them rich
of social structures. Second, qualities of links in these graphs
differ greatly and express different social structures which
make them good choice to study the tradeoffs between the
algorithmic properties and trust models used in social networks
based Sybil defenses (see [16]). For more details on these
graphs characteristics see our work in [17].

Measurements—To motivate for the first part of this work,
and based on our prior work in [17], we use the sampling
technique as explained in section III, to measure the mixing
time of some of the social graphs in Table I. The results are
shown in Figure 1.

In Figure 1(a), we observe that—despite their apparent dif-
ferences in size—both of Wiki-vote and Enron have relatively
similar mixing characteristics. On the other hand, while Wiki-
vote and “Physics 2” have relatively similar size, they have
entirely different mixing characters. Similar observations can
be made on other social graphs in Figure 1, and by observing
their size in Table I. In the following subsection, we try to
understand the reason of this behavior, by relating the mixing
characteristics of social graphs to its core structure.
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TABLE I
DATASETS, THEIR PROPERTIES AND THEIR SECOND LARGEST EIGENVALUES OF THE TRANSITION MATRIX

Dataset Nodes Edges µ Dataset Nodes Edges µ

Wiki-vote [7] 7,066 100,736 0.899418 Epinion [20] 75,879 508,837 0.998133
Slashdot 2 [9] 77,360 546,487 0.987531 DBLP [11] 614,981 1,155,148 0.997494
Slashdot 1 [9] 82,168 582,533 0.987531 Facebook A [25] 1,000,000 20,353,734 0.982477

Enron [8] 33,696 180,811 0.996473 Facebook B [25] 1,000,000 15,807,563 0.992020
Physics 1 [8] 4,158 13,428 0.998133 Livejournal A [13] 1,000,000 26,151,771 0.999387
Physics 2 [8] 11,204 117,649 0.998221 Youtube [13] 1,134,890 2,987,624 0.997972
Physics 3 [8] 8,638 24,827 0.996879 Rice-cs-grad [14] 501 3255 na
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Fig. 1. Measurement of the mixing time of different social networks (shown
in Table I) using the sampling method for 1000 random sources.

B. Measuring cores of social graphs

Recall the definition of the core (G′k) in section III. We use
the definition, and the algorithm provided in [1], to iteratively
prune nodes with degree less than k to obtain the k−core of
the graph, for all possible k. In particular, in this experiment
we are interested in size of each core (i.e., the number of nodes
with coreness k for every k, or ν′k and νk). By performing the
experiment on representative graphs from Table I, with various
sizes, we plot the empirical CDF for the coreness number of
each node in each of the graphs as shown in Figure 2.
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Fig. 2. Coreness distribution (ECDF) for the different social graphs in Table I.

Generally speaking, and despite some ambiguous cases (see
explanation in section V), Figure 2 shows that—by comparing
the distribution of the core number to that of the mixing
characteristics in Figure 1—fast-mixing social graphs tend to
have relatively larger portion of nodes with higher coreness
(relative size). This is, the fast mixing graphs have larger
core—or set of cores, when G′k is used—whereas slower
mixing graphs tend to have smaller cores. For example, by
comparing the Wiki-vote dataset to that of the Enron dataset
in 2(a) and 1(a), we find them consistent in both graphs
(reasoning about the inconsistency of Enron is in section V).
The results in 2(a) and 1(a) are also consistent, in that faster
mixing graphs have larger core(s). In 2(a) and 1(a), notice that

TABLE II
NUMERICAL RESULTS OF OPERATING GATEKEEPER [23] ON TOP OF

DIFFERENT SOCIAL GRAPHS WITH DIFFERENT CHARACTERISTICS. 10
ATTACKERS ARE SELECTED RANDOMLY AND 99 DISTRIBUTERS ARE

SAMPLED IN EACH CASE (ATTACK EDGES ARE 131, 145, 277, AND 344,
RESPECTIVELY). f IS A SECURITY PARAMETER, HONEST ACCEPTANCE

PERCENT IS OF THE WHOLE GRAPH SIZE AND SYBIL IS PER ATTACH EDGE.

Dataset Accept. f = 0.1 f = 0.3 f = 0.5

Physics 1 Honest 89.90% 70.50% 54.40%
Sybil 8.4 1.7 0.7

Facebook Honest 98.40% 79.00% 51.30%
Sybil 10.1 1.8 0.7

LiveJournal Honest 97.00% 78.60% 53.20%
Sybil 3.7 0.7 0.3

Slashdot Honest 97.00% 81.10% 55.20%
Sybil 3.1 0.8 0.4

all graphs have relatively similar sizes.

C. Measuring the expansion of social graphs

To motivate for this measurement, consider the measure-
ments in Table II. In this experiment, we run Gatekeeper [23]
on four different datasets with different characteristics. Unsur-
prisingly, we observe that results of operating Gatekeeper on
such graphs are quite anticipated given that that such graphs
are experimented on other social network-based Sybil defenses
(in [17] and [24]), despite that other defenses require social
graphs to be fast-mixing whereas GateKeeper requires the
graphs to be expanders with good expansion factor. Hence,
we establish that the property in action is closely related to
the mixing time.

To further understand the expansion characteristics of these
social graphs, we recall the definition in section III. We recall
that the expansion used in GateKeeper is a reduced version
of the general expansion measurements, and requires only a
linear number (in n) of expansion measurements. Particularly,
each expansion measurement, following the model in (4),
requires the construction of a breadth first search tree, which
runs in O(m). For all sources in the graph, where each
is considered a source of expansion, the running time of a
naive implementation of our algorithm takes O(nm), which
is manageable for small to medium sized social graphs.

We develop this algorithm to compute the expansion for all
datasets in Table I. Each source node has d−1 measurements
of sets of nodes and their neighbors, where d is the diameter
of the graph. To visualize the tendency of the expansion as
the set size increases, we aggregate the unique sizes of sets,
and find the number of neighbors to each of them. For each
set of neighbors to a unique size of nodes, we compute the
maximum, minimum, and expected number of neighbors. Such
statistics of measurements for a selected set of datasets are
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Fig. 3. A measured of the expansion of sets of nodes of different sizes beginning from every nodes in the given graphs as potential core for the expansion.

shown in Figure 3.
To further investigate the expansion of social graphs when

compared to each other, we use the model in (4). For all sets of
nodes with the same size, we compute the expected expansion
as the average of all sizes of different neighbor sets. The result
of the average expansion is shown is shown in Figure 4.
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Fig. 4. Expected expansion for various set sizes of various social graphs.

V. DISCUSSION

Our hypothesis in reasoning about the mixing time of social
graphs is natural and stems out of the following observation.
Given that the mixing characteristic of a particular node is not
merely dependent upon the node itself and its position in the
graph—but rather nodes in the social graph that connect such
node to other nodes and thus make the overall graph fast-
mixing, fast-mixing social graphs should have a dense and
well-connected “core” of nodes. Such core is the backbone of
flows—whether they are random or guided—between nodes.
To this end, in section IV-B we investigate the existence
or absence of such cores in social graphs, and try to relate
findings to their mixing characteristics. We particularly found
that fast mixing social graphs tend to have a large portion of
nodes in their core; i.e., large ν′k for a relatively large k.

We perform the same experiment of core computing, and
use the notion of “node relative size” in section III. The results
of the relative size of cores for different k values—which can
also be derived from Figure 2—are shown in Figure 5 (5(a)
through 5(e)). As we hypothesized, the relative size of the
core is generally large for fast mixing graphs, except for a
few cases (see below for explanation).

To test whether these are multiple cores or a single core with
the given size, we compute the number of resulting cores from
applying the algorithm for computing the cores and record the

resulting number of cores at each time step (as k increases).
The results are in Figure 5 (5(f) through 5(j)).

We notice that whereas slower mixing social graphs tend
to have small ν′k, and multiple cores as k grows, fast mixing
social graphs have single core as it is the case of Epinion in
Figure 5(h) and Wiki-vote in Figure 5(i) (or fewer cores, as
it is the case of Physics 2 in Figure 5(g) versus Physics 1 in
Figure 5(f)), and generally have larger νk (or ν′k, respectively).

Even more interesting, we notice that this observation could
be used to resolve the ambiguity of the core distribution in
Figure 2 concerning Epinion and Physics 2. In Figure 2(a),
it is shown that Physics 2 has a relatively larger core than
that of Epinion, even though Epinion is faster mixing than
Physics 2 (as shown in Figure 1). Figure 5 helps us understand
the reason: while Physics core consists of three isolated
components, Epinion has only single core with that size. Also,
it is worth noting the difference in size (from ∼ 10, 000 in
Physics 2 to ∼ 75, 000 in Epinion) which makes the raw
size of the single core in Epinion even much larger than that
of Physics 2, and establish a consistency in our observations
concerning cores and the mixing time.

Finally, while the expansion factor used for building Gate-
keeper is claimed to be different from that of the mixing
time [23], and to be further strict, we notice that both are
analogous to each other. In particular, we observe that the
measurements in Figure 4 of the expansion factor can be
interpreted as a scale of the measurements in Figure 1. Also,
when operating on such networks, we observe similar tendency
in the behavior between GateKeeper and other Sybil defenses
(results not included). In total, we also establish that the
expansion argument used in [23] is generally valid in the
context of real-world social networks, despite that real-world
social networks are not random graphs, as claimed in [23].

VI. CONCLUSION AND OPEN PROBLEMS

In this work, we extend upon our previous results of measur-
ing the mixing time, and consider a new property that is used
for building Sybil defenses, namely the expansion of social
graphs. For the expansion, we have shown that qualities of
expansion in social graphs generality support the requirements
and assumptions of such systems, as GateKeeper. We further
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Fig. 5. A measurement of the relative size of cores, and their numbers, for different social networks.

establish that the whereas the expansion is used to advocate the
operation of GateKeeper, the mixing characteristics of social
graphs capture the assumption of its operation as well.

For the mixing time of the social graphs, we relate this
property to graph degeneracy, which captures cohesiveness
of the graph. We experimentally established that fast mixing
graphs tend to have larger single core whereas slow mixing
graphs tend to have smaller multiple cores.

While the main concern in this paper is limited to relating
the mixing time to other characteristics of social graphs,
and examining the validity of expansion assumptions in the
context of social networks Sybil defenses, the same problems
concerning the usability of social networks to build trustworthy
computing applications are still wide open. In particular, it is
open problem to understand the trust value of these social
networks, and their potential. In particular, formal models of
attackers supported by experimental and analytical evidence
would be a fruitful direction worth investigation

Another open problem is to investigate the expansion and
mixing characteristics of dynamic social graphs. Given that
social graphs are dynamic, understanding the long-term impact
of evolution, and how this impacts the underlying social struc-
ture, and properties used for building trustworthy applications,
is an interesting direction worthy of investigation.
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