
Remote Software-Based Attestation
for Wireless Sensors

Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher, and Yongdae Kim

Computer Science and Engineering,
University of Minnesota - Twin Cities

Abstract. Wireless sensor networks are envisioned to be deployed in
mission-critical applications. Detecting a compromised sensor, whose
memory contents have been tampered, is crucial in these settings, as
the attacker can reprogram the sensor to act on his behalf. In the case of
sensors, the task of verifying the integrity of memory contents is difficult
as physical access to the sensors is often infeasible. In this paper, we
propose a software-based approach to verify the integrity of the memory
contents of the sensors over the network without requiring physical con-
tact with the sensor. We describe the building blocks that can be used
to build a program for attestation purposes, and build our attestation
program based on these primitives. The success of our approach is not
dependent on accurate measurements of the execution time of the at-
testation program. Further, we do not require any additional hardware
support for performing remote attestation. Our attestation procedure is
designed to detect even small memory changes and is designed to be
resistant against modifications by the attacker.

1 Introduction

Recent technological advances in hardware and communications have helped to
achieve significant strides in the area of wireless sensor networks. These networks
can be used in several real-world applications, including various critical appli-
cations, such as military surveillance, infrastructure security monitoring and
fault detection (e.g., Golden Gate Bridge monitoring [23]), or industrial waste
monitoring.

When sensors are deployed for critical applications, securing these sensors is
important. If a sensor is compromised, an attacker can reprogram the sensor to
act on his/her behalf. For example, the attacker can cause the sensor to send
incorrect information to hide some military activity or send false information
about the location of certain troops. Therefore, it is important to verify that
the static memory contents of the sensors have not been modified, that is, to
attest the static memory contents (which includes programs, keys, and system
configuration information) of the sensors. Typically, sensors are deployed in large
numbers in environments that may not be safe or easily accessible to humans.
Further, the deployment mechanisms (e.g., unmanned air planes) often make it
infeasible to locate the position of each sensor individually. Therefore, we need

R. Molva, G. Tsudik, and D. Westhoff (Eds.): ESAS 2005, LNCS 3813, pp. 27–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28 M. Shaneck et al.

attestation mechanisms that do not require physical contact with the sensors,
but rather use the wireless communication network. In other words, we need
mechanisms to perform remote attestation.

In this paper we present a software-based approach to remotely attest the
static memory contents of the sensors without requiring any additional hard-
ware on the sensors. As sensors are inherently designed to be light-weight and
inexpensive, adding additional hardware on the sensors significantly increases
the cost well as the size of the sensors; therefore, software-based approaches are
always preferable and practical (they also work on legacy systems). In our ap-
proach, in order to attest the sensor, the attester sends an attestation routine to
the sensor and waits for some time (expected response time) to get a response
from the routine. Once the response time elapses, the attester will not accept any
response sent by the sensors. The sensor executes the routine, which randomly
reads the sensor’s static memory contents and returns a checksum of the memory
contents. The attester has an exact image of the memory contents of each sensor
and can pre-compute the checksum by locally running the attestation routine on
the memory image. After receiving the checksum from the routine, the attester
can verify whether the received checksum matches the expected result. Every
attestation routine is unique per sensor and randomized so that the attacker
will be unable to predict (and pre-compute the checksum) the next routine from
the previous routines.

Motivation. One way of performing remote software-based attestation is to in-
clude a small attestation routine in the sensor’s kernel that performs a check-
sum on the memory contents of the sensor. To prevent replay attacks, for every
new attestation request, the attester sends a random key to the sensor and the
routine on the sensor pseudo-randomly reads the memory contents and gener-
ates a checksum on these contents using the attester’s key. However, this näıve
approach is susceptible to a simple attack [32]. The attacker can modify the
attestation routine such that instead of reading the sensor’s memory contents,
the routine reads the unmodified contents stored somewhere else by the attacker
and computes a checksum on these contents. Since the routine is forced to read
the unmodified memory contents, the checksum will be valid, and the attacker
will be able to conceal his changes.

One important observation is that in this case, in order to generate a valid
checksum, the attacker’s modified attestation routine has to check before every
memory read whether the current memory address belongs to the the modified
portion of the memory by inserting if (or similar) statements. The attacker has
to use static analysis techniques (that analyze program binary without executing
it) to understand the routine and insert if statements within the routine, which
also increases the execution time of the routine. The attester can use this fact
to detect the attacker’s modifications by measuring the actual time taken by the
routine (running on the sensor) to generate the checksum and comparing it with
the expected execution time. If the time taken to generate the checksum is greater
than the expected time, the attester proclaims that the sensor is compromised.
This approach was introduced by SWATT [32].

Remote Software-Based Attestation for Wireless Sensors 29

However, while performing software-based attestation over the network, the
detection mechanism cannot be completely dependent on such minute execution
delays, as the network and the current execution state of the sensor can introduce
some unforeseen delays resulting into inaccurate measurement of the execution
time of the attestation routine, and, thus, resulting in false positives or false
negatives. Therefore, in order to accurately measure the execution delay, the
attester should be in physical contact with the sensor, which cannot be always
possible in practice.

Contributions. The main contributions of the paper are summarized as follows.

– We present an approach for detecting malicious changes to the static memory
contents of wireless sensors. The approach allows the attester to attest the
memory contents of the sensors over the network without requiring physical
contact with the sensors.

– Our approach is not dependent on precise measurements of execution timing
delays to detect malicious changes to the memory of the sensors. Therefore,
our approach is more practical and can be used in real-world scenarios.

– Finally, the approach presented in this paper does not require any hardware
support. Thus, we do not add any additional cost or increase the size of the
sensor. Further, our approach can be easily applied on legacy systems.

Scope of this paper. This paper is focused on designing software-based attestation
techniques that are secure against the static analysis attacks described above.
We do not require any tamper-proof hardware on the sensors.

This paper is not focused on addressing the following impersonation attack, as
detecting this attack requires additional tamper-proof hardware on the sensor.
Consider an adversary that controls two identical sensors, or one sensor and
one powerful machine that emulates the sensor. The attacker then modifies the
memory contents of one sensor and keeps the other sensor or the emulated sensor
unmodified. When the modified sensor receives an attestation routine, it forwards
the routine to the other unmodified sensor or the emulated sensor on which it gets
executed. Since the routine is executed as if on the original unmodified sensor,
it will return a valid checksum and the modifications will go undetected. This
attack can be detected by authenticating the actual processor that executed the
authentication routine. However, this requires additional tamper-proof hardware
on the sensor, e.g., controlled physical random functions [12, 13].

Organization. The remainder of this paper is organized as follows. Section 2
describes our system assumptions, requirements, and the attacker model. In sec-
tion 3, we present the basic building blocks that are used to construct the attes-
tation routine. Section 4 explains our attestation mechanism in detail. Section 5
presents security analysis of our system and an extension to our basic mecha-
nism. Related work is presented in section 6 and section 7 draws conclusions and
outlines future work.

30 M. Shaneck et al.

2 Assumptions, Threat Model, and Requirements

2.1 Assumptions

The base station is assumed to be secure and it will play the role of an attester in
our discussion. In reality, any legitimate entity that shares a pairwise key with the
sensor can be an attester. The communications between the base station and the
sensors is secure using a pairwise key shared between them. We do not address
denial of service attacks (DoS) in this paper. The attester knows the hardware
architecture and the original memory contents of the sensors. We assume that
the sensors do not have virtual memory, as an attacker can modify the memory
map, distinguish between data loads and instruction loads as pointed out in [11],
and evade our attestation. We argue that this assumption is reasonable, since
state of the art micro-controllers do not have virtual memory support [2, 3]. The
attester can communicate with all the sensors directly. We also assume that the
attester can send a binary executable to the sensor and cause it to be executed
(e.g. [18]).

2.2 Threat Model

We assume that if the sensor is compromised, then the attacker has complete
read-write access to the sensor’s memory contents, including cryptographic keys,
and is able to modify the memory contents at will. Thus, he can perform any
type of software based attack on the attestation routine including static analysis
(resulting in modification) of the routine, or software emulation of a sensor on a
sensor. However, we assume that the attacker cannot tamper with the hardware
of the sensor. Detection of attacks that involve external resources (such as the
impersonation attack described in section 1) requires hardware support and is
considered to be out of scope. We assume that the attacker can perform a re-
stricted form of collusion attack, which we call as the staging attack. We assume
that the attacker can execute the attestation routine in stages. For example, a
sensor with some modified portion of the memory can collude with the second
sensor with a different modified portion of the memory. Each sensor runs the
routine in such a way that it generates checksum on their respective un-modified
memory and then combine their checksums in the end to generate a valid check-
sum. Finally, the attacker can perform passive attacks such as eavesdropping,
and active attacks such as replaying packets.

2.3 Requirements

The attestation procedure should satisfy the following requirements.

– Resistance to Replay: The attacker should not able to send a valid check-
sum to the verifier by simply replying previous valid results.

– Resistance to Prediction: The attacker should not be able to predict the
next attestation routine. If the attacker can successfully predict the next
attestation routine, then he can pre-compute the checksum.

Remote Software-Based Attestation for Wireless Sensors 31

– Resistance to static analysis: The attacker should not be able to success-
fully analyze the code by using static analysis techniques within the time
period the attester waits for a response from the sensor. This requirement
will prevent the attacker from predicting the sequence of memory reads as
well as predicting the location of read instructions in the attestation routine.

– Very loose dependence on execution time: Since the attestation routine
is sent over the network, it will be impossible for the attester to measure the
actual execution time of the attestation routine. Therefore, the detection
mechanism should not be dependent on the precise measurement running
time of the attestation routine.

– Complete memory coverage: To detect even small memory changes, the
attestation routine should read every memory location.

– Efficient construction: The attestation routine should be as small as pos-
sible to reduce bandwidth consumption and should be as efficient as possible
to consume less battery power. Further, the attestation routine should not
introduce any new vulnerability in the system.

3 Building Blocks

In order to prevent the attacks mentioned in Section 2.2, the attestation code will
make use of the following building blocks. These constructs, which are described
below, include randomization, encryption, obfuscation, and self-modifying code.
These are not employed to provide unbreakable security, but rather they are
used to make the aforementioned attacks infeasible to be carried out using a
sensor’s limited resources.

Randomization. The routine that is sent to the sensor to perform the attestation
should be different each time. If the routine is different, in some random fashion,
and the results of the attestation calculation are dependent on the specific version
that is being run, then a previous version of the code could not be analyzed offline
and reused later. Thus, the attacker is forced to perform the static analysis of
the binary in an online fashion: the attacker needs to analyze and modify the
routine and then execute it to return the result.

Encryption. The next construct that we use in the construction of the attestation
code is encryption. We will make use of a simple encryption scheme (XOR each
word with a random value) to prevent static analysis of the code directly. The
attacker will thus need to first attack the decryption code in order to break the
encryption of the remaining code. The encryption schemes are not meant to be
secure in the traditional sense, but rather are aimed at adding complexity to the
disassembly of the code. This technique has been explored previously in the field
of software tamper resistance [4].

Self-Modifying Code. In addition, we use self-modifying code in the attestation
program. Without this construct, an attacker could avoid doing the full static
analysis of the code and just search for all memory read statements in the pro-
gram. By doing this, the attacker can simply place conditional offsets before each

32 M. Shaneck et al.

read statement. However, if the reads are regenerated and rewritten in a different
memory locations, then the attacker must first analyze the code that performs
these writes. Without doing so the attacker could not reliably redirect the tar-
gets of these memory reads. The usage of this construct is explained further in
Section 4.2 and has been proposed to strengthen operating system security [7].

Opaque Predicates and Pointer Aliasing. With the previous construct in place,
the attacker is forced to analyze the entire program that it is sent. Thus we
also add constructs to further complicate the task of static analysis as much
as possible. For this purpose we use traditional obfuscation constructs, namely
opaque predicates and pointer aliasing. Opaque predicates are predicates that
always evaluate to either true or false, regardless of the input to the condition,
yet it is very difficult to determine which branch will be taken each time, or even
to determine whether this conditional is actually unconditional. Constructions of
this type have been previously discussed in obfuscation literature [10, 8, 9]. One
of the most promising constructions of opaque predicates is the use of pointer
aliasing [28, 37] and performing data flow analysis of aliased pointers is known
to be an NP-hard problem [17, 24, 30].

Junk Instructions. The use of junk or fake instructions can be combined with
the opaque predicates described above to further confuse static analysis and dis-
assembly [26]. Some of these junk instructions can be partial instructions, which
will confuse the disassembly and thus hinder static analysis. Other instructions
will be full instructions, which will be used to misdirect the static analysis and
waste its time and efforts.

4 Design of Attestation Procedure

We now bring together all the building blocks described previously in Section 3
and describe our scheme to perform the attestation. Throughout the description
of our scheme, we use the word code and routine interchangeably to refer to the
attestation routine sent to the sensor.

4.1 Overview

The base station generates the attestation code, which will be sent to the sensor.
The code construction is described in Section 4.2. When sending the code to the
sensor, the base station encrypts the code and appends a MAC of the encrypted
code, and sends this to the sensor. Upon receiving this message, the sensor first
verifies the MAC and then decrypts the attestation code. The sensor then copies
this into its program memory and transfers execution control to it. The attesta-
tion code will run and calculate the results. Once the result is calculated, it is
sent back to the base station (again, this message is encrypted and authenticated
by the sensor with the key it shares with the base station). Since the base station
knows the image of the sensor’s program memory, it can also run the code to
compute the expected result. If the returned value matches the base station’s

Remote Software-Based Attestation for Wireless Sensors 33

expected result, then the sensor is declared to be ok. If the result is incorrect
or if the sensor does not respond with the timeout period δ, then the sensor
is declared to be corrupted. The base station should wait for a timeout period
Twait equal to (2 ∗ r) + e + ∆, where r is the time required to send a message
from base station to the sensor (one way), e is the expected execution time of
the attestation code, and ∆ is a system parameter that indicates expected delay
in the response due to network jitters, etc.

4.2 Attestation Code Construction

The high level construction of the code is as follows: the attestation code will
generate random numbers (within the range of the sensor’s memory that is to
be attested) and reads the data at those memory locations. Those values will
be hashed together incrementally (thus the order in which the data is read
influences the final outcome of the attestation code). The code will also include
each of the constructs mentioned in section 3, in order to prevent an attacker
from modifying the code to avoid detection. This section will describe in detail
how the code will be constructed to use those constructs.

Fig. 1. Overall Structure

There are three main components in the code: the seed calculation, the mem-
ory reads, and the hash computation. For simplicity, we will describe the construc-
tion of the code with the assumption that each of these three parts are located in
contiguous sections of the code and in the order described. However, the compo-
nents can easily be interleaved with each other, with appropriate jumps between
the different sections (obscured by opaque predicates). Figure 1 illustrates the
construction of the attestation code.

34 M. Shaneck et al.

Before discussing each component, we first describe the process of encryp-
tion. Not only is each component encrypted with a random key, but the entire
attestation routine is also encrypted. Along with the encrypted code is the cor-
responding decryption routine. This will include the calculation of the key value,
and the code to perform the decryption. The key will be located somewhere in the
sensor’s memory (either within the decryption routine itself, in some dead code
space in the attestation routine, or using known portions of the sensors program
memory), and so it will not be overly difficult for the attacker to discover the key.
This discovery can be delayed, however, through the use of opaque predicates.
Thus, we couple the key calculation with the opaque predicates, to obscure the
location of the key (or components of the key). Then, the key will be calculated,
which can be done in a number of ways, and the specific method used will vary
randomly between each attestation routine. Some example mechanisms include
taking the XOR of two (random) immediate values, adding together values from
two “random” memory locations in the sensor’s program memory, following mul-
tiple pointer indirections to the key value (where the pointers point to locations
in the attestation routine). There are many such possibilities, and a few will be
chosen at random (where one is the true method and its identity is hidden by
the opaque predicates).

Seed Calculation. The first component of the code is the calculation of the seed,
denoted as S0 in Figure 1, which is used to initialize the pseudo-random number
generator. As this value determines the order in which the memory contents are
read, it will be in the attacker’s best interest to leave this section of the code
unmodified. Rather the attacker will need to determine a priori, through static
analysis, the value of the seed. To prevent this, the seed calculation section
is encrypted with a random encryption routine as described above. Also, the
calculation of the seed will be done in the same manner as key calculation as
described above.

The next two parts, memory reads and hashing, will be a part of a loop,
where a location is read, and then the value is added to the hash computation.
This loop will execute “enough” times to provide good coverage of the sensor’s
program memory (thus reducing the ability of the attacker to evade detection
by hiding in a very small section of memory).

Memory Reads. The portion of the code that performs the memory reads is of
particular importance, since that is where the attacker will attempt to inject the
offsets in order to evade detection. This portion of the code has three main com-
ponents: the initial jump, the read instruction, and the self-modification. The
read instruction is initially located at some random address within this compo-
nent, and so the jump instruction simply jumps control to this instruction. This
jump, however, is obscured by the use of opaque predicates. In addition, as there
is dead-code space, some of which will appear to the attacker to be reachable
through the opaque predicate, junk instructions are inserted (randomly) in this
space, both to thwart disassembly (with partial instructions) and to distract
the static analysis (with normal instructions, such as memory reads). Follow-
ing the read instruction, which places the contents of the particular memory

Remote Software-Based Attestation for Wireless Sensors 35

address in question into a register, control is jumped to the self-modification
section. This section is responsible for a number of tasks. First it generates three
pseudo-random numbers. The first is used as the seed to the next iteration of
the routine, denoted in Figure 1 as Si. It uses the second as the next address
to be read (and thus must be within the target range of addresses). The third
is used to relocate the read instruction. It does this by overwriting the current
read instruction with a junk instruction (or leaving it as is), and writing the new
memory read instruction into another place in the code section. It also must up-
date the initial jump so that control will be properly transferred to the new read
instruction in the next iteration. This action is depicted in Figure 1 as SM(Si).

The random numbers will be generated using the RC4 pseudo-random number
generator, as is used in SWATT [32]. In order to provide ample coverage of the
memory space, it will iterate O(n log n) times though the memory read loop (this
was shown in [32] to be a sufficient number of iterations to provide high coverage
of the memory space), where n refers to the number of memory locations to
be read.

Hash Computation. Next, the hashing component updates the current compu-
tation of the hash with the value that was read in the previous step. Once the
computation of the hash is complete (all memory addresses are read), the final
value is returned to the base station. We use the same hashing mechanism as
in [32].

Construction by Base Station. The last item to be considered is the construction
of each attestation routine by the base station. The base station must generate
each attestation routine differently, such that the probability of two sensors re-
ceiving the same attestation code is very low (also the probability of a single
sensor receiving the same code more than once should be very low). Thus each
version of the attestation code must be generated randomly. This is achieved in
several ways. First, the construction of the opaque predicates is based on the
pointer-aliasing construction described in [9]. In our construction, these struc-
tures will be stored in random locations in the attestation code, and thus the
opaque predicates will be different for each attestation routine. In addition, the
seed will be chosen randomly, and the method used to compute this value will
be chosen randomly from a set of possible methods.

5 Discussion

5.1 Security Analysis

In this paper we have presented a scheme for software based attestation that can
be used in wireless sensor networks. In this section we will provide a discussion on
the security properties of our scheme against the attacks described in Section 2.2.

First, an attacker can simply replay a previously computed response, or he
could “sniff” a response from another sensor. However, in this case the attacker
would only be successful if the seed used in the current attestation challenge

36 M. Shaneck et al.

is the same as the seed in the previous attestation challenge. Since the seed is
chosen uniformly at random, this would only occur with negligible probability.

Thus the attacker must attempt to defeat the code contained in the current
attestation challenge. Our goal is to force the attacker to perform some level of
time intensive computation (which would delay the response to the attestation
challenge past the timeout period). We argue that static analysis, while currently
impossible to prevent, is computation intensive and will cause a significant delay
in the response of the (resource-limited) sensor to the attestation challenge.

The attacker, then, has several options available in which to attack the code.
First, the attacker can have an old version of the attestation code already analyzed
(done offline at some previous point in time) and appropriately modified to avoid
detection. In order for the attacker to be able to use this version of the attestation
routine, he must first get the seed from the new attestation code. However, the at-
testation code, as well as the seed computation component, is encrypted. Thus the
attacker must first break the two encryption schemes, which consists of determin-
ing the key that is used. This is protected by the opaque predicates. Also, once the
attacker breaks the encryption schemes, he must determine the value of the seed,
which is protected in the same way as the encryption keys. In order to accomplish
these tasks, the attacker must perform static analysis on the code.

The attacker might also try to modify the read instructions, in order to insert
the conditional offsets to redirect the read to the unmodified copy of the sen-
sor’s original code. The attacker could also use these modifications to redirect
the reads to a collaborating sensor where that portion of the memory is unmod-
ified (as per the staging attack described in Section 2.2). This also requires the
attacker to determine the value of two encryption keys. In addition, due to the
self-modifying code, the attacker cannot simply insert the conditional offsets into
the code, but must first analyze the self-modifying portion of the code. By doing
this, the attacker can cause the code to regenerate not only the memory reads,
but the conditional offsets as well. Otherwise, if the attacker simply inserts the
code before the initial read, the attestation code will overwrite this conditional
offset and it will be lost. Thus, to do this, the attacker must again perform static
analysis on the code.

Finally, the attacker can execute the attestation code within an emulator. In
order for this attack to succeed, the attacker would pause execution of the code at
each memory read, and offset the memory address to be read to point to an unmod-
ified copy of the original sensor code. Emulation, however, imposes an inevitable
slowdown in the execution of the program, and can be as much as an order of mag-
nitude slower, as shown in [20]. Instructions are no longer decoded in hardware
but in software. Also, code must be executed to process each emulated instruction.
As this code is not bound by I/O, the slowdown will be significant, and with an
appropriate choice of a timeout period, the base station can detect such an attack.

5.2 Extension

In addition, an optional extension to our scheme can be utilized to make emula-
tion (and also static analysis) more difficult for the attacker to perform. During

Remote Software-Based Attestation for Wireless Sensors 37

initial program code installation on the sensor, any free space in the sensor’s
program memory will be filled with random values. These random values will
be known by the base station and thus can be included in the memory that
is attested. Thus, the only free space available for the attacker to store an un-
modified copy of the sensor’s original code would be in the data memory. This
is effective for two reasons. First, the data memory is typically used to store
current execution information, such as the program stack, and thus certain por-
tions of it cannot be overwritten by the attacker (without causing the sensor to
crash). This not only reduces the amount of available space (thus requiring the
malicious code to be very efficient), but also requires the attacker to be careful
where the unmodified copy of the sensor’s original code can be stored. Second,
the data memory is typically much smaller than the program memory [1, 3], and
thus the size of the malicious code (which performs static analysis or emulation)
must be small enough to fit within the data memory.

6 Related Work

Software tamper-resistance is a technique to construct a program that either can-
not be modified or an modification can be detected. There have been a variety of
proposed approaches for achieving tamper-resistance. In general requiring addi-
tional hardware support has been one direction taken for solving this problem. On
the other hand software based techniques such as obfuscation can be employed.

A trusted platform is one which adequately guarantees the users that the
hardware and software modules are operating as specified. The Trusted Com-
puting Group (TCG) has proposed an architecture called Trusted Platform Mod-
ule (TPM). The TPM hardware, which is accompanied by supporting software,
is used establish and provide a platform of trust. Load-time attestation using
TPM is explored in [31]. BIND [34] employs TCG to perform fine-grained at-
testation; that is, it does not attest the entire memory but only a specific piece
of code. Secure processors to prevent software tampering have been proposed in
[25, 39, 35, 40]. Copilot [19] is a co-processor based runtime memory attestation
mechanism. These hardware based approaches are not a suitable solution in our
setting as sensors are expected to be inexpensive, and additional secure hardware
would be prohibitively expensive.

SWATT [32], is a scheme that has been proposed to verify the static contents
and configuration settings of an embedded device. However, as discussed previ-
ously in Section 1 this approach is not suitable for our setting. Genuinity [20],
is a technique to ascertain whether a remote machine is running a real hard-
ware running the expected software environment or not. Subsequently, attacks
on Genuinity were described in [33, 32]. However in [21], the authors claim that
the attacks on Genuinity are not sufficient to defeat the system. Our approach is
similar in concept to Genuinity, in that we also send an attestation program to
the sensor. As noted in [21], intricate details that could be exploited in embedded
devices are rare, hence we have adopted sending a tamper-resistant attestation
routine to achieve our goal.

38 M. Shaneck et al.

The majority of the work on software based tamper-resistance relies on ob-
fuscation. The goal of an obfuscating transformation is to make static analysis
and disassembly of the executable, for the purpose of making useful modifica-
tions to a program, difficult [37, 10, 8, 9, 28, 38]. Theoretical work on obfuscation
has yielded interesting results [14, 5, 36, 29, 27], and has shown that in general,
perfect obfuscation is impossible. Therefore, careful choice of obfuscation trans-
formations is necessary. For example, in [26], the authors proposed using indirect
jumps (via branch functions) for preventing disassembly. By analyzing the con-
trol flow graph of the program and exploiting statistical techniques, the authors
of [22] were able to correctly identify a majority of the program instructions.

Program evolution [7] was proposed as a technique to defend against auto-
mated attacks on operating systems. Self-checksumming software tamper resis-
tance has been proposed in [6, 16]. Recently [11], the authors have shown the
inadequacies of [6, 16] and proposed a generic attack on checksumming based
software tamper resistance. The attack presented in [11] relies on advanced pro-
cessor nuances like memory hierarchy, virtual memory and TLB, which is cur-
rently not available in sensors [1, 3], and hence is not applicable to our approach.

Integrity Verification Kernel (IVK) [4] is a technique for constructing tamper
resistant software, where the software (that needs to be attested) is “armored”
by means of self-encryption and self-decryption at run-time, coupled with self-
checking of its integrity. This, however, is inherently different from our goals
(attesting memory). If IVK is included in the sensor’s programs, the attacker
can simply reprogram the sensor. Further, the attacker can run the IVK in an
emulator and get the actual (unencrypted) binary. If the attacker succeeds in
getting the binary in clear, the attacker can generate a valid checksum on mod-
ified code. In our scheme, the attestation routine has to send a valid checksum
on all of the static memory contents within the timeout period Twait. Further,
since the routine is new for each attestation, even if the attacker breaks one
attestation routine, he cannot generate the checksum for the next attestation
routine.

7 Conclusion and Future Work

Software attestation in sensor networks is one of the most important security
primitives. To the best of our knowledge this effort is the first to consider remote
software based attestation in sensor networks. We have presented a scheme which
achieves this goal by sending a checksumming routine to the sensor from the base
station. This code is protected by the techniques of encryption, obfuscation and
self-modifying code, so that an attacker is unable to return a valid response
from a compromised sensor within the allowed time. In addition, our approach
is software based, and does not require the addition of any extra hardware.

Future work includes implementing and evaluating the presented attestation
procedure. We are currently exploring ways to efficiently send the attestation
routine to execute it on the sensor. We plan to explore the Mica Mote platform [2]
and TinyOS [15], as this platform is known to support in-network reprogram-

Remote Software-Based Attestation for Wireless Sensors 39

ming [18]. Detailed experiments will be performed to measure the overhead im-
posed by the attestation routine on the sensor in terms of battery consumption,
code size, and execution time. Tests will also be performed on simulated sensors
that can be used to simulate a large sensor network. As part of the experiments,
we plan to measure the expected runtime so that we can provide estimates on
the amount of time that the base station will wait for a response. We will also
study the effect of ∆ on the security of the system. Finally, a detailed security
analysis of the implemented program will be provided.

References

1. Atmel AVR 8-bit RISC processor.
http://www.atmel.com/atmel/products/prod23.htm.

2. Mica2 series.http://www.xbow.com/Products/Product pdf files/Wireless pdf/
MICA2 Datasheet.pdf.

3. TI MSP-430 processor. http://focus.ti.com/mcu/docs/techdocs.tsp?navSection=
user guides&templateId=5246&familyId=342 .

4. D. Aucsmith. Tamper resistant software. In Proceedings of the First Information
Hiding Workshop, 1996.

5. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO ’01: Pro-
ceedings of the 21st Annual International Cryptology Conference on Advances in
Cryptology, pages 1–18, London, UK, 2001. Springer-Verlag.

6. H. Chang and M. J. Atallah. Protecting software code by guards. In DRM ’01:
Revised Papers from the ACM CCS-8 Workshop on Security and Privacy in Digital
Rights Management, pages 160–175, London, UK, 2002. Springer-Verlag.

7. F. Cohen. Operating system protection through program evolution. Computers
and Security, 1993.

8. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transforma-
tions. Technical report, Technical Report 148, Department of Computer Science,
University of Auckland, July 1997.

9. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Principles of Programming Languages 1998,
POPL’98, San Diego, CA, Jan. 1998.

10. C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfusca-
tion - tools for software protection. In IEEE Transactions on Software Engineering,
volume 28, pages 735–746, August 2002.

11. A. S. G. Wurster, P.C. van Oorschot. A generic attack on checksumming-based
software tamper resistance. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2005.

12. B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Controlled Physical Ran-
dom Functions. In Proceedings of the 18th Annual Computer Security Conference,
December 2002.

13. B. L. P. Gassend. Physical random functions. Master’s thesis, Massachusetts
Institute of Technology, February 2003.

14. S. Hada. Zero-knowledge and code obfuscation. In ASIACRYPT ’00: Proceedings
of the 6th International Conference on the Theory and Application of Cryptology
and Information Security, pages 443–457, London, UK, 2000. Springer-Verlag.

http://www.atmel.com/atmel/products/prod23.htm
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/
MICA2_Datasheet.pdf
http://focus.ti.com/mcu/docs/techdocs.tsp?navSection=
user_guides&templateId=5246&familyId=342

40 M. Shaneck et al.

15. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System archi-
tecture directions for network sensors. In ASPLOS-IX: Proceedings of the ninth
international conference on Architectural support for programming languages and
operating systems, Cambridge, November 2000.

16. B. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan. Dynamic self-checking
techniques for improved tamper resistance. In DRM ’01: Revised Papers from the
ACM CCS-8 Workshop on Security and Privacy in Digital Rights Management,
pages 141–159, London, UK, 2002. Springer-Verlag.

17. S. Horwitz. Precise flow-insensitive may-alias analysis is np-hard. ACM Trans.
Program. Lang. Syst., 19(1):1–6, 1997.

18. J. Jeong and D. Culler. Incremental network programming for wireless sensors. In
The First IEEE International Conference on Sensor and Ad hoc Communications
and Networks, October 2004.

19. N. L. P. Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a coprocessor-
based kernel runtime integrity monitor. In USENIX Security Symposium, pages
179–194, 2004.

20. R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer sys-
tems. In 12th USENIX Security Symposium, pages 295–310. USENIX Association,
August 2003.

21. R. Kennell and L. H. Jamieson. An analysis of proposed attacks against genuinity
tests. Technical report, Purdue University, 09 2004. CERIAS TR 2004-27.

22. C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of ob-
fuscated binaries. In Proceedings of USENIX Security 2004, pages 255–270, San
Diego, CA, August 2004.

23. T. Kuennen. Small science will bring big changes to roads.
http://www.betterroads.com/articles/jul04a.htm.

24. W. Landi and B. G. Ryder. Pointer-induced aliasing: a problem taxonomy. In
POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 93–103. ACM Press, 1991.

25. D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz. Architectural support for copy and tamper resistant software. In
ASPLOS-IX: Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems, pages 168–177, New
York, NY, USA, 2000. ACM Press.

26. C. Linn and S. Debray. Obfuscation of executable code to improve resistance
to static disassembly. In CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages 290–299, New York, NY, USA, 2003.
ACM Press.

27. B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for ob-
fuscation. In EUROCRYPT ’04, 2004.

28. T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software tamper resistance based
on the difficulty of interprocedural analysis, August 2002.

29. T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software obfuscation on a theoretical
basis and its implementation. In IEICE Transactions on Fundamentals, volume
E86-A, pages 176–186, January 2003.

30. G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang. Syst.,
16(5):1467–1471, 1994.

31. R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn. Attestation-based policy en-
forcement for remote access. In CCS ’04: Proceedings of the 11th ACM conference
on Computer and communications security, pages 308–317, New York, NY, USA,
2004. ACM Press.

http://www.betterroads.com/articles/jul04a.htm

Remote Software-Based Attestation for Wireless Sensors 41

32. A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT: Software-based
Attestation for Embedded Devicesi. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2004.

33. U. Shankar, M. Chew, and J. Tygar. Side effects are not sufficient to authenticate
software. In 13th USENIX Security Symposium. USENIX Association, August
2004.

34. E. Shi, A. Perrig, and L. V. Doorn. Bind: A time-of-use attestation service for
secure distributed systems. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2005.

35. G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: architec-
ture for tamper-evident and tamper-resistant processing. In ICS ’03: Proceedings of
the 17th annual international conference on Supercomputing, pages 160–171, New
York, NY, USA, 2003. ACM Press.

36. N. P. Varnovsky and V. A. Zakharov. On the possibility of provably secure obfus-
cating programs. In Ershov Memorial Conference, pages 91–102, 2003.

37. C. Wang, J. Hill, J. Knight, and J. Davidson. Software tamper resistance: Ob-
structing static analysis of programs. Technical report, University of Virginia,
Charlottesville, VA, USA, 2000.

38. G. Wroblewski. General Method of Program Code Obfuscation. PhD thesis, Wro-
claw University of Technology, Institute of Engineering Cybernetics, 2002.

39. J. Yang, Y. Zhang, and L. Gao. Fast secure processor for inhibiting software
piracy and tampering. In MICRO 36: Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, page 351, Washington, DC, USA,
2003. IEEE Computer Society.

40. X. Zhuang, T. Zhang, and S. Pande. HIDE: an infrastructure for efficiently pro-
tecting information leakage on the address bus. In ASPLOS-XI: Proceedings of the
11th international conference on Architectural support for programming languages
and operating systems, pages 72–84, New York, NY, USA, 2004. ACM Press.

	Introduction
	Assumptions, Threat Model, and Requirements
	Assumptions
	Threat Model
	Requirements

	Building Blocks
	Design of Attestation Procedure
	Overview
	Attestation Code Construction

	Discussion
	Security Analysis
	Extension

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

