SGFS: Secure, Efficient and Policy-based Global
File Sharing

Vishal Kher, Eric Seppanen, Cory Leach, and Yongdae Kim
Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455
{vkher,seppanen,leach,kyd}@cs.umn.edu

Abstract—This paper presents SGFS - a secure global file purpose storage devices providifagt global data acceds its
sharing system. SGFS is designed based on important designclients. As a result, cross-domain file sharing systemslghou
requirements for building a secure global file sharing system. be designed to work efficiently, not only in the presence of

These requirements include: efficiency for high performance data traditi | st but also in th di
access, flexibility of cross-domain file sharing without adminis- radiional storage servers, but also In the presence suc

trative interference, support for flexibly policies and off-the-shelf  intelligent storage devices.
policy managers, ability to be deployed in diverse environments,  In this paper we present SGF&\-secure global file system
ease of management and low administrative overheads. Unlike . that enables efficient cross-domain data sharing even in
existing systems that satisfy a proper subset of these require- o hresence of such heterogeneous environments. The goal
ments, SGFS is designed to satisfy all of these requirements. In . . .
this paper, we present the architecture and design of SGFS. we Of SGFS is 1o provide high performance data access and at
illustrate how these requirements have influenced our design and the same time enable cross-domain collaboration. For rbette
present the implementation and the preliminary evaluation of the understanding of the design challenges of a global file sbari
SGFS user-space prototype. system, we list the requirements that in our opinion shoeld b
satisfied by a global file sharing system with heterogeneous
storage servets

There is a rising trend of collaboration and global sharing | A global file sharing system should be deployable in
of information across multiple domains. For example, coeisi diverse environments, for example, on the top of recent
a group of faculty members in a certain University that want intelligent storage devices, such as those similar to [7],
to collaborate with a group of faculty members from another [28]-[30], [33], [59], [66]. It could be used for distribude
University and share their project's source code repgsiod high performance data access as well. Therefore, the
experimental results. As another example, consider a gobup cryptographic overhead on the storage servers should be
scientists who want to share files generated by their simounlat minimal.
applications with scientists from a different organizatito « In a global file sharing system, sharing of files should

allow them to analyze their data and share the knowledge .t pe restricted only to users belonging to previously
gathered through those results. In both of these exampies, | joined domains. It should be flexibly enough to allow

users need to freely share data and collaborate with remote | <ars to collaborate without requiring the administrators

users. In addition, in the second example, users need high ¢ \arious domains to work together in order to setup a
performance data access. _ collaborative environment.

Existing cross-domain file sharing systems [14], [36], [47] , |t 4 |ocal user Alice wants to collaborate with a remote
[58] are not tailored for high performance data access. &hes | ,ser Bob. then Alice should be able to do so without
systems assume that users have to share a small number qying her administrator to create an account for Bob. To
of files (e.g., class project files or photos) and also assume yeqyce administrative interference, increase flexibiity
that these files are stored on traditional centralized serve sharing, and reduce management overhead, users should
Recently, network-attached intelligent §torag_e devicib]s],[_ be able delegate access rights to other users. At the
[29], [30], [37], [45], [54], [57] have gained importance in  same time the system should be able to keep track
industry an_d academia. These dgwces enable Iow-Iatertay da (and maintain audit trails) of such delegations and the
transfers directly between the client and the storage dedic ~ 5gministrator should be able to revoke these delegations.
provide high performance data access. They utilize thd-avai | pitterent organizations choose different policies. For ex
able embedded processing power, which is typically less tha  5pje, policies used in Universities can be more relaxed
general purpose servers, to perform .act|V|t|es such askbloc  ihan those used in enterprises. Therefore, a global file
management [29], [54], remote execution [7], [59], seamth @ gharing system should support flexible policies and off-
indexing [33], and light-weight security operations [2[36].

One can envision g_network of heterogeneous storage SEfV_E[g storage server can be any entity that serves data, for exatnaditional
composed of traditional storage servers as well as spedialservers, network-attached disks, etc.

I. INTRODUCTION



the-shelf policy engines so that the administrators can ggbcess will increase access latencies since all thesatopes
the policies as per their requirements. have to be performeduring data-path The whole purpose

« The system should not have a central point of failuref storage devices is to allow fast and direct access to data.
Clients should be able to directly access files from thEherefore, verification of certificate chains on these devic
storage servers without having to frequently contact aspould be avoided, which will allow them to utilize their CPU
online entities (such as an authentication server). Suslithout any disruption to perform assigned tasks, such as
entities can become single point of failure and an attrasearch and indexing, high-performance data delivery,imers
tive attack target. If this entity fails, the entire systeamc ing, etc. Further, verification of certificate chains camadtice
come to a halt. access latencies even when used on traditional storagerserv

« In order to share files with remote groups, users shoultherefore, a light-weight authorization mechanism is gbva
not have to list remote group names on the local accedssirable.
control lists (ACLs). Listing remote groups on local The main contribution of this paper is to present a complete
ACLs increases the overhead of naming and locatirgystem that is designed to satisfy of all the requiremestsdi
remote groups, resolving remote group memberships, aaltove. SGFS is designed to provide efficient global file sigari
mapping them to groups within the local domain. Besidegjthout any administrative interference. It is designedvtirk
if the local and remote domains are not joined, then localith existing policy managers [18], [19], [24] so that syste
users may not be able to list remote groups names administrators can set appropriate local policies. Theesys
local ACLs. ensures that users behave according to these policies. SGFS

o The authorization protocols should be flexible enougbffer great flexibility, low administrative overhead, andnc
so that they can be used with various access contim used in diverse environments. The authentication pottoc
models, such as UNIX groups, role-based access contané designed to be efficient and resilient to central point of
(RBAC) [25], or even file-groups [35] failures.

Previous solutions such as Kerberos [39], [50] and thoseSCGFS usesymmetric-key certificatgSKC) that resemble
using public-key certificates [14], [36], [47], [58] onlytisfy a X.509 attnbutt_a.certlflcates. SKQS achlgve the nice progert
proper subseof these requirements. As can be seen from the@b X509 certificates, but are light-weight as compared to
aforementioned examples, collaboration can be perform&P09 certificates. As a result, SGFS can support different
between two independent parties that may not have any pR&Cess control models and can utilize existing policy laggs
established administrative relationships. The machireed y that are designed with X.509 certificates in mind. In SGFS,
to mount file systems by remote users can under differdff€r-to-user delegation is performed using SKC, which in-
administrative domains. Further, the remote group may GRides all the necessary information required by the fileeser
a group of independent researchers that may not be unffeyerify user credentials. To ensure traceability of datem,

a single administrative domain. Therefore, existing sohs the authentication protocols are designed to leave auais tr
such as Kerberos do not work in these settings as in dpat can be used by the system administrators to selectively
der to use Kerberos the administrators of the two domaiff2vOke users. Further, the use of SKC obviates the need to map
should collaborate in order to setup their systems for erod§Mote group names to local identifiers and greatly redutes t
domain authentication, which is known to be tiresome arffiministrative burden.

may not pe always feasible. In practice, very few indepehdeR  Organization

organizations actually setup joined Kerberos realms. & th The rest of the paper is oraanized as follows. Section I
collaborating users’ realms are not joined, then the only wa pap 9 .

) presents a detail overview of previous work. Section IlI
to collaborate is to set-up accounts for remote collabosato . . .
. . : describes the architecture and design of SGFS. The SGFS
Therefore, user-to-user delegation, that is delegaticmcoéss

from one user to another is important to increase flexibaity authentication protocols are presented in section!V.igieat

file sharing and reduce administrative burden. introduces our user-space prototype. Future work is adlin

. . . in section VIl and section VIII concludes this paper.
Typically, delegation of access rights from one user to

another is performed using X.509 certificate chains [5]. In [l. RELATED WORK

order to access files, users present a signed request and . )
entire chain of certificates to the storage servers. In tHistributed File Systems AFS [62], [63] and NFSv4 [51],

case, the storage servers verify the chain of certificatéesde 5], [64], the most commonly used networked file systems
granting access to users. Verifying certificate chains livo US€ Kerberos [39], [S0] for authentication. As explained in
traversing trust hierarchies to find common ancestors.rigurith€ introduction section, in order to enable cross-domaln ¢
this process, the storage server has to verify multipleipubl!@Poration between two domains, their system adminigsato
key signatures, which is a computationally expensive pmce'should collaborate and setup shared secretes - a comglicate

and may require accessing remote databases. This vedficaffPeration which is rarely performed between two organiza-
tions. Even if the realms are joined, a user should be registe

2Group of files with identical sharing attributes, e.g., firith same access toin re_mOte realms in prder to access files from that realm.
permissions. There is no way to avoid this problem as Kerberos does not



allow user-to-user delegatioh Finally, trust in Kerberos is reused (a fact that was admitted by the authors). Verifying
binary, that is a if realms are joined a user can grant accessat chain of certificates for every file can overload the file
any remote user or if realms are not joined user cannot shaegver and increase access latencies since the verifidai®n
files with remote users. SGFS support flexible policy that caa performed during data path. Further, since certificates a
be used to perform flexible and fine-grained trust managemegenerated for every file revocation of certificates can teaul
Microsoft Windows 2003 servers [3] is based on Kerberos agyger revocation lists. Finally, this model is not suiglbbr
well and has similar shortcomings. sharing files within a group of users, rather it is suitable fo
In addition to Kerberos, NFSv4 supports SPKM3 [8] aimple file sharing, such as for sharing a photo with a friend.

public key based authent|gat|on me'chamsm. Every ufc’eal(lo.?\ﬁtwork Attached Storage DevicesNetwork-attached stor-
and remote) has to be registered with the local domain, whi

requires system administrator intervention. Furtherremity gge devices [11], [29], [30], [45], [54], [56], [57] enablatd

. .. _transfers directly between client and storage to providg hi
NFSv4 does not support user-to-user delegation of cetgfca .
. . .performance data access. The NASD [29], [30] project from
SFS [36], [42] and DisCFS [47] were designed to avoi 53 [29], [30] proj

. MU was one the first to widely demonstrate the advantages
some of the dravybacks of AFS apd NFS Whe'n.used with Kecff network-attached storage devices. The NASD drives affloa
beros. SFS [42] introduced a notion sélf-certifying

th th that effectivel i blic k the block management and security operations from the file
pathnames - pathnames that eliectively contain public ke ystem. The drives were intelligent enough to a authorize
of the host file server which is used by the client to secure

. . X ccess to the locally stored objects. In order to access an
communicate with the server. The basic SFS protocol wa y )

Bject every client has to acquire a capability key for that
extended further to provide cross domain authenticati@h. [3 . ; :
. object from a trusted third party (called file manager). A
In this approach, a local user adds to the ACL the rem ) " ird party ( ! gen

N 06 ability keyidentifies an object and operations that can be
authentication server name and the remote group name

hich sh st laborate. The local authenticati formed on that object. Using the capability key a user
which she wants to collaborate. 1he local authenticalionese ., 5 thenticate and communicate securely with the drives.
uses this information to periodically download the grou

berships list f th i thenticati Tthe NASD project was further extended in [11] and laid
MEMDErSNIps ISt irom e remote authentication Serveus My nyations to the emerging Object-based Storage (OSD)

remote groups become local groups. Since IOCQI amhe‘mmatparadigm [54]. Files systems for OSD were presented in [12],
server periodically downloads remote group mformatlon,gg
S

newly added member of the remote group cannot acc She client obtains a capability for each object; therefore,

files until the next download cycle. SFS does not prowq?]e file manager has to be online and presents an attractive

client-to-server mutual authentication. In order to peavi attack target and a central point of failure. If the file maarag

mutual authentication every client machine will be reqniureiS down the entire system comes to a halt. Further, the

to hav«_a_ a cert_n‘lca'ge _from some CA trusted_ by the SeVeL pability is bound to the device and the object; therefifre,

In addltlc_)n, this will increase the computaﬂonal_ overhe e object is replicated (or migrated) to a different devite
ondthe Ifllelserver. SFS dotes not h?ve any po"CéGssgp%ﬂents have to acquire one or more fresh capability key} [52
and a local user can gran .access O any user. . EARED [11] replaced usedentity keysnstead of capability

a natural way of delegation; a user creates symmetrlc—kﬁé/ s. These keys can contain a users identity and group
certificates for a remote user. AS does not need to downlog brmation. SGFS uses SKCs that are designed to mimic
any remote group membership lists, which keeps the IOC)@.SOQ attribute certificates in a symmetric key setting, chhi

_?_Lougenl]:esmb?fh'? wp‘orman:m (ilean a?fq _eatsy to m?g?%%es us flexibility to represent different kinds of privges,
€ authentication protocals are €efticient, ensueaili constraints, and policy requirements. For example, our SKC

server mutual authentication, and have flexible policy supp can be used to represent roles and can be used in systems

CapaFs [5,8] and [,)iSCFS [47,] attempts. t'o providg ﬂeXibleat use RBAC [25]. Further, symmetric key certificates offe
and global file shar_mg by using capability _certlflcate. I_rL'Js the flexibility of using off-the-shelf policy languagesch
order to access a file, a user has to acquire a capabilly r1g) 119] [24] that are designed for X.509 certificates i

certificate from_ the administrator, which identifies _the sfilemind (to the best of our knowledge a powerful policy manager
and the operations that can be performed on that file. A usgF symmetric key techniques is not yet designed)

can delegate his access rights to a remote user by issuing 8imilar to our basic authentication protocol described in

capability certificate for that user. The file server truste tsection IV-C, all of protocols described above are based on
administrators certificate and verifies the chain of cedifis symmetric key techniques and do not perform any public key
pefore grqnting access to f.ile. listed in the certificate. IS i_S operations on the storage device. These protocols areddcus
files are identified by their i-node numbers; however, |nod§§ providing efficient mutual authentication protocol |

numbers are not suitable for global identification and can tﬂ?e client and the server. However, they do not provide dloba

file sharing and secure user-to-user delegation funcitgnal
3Kerberos allows proxy-delegation, which is sometimes aldermed as 9 9 tg

user delegation. However, proxy delegation is equivalergiting away user Encrypting File SystemsThere have been numerous propos-

password, and, thus, creating a proxy. This delegation midelifferent .
from user-to-user delegation where the delegator and tlegakee are two als for securing data at rest [17], [20], [26], [31], [32]4[3

independenentities. [40], [46], [49], [60]. These systems do not trust the sterag



servers. Data is encrypted by the writers before it is sent Ryoperties A symmetric key certificate bindBY to the holder
the storage and decrypted by readers after is received frofthe correspondindC¥ and the certificate has a designated
storage. In addition to encryption, some of these systests aVerifier VV, but the verifier does not need to contd@ceach time
ensure integrity of data and meta-data [26], [31], [40],][46to generateK'Y. Similar to X.509 attribute certificates, SKCs
[60]. Plutus [35], SIRiUS [60], SNAD [31], SFS [32], [34] andbind information such aislentity, privileges rolesto the holder
Cepheus [46] also allow sharing of encryption keys in a growg the key KY. They can be long-lived and one can apply
of users. Naor et al. proposed an encrypting file system thmtlicies similar to that applied to X.509 attribute certtfies.
avoids public-key operations for performance reasons. [49] Further, the verifier does not have to contact any other enlin

) . entity to verify the certificate. However, since they areduhs
Other Systemsin general, public key certificates are used f°6n symmetric key techniques, SKCs differ from public key
authentication in several different areas [13], [14], [dBP],

‘ ! _certificates - they can be verified by a single designated/,part
[70]. The Taos operating system [70] provides a operatigaey, can he used by the user to establish a shared key only

system component that manages principles and credentiglgy 5 single verifier (and vice-versa), they do not providen
Authentication is based on credentials certificates theitaar repudiation, and SKCs cannot be entirely stored in a public

signed for each individual. WebFS, the file system ComponeﬂﬁtabaseKU is secret)
7 .

of WebOS [67] implements a network file system on the A jitferent (and commonly known) notion of symmetric key

top of HTT.P protocol. It runs a user-level web server th%tertificates [44] was used in [10], [22]. In these approaches
translates file system requests to HTTP requests. It uses 5h%KC is of the formEx, (Kpr, B). Where, K7 is the
T bl . il

CRISIS [141 security architegture. !E_very CRISIS user hask%y known only to a central trusted entiy and K gy is
X.509 certificate and uses this certificate to authenticatie wy, . key shared by a usé® with 7. Any user A (that has

remote servers. The rest of the systems cited above work B;'}T (K ar, A)) who wants to send an authentic message (or

the sgme model. L . .~ a key) toB should encrypt the message wikfi, and send

Shibboleth [65] is a joint project of Internet2 and IBM. It isy, encrypted message, aits SKC to 7. T then translates
investigating architectures to support inter-institoibsharing ¢ message fromi to B by decryptingB's SKC and re-
and access to web services. The Infocard [1] is an effort froérr‘\crypting A's message toB. The main drawback of this

Microsoft to unify databases of identity providers (such 8%proach is thaf’ has to be online to translate messages
government and e-commerce sites) to form a federated tgdenfionyeen any two entities.

meta-system. The goal is to minimize the users’ overhead of

identity management. It requires sites to perform changesfihe Contents of a SKC A symmetric key certificate is
order to conform to the Infocard requirements and have §@mprised of a public parP;’ and a secret park;. The
adopt to SAML [4]. Similar to Kerberos different domaingPublic part contains the following information:

have to co-operate in order to set-up a federated identity ma « a unique identifier of this SKC

agement system. A comprehensive survey of storage security unique identification of the holder

literature can be found in [38], [60]. « unique identification of the issuing server
« issuing servers DNS/IP address, if applicable
I1l. SYSTEM DESIGN « list of privileges granted to the holder
« validity period of this SKC

A. The SGFS Symmetric Key Certificates
« delegator

In SGFS, the authentication server grants every sgar- « constraints
metric key certificate{SKC) that are used by the user 10 The holder and the issuer can be identified by local user
authenticate herself with the storage server and share k@yse email address, or reference to public key. If the issue
with them. The SGFS SKCs are designed to mimic the X.5Q9 5 server, then the identifier can be servers global identifi
attribute certificates [5], but in a symmetric key setting.  gych as DNS name or reference to public key. Privileges can be
A SKC is generated by an entity’ for a userU to be g |ist of roles, list of groups, list of file groups, etc. Camgtts
verified by a verifierl” as follows: can restrict certain type of access. For example, they can
U U U specify if access granted to the holder is read-only or tine ti
SKCry = AP, prfxey (Pr)} duration during which a user can access files. Constraims ca
Where, prf is a pseudo-random function (HMAC [15] in@lSO specify whether the holder can delegate a subset of her
practice) . Kry is the key shared between the verifigr Privileges to other users.
and the certificate generation entify. PY is the public B. Design Rationale
information of usetU defined byT’, andK¥ = pr fr,., (P¥)
is the secret key fot. If PY is made available t&, thenV/
can generaté(¥, and, thus, share a key wifii. Using K'Y,
U can authenticate witly’ and assert the privileges listed inLow cryptographic overhead on storage serverdn order
PY). A similar but restrictive type of symmetric key certificatgo achieve our first goal of designing authentication prokec
was used in [57]. that impose minimal cryptographic overhead on the storage

In this section we explain the factors that have influenced
the design of SGFS.



servers, we decided ®void performing public key operationstrusts the AS and verifies whether the requester has acquired
on the storage servers. SGFS is designed to be used tf@ SKC from AS. This allows AS to maintain audit logs and
high performance data access in the presence of netwsgkify policies, keeps the file server simple, and elimisatay
attached storage devices as well as traditional file servemeed of verifying certificate chains at the file server.

;I;]her?fore, we do not Eetr;orm tz;ny tpuki!lc keytor’elrat;’gbqf\exible policy support Organizations use different policies
€ storage servers and the authentication protocols 4n different settings. Many of the existing policy language

on symmetric key operations. User-to-user delegationse aISuch as PolicyManager [19], KeyNote [18], and SPKI [24],

performed without using certificate chains. This allows thgfferthe ability to formally express policies making it sitsle
storage servers to perform their assigned task (indexglg, s y v exp P g it s

ina. hiah perf q ST i to automate enforcement. These systems were designed with
securing, high performance data provisioning etc.) witizoty X.509 certificates in mind. To exploit the flexibility of X.80

disruption. certificates in a non-public key setting and at the same time

Resilience to central point of failures To make our system US€ the existing policy languages, SGFS uses symmetric key
resilient to central point of failures, we attempted to reglu _cert|f|cates that contain similar information as that cored
interactions between the user and any online entity (excdptthe X.509 certificates.

storage servers), especially between the users and the @u-system Architecture

thentication server. If the user has to frequently conthet t

authentication server to get access credentials, thereifith « — —» One time set-up
thentication server is down or overloaded with autheriticat
requests, the user will not be able to access files even if the AS PM
storage server is available. Therefore, we desire a salutio
in which files could be unavailable to the user only when
the storage server is unavailabl&o achieve this goal, users
are granted long-term access keys. We believe that in most
of the cases, changes to user credentials are infrequent. Fa
example, in Role-based Access Control (RBAC) [25], users’
roles are usually associated with their job in the orgaiinat
which do not change frequently [6], [23]. Similarly in UNIX )
environments, a particular user's group membership does no /=== Delegation using |ai i
change daily. The lifetime of access keys should be decided Local SKG External A _
based on the policies. In SGFS, access keys are stertely ~ Client Client .7 Reg’zfva:ro”
on the client side.One common tradeoff of long-lived access %

key is revocation. SGFS design includes revocation servers
which periodically publish appropriate new revocationsli® _
the storage servers. The revocation server can also perforn K
emergency updates if immediate revocation is required. ra

<+ - - — » Periodic

‘\. <+«—— File access

R
“Quest or Sy

Flexible file sharing with minimal system administrative ACL enabled
interference In SGFS if a local user Alice wants to share Storage server
files with an external user Bob, Alice can delegate a subset
of her access rights to Bob (if the policies allow her to do

s0). If Alice’s organization policies allow Bob to delegate Figure 1 depicts the SGFS architecture. It consists of five
other users (e.g., his group members), then Bob can furthgfiies: authentication server (AS), policy manager (PM)
delegate the access rights acquired from Alice. User€0-Ug,aqe servers, clieftéor end users), and revocation servers.
delegation does not require any system administrative-inte thao AS is trusted by all other entities. It is responsible
ference, increases flexibility of sharing, and also redubes ., 4 thenticate users and give them appropriate credential
management burden. The AS shares a unique symmetric key with every storage
Traceable delegation and audit trailsIn practice, even if S€rver and is responsible for securely managing these keys.
Alice is allowed to delegate to Bob, the delegation should S0 maintains a database of local users and their assiciate
traceable. Audit logs should be maintained to clearly iattic PrVileges and group memberships. We assume that the AS
the delegator-delegatee relationships. This informatiam be C€an communicate securely with all entities. The PM is triste

used for auditing as well as revocation. The SGFS delegatihSet @ppropriate policies. . .
protocol is designed in such a way that Bob has to performThe revocation server is responsible to store and publish

one time set-up with the Alice’s authentication server (Agfvocation lists. It periodically publishes the approfriaew

to recei_ve a SKC from the AS. During this pr_ocess the AS 4uyser” and “Client” refer to the end user of the system and ased
can verify polices and create audit logs. The file server onherchangeably.

Fig. 1. The SGFS Architecture.



revocation lists to the storage servers. It can also send-enie P%. TheSKO}’f’AS is a notification that tells AS that Alice
gency revocation messages to storage servers, if immediatnts to add Bob to thgenomics group.
revocation is required. It is assumed that the revocatiovese  After receiving SKCE,AS, Bob can go to the AS and
can securely communicate with the storage servers and thehenticate himself using¥ (step 4 of figure 1). Using
AS. Pjs the AS can re-generatk’}{s and verify SKC% 5. AS
Clients are not trusted. They can launch various active atiten performs policy checks, for example it verifies if Alise
passive attacks. Communication links between the cliemtis aallowed to delegate. If all checks succeed, AS then gergrate
the storage servers are assumed to be insecure. Since i rew SKC%; ¢ for Bob and sends it to securely to Bob.
global file sharing system a client can access files from aBpb has thus become a local user with rights to access files
computer (e.g., home computer, remote domains etc.), we liglonging to grouggenomics . As in the case of Alice, Bob
not assume any time synchronization between the clients arsbsSKC%, ¢ to authenticate witt and access files stored
the storage servers. on S. The file server does not need know that Bob is an
Storage servers are trusted to perform their part of authexternal user (although this information is included ff
tication and authorization securely. The data stored osethdor auditing). It only verifies that Bob has a valid SKC from
servers is not encrypted. In the future, this can be perfdrmthe AS and grants access based on the information embedded
using existing file encryptors [17], [31], [32], [34], [40K6], in SKC. Further, the file server does not need to map any

[60]. remote group-ids as all the necessary local group infoonati
_ is already in SKC. If Bob needs to acquire a key for a different
D. Usage Overview storage server, Bob can uSé&'C% ¢ again to get a new SKC

Let us denote the key shared between the AS and a SN the AS.
storage servef as K. Let Alice be a local user belonging tOTransparency It is important to note that step 1,2,4, and 5

groupgenomics and Bob be an external user (belonging tgre gone transparently and the user is not aware of these
a different organization). Let user Alice be denotedaand  perations. All SKCs are automatically stored securely at

let user Bob be denoted ds. the client. Once the SKC for the storage server is available,
Local User Auth. Only the AS is trusted by the storagethe SGFS client initiates the authentication protocol wtith
servers. Therefore, if Alice wants to access files storedpn S€Tver whenever necessary.

Alice shoulq ac;quire a SKC fof frgm AS..This is denoted IV. AUTHENTICATION PROTOCOLDETAILS

by step 1 in figure 1. After receiving Alice’s request, AS

authenticates Alice and acquires necessary informatioeh s Notations used for the protocol description are as follows:

as Alice’s group membership list, policies, and constgaittt S| Storage Server
| It with the PM t f initial i AS | Authentication Server
caq .a S(? COI’]SUI Wi . _e 0 per orm some Inital po ICy SKCIC"V Symmetric key certificate
verification. Using this information, AS issues a symmetric ’ generated by for verifier V given to userC
key certificate for Alice as follows. K | Secret key shared betweehS and S
MAC), | Keyed-MAC function using key:;
A _ A A A rc | unique random number generated Gy
SKCjs.s = {Phs, Kis = MACk(Pjs)} H | Collision resistant hash function

Alice securely storesSKC4 ¢ and usesk 4 to initiate a A. Acquiring SKC for Local Users
mutual authentication protocol (details in section IV) Wit A |5cal user Alice acquires her SKC from thé&S on the

S.AThe _stora%e server knowk’, and, hence can generatgi ot access to a storage sengr Initial SKCs can also be
Kjs using Pis sent by Alice during the authenticationy,nsferred to Alice when her account is created, e.g.,gusin
process. Using(s Alice and S can authenticate each othelyaij " et 4 denote Alice andB denote Bob. The protocol
and securely communicate with each other. After successﬂ.;ésst,:lgeS are shown below.

completion of the mutual authentication phase (step 2 of

figure 1), S asserts the policies and constraints listed by AS in A — AS: SKC request 1)
P4. Finally, the storage server extracts the group membership A5 — 4 - SKC4g s = {Pis, MACK(P4s)} 2)
information or role-privilege information (depending upthe '

access control model) and performs access control using th&/Pon receipt of message (1), AS authenticates Alice and
ACLs stored locally along with the files. verifies that Alice is a legitimate user of the system. The

authentication protocol can be any of the standard autteenti
Delegation Now let us see how a local user Alice andjon protocols. AS then queries the user database and asquir
her genomics group can share files with an external useslice’s group membership information. AS also acquires-con
Bob. Alice first generates a symmetric key certificate faftraints, and other policy information from PM and asks PM
Bob SKCY 45 = {P{,K§ = MACy4_(P)} and sends to perform initial policy verification, if any. AS then fillshe
SKCE’ a5 along with her P4 securely to Bob (step 3 of necessary fields (described in section lI-A)Rf, generates
figure 1). Alice includes necessary information Y and the SKC as shown in (2) and securely transfers it to Alice.
includes hergenomics group in the group membership listSince SKCs are long-lived no further communication with AS



is required. Alice can directly access files frahwithout fields in thePf. For example, Alice can set the expiry period
contacting AS. of SKCE_’AS; she can also specify whether Bob can further
delegateSKCf,AS to his group members.

B. Acquiring SKC for Remote Users ) )
Using SKC¥ , 5 Bob acquires a SKC from AS as follows:

Now let us see how an external user Bob acquires a SKC

to access files stored ol B — AS : M, P} ,le‘s, MACY 5 (M) (6)
1) Naive Approach: The protocol messages are shown B B B
below: AS — B: SKC4g s ={Pis, Kis} (7)
A— B:SKCf s, Pis (3) Where, M = {rp,SKC req} and K55 = MACk(PX;).
) B A Upon receipt of message (6), the authentication server gen-
B—>S.M7PA7PA5,]\/[ACK§<M) (4) eratesK‘Af‘S — MACK(PX‘S) and KE — MACKAS(PE)'

Where M = {rp,SKC request}, and SKOES = It then generated/ ACy (M) and compares it withs AC*
{P§, K7 = MACka_ (PF)}. In order to share files with sentin (6). Ifthey are same, AS concludes tHdtas delegated
Bob, Alice sendsSKC% ¢ to Bob in message (3). A addssome of her rights t@. Then, AS checks whethet is allowed
genomics to the group list inPZ. SKC is signed by Alice to delegate the rights included BKCY , 5. o
using K44 and anyone who can generate this key can verify If yes, AS checks with the PM whether the delegation is
the authenticity ofSKC¥ . conforming to the policiesP} which is included in Bob’s
Upon receipt of (4)S can generatd( 4, = M AC (P4s). symmetric key certificate generated by AIicSKCEVAS),
S can then generat& ¥ = M AC 4 (PY). Thus, S and B contains the serial number of Bob's public key certificatat th
now sharekX® and they can aut?usanticate each other usir%‘_” be issued b_y_his organi_zation. This is_: included because
this key. After successful authenticatiofi,extracts the group Alice’s local policies may dictate that Alice can delegate

membership information fro?? and performs access controlPNly to users from certain organizations. Using Bob's Gerti
accordingly. cate Alice’s PM can easily perform this check by verifying

_ ) i . _ i i whether Bob’s certificate is from a trusted CA. This feature
DiscussionThis approach is flexible since Alice can delegatg;, he more useful in enterprise where users are partially
access rights to any user. Furthér,can directly access file {ysied and the PM wants to prevent a malicious insider
stored onS, 5 can efficiently authenticat8, andS can make from delegating access rights to a user from a competing
access control decisions by itself. _ _ organization. Universities, for example, may trust theicall
However, the first drawback of this scheme is that siFice t5¢ ity members to delegate permission at will. In this case
and B both knowK ¥, A can access files a8. Therefore,S  he system administrator can to configure the PM accordingly
cannot distinguish betweed andB. , and the PM will not verify Bob’s certificate. Thus, by setting
The second drawback of this scheme is thatannot per- gitaple policies, one can achieve a balance between user
form any policy verification since' cannot uniquely identity delegation and centralized control.
B or B’s parent organization. For example, if policies allow ¢ 21 checks succeed, AS creates a new SKC for Bob and
A to delegate access rights to users from a certain comfanyands it to Bob in (7). Bob now has rights to access files
cannot determine whetheds belongs to that company. Evenbelonging to groups listed iP%,. SKC2, , allows Bob to
if S was able to determin@&'s parent organization, in order ccess files belonging to tigenomics group stored ors. If
to verify policies 5 should have all the policy information go, heeds additional SKCs to access files stored (belonging t
available to it. This will either require replication dfM on the genomics ) on other storage servers, then Bob can repeat

all the storage servers or constant _0n|iqe_ communicatiah Wistep (6) above indicating the name of the storage serverin th
the PM. Both the approaches are inefficient. request.

The third drawback is thatlS is completely unaware of
any delegations byl. Therefore, all storage servers will haveC. Client - Server Mutual Authentication
to maintain audit trails andL.S will have to constantly gather T
these audit trails to ensure that policies are met and gatrp]%r
information for revocation purposes.

he SGFS storage servers only trust the AS. Any client
matter remote or local should get a SKC from the AS to
authenticate with the storage server. We have alreadysfisdu
Summary Therefore, we need - 1) a way to uniquely identif\above how local and external users can acquire a SKC from
B, 2) a way to uniquely identifyB’s parent organization 3) the AS. Below we discuss how a usémwith a SKC4 4 can

a way to efficiently verify policies, and 4) a way to maintairauthenticate withS. The protocol messages are as follows.
audit trails atAS.

) A

2) Final Approach: Alice sends the following information A— S:ra, P (8)
to Bob: S— A: T’S,]V[AC;(ﬁS(TA,Ts,A) 9)
A_’B:SKCE,A&PAL‘S (5) A—>S:R7MACKAAS(T5‘,TA,R,S) (10)

Where, SKC¥ 4o = {P}, K% = MACKQS(PE)}. Alice Upon receipt of (8),S checks if A’s SKC is expired by
can define her own policies for Bob by setting appropriathecking the expiry field inP4. If not expired,S generates



K44 = MACK(P{) and sends a response toas shown allows secure, flexible, failure resistant and efficienbaldile
in (9). Upon receipt of (94 generatesMACKﬁ (ra,rs,A) sharing without any administrative interference.

and verifies that this\/ AC' is same as the/AC* sent by . _

S in (9). If yes, the client concludes tha is authentic Extensions For mutual authentication, we purposely used

(since oﬁl AS ar,1dS know K4.). A uses the actual re uestrandom numbers instead of timestamps, since in a global file

R (e.g re);d write) and achusgréd in (9) to build mesqsagesharing system it is not realistic to assume that all client
Bo 2] ’ S . . . . .

(10). S verifies the authenticity of message (10) by generati machines will be time synchronized with all of the storage

A . rvers. Due to this requirement, the mutual authenticatio
éVénAthl %451 (TASI’ :ﬁéRe’rij) gfn 2&; iri%;‘klggr:zli%aelgithfgﬁgs protocol as described in section IV-C requires two extrandsu

authentic SKC created by AS (and thusis an authentic of commumcaﬂp nas compar.ed toamutual authent|gat|on pro
client). S then checks if the request meets all the polictOCOI be_tween time sy_nch_rom_zed en_tltles [44]. In envir o
e uiréments listed inPA.. Finally. S extracts the arou Where time synchronization is feasible, these communinati

q S 435 Yo 2 group rounds can be avoided by using timestamps instead of random
membership list fromP4 and checks if the user can perform

the requested operation on the requested object by checlﬁrﬁmbers and making simple changes to the protocol [30].

that object’'s ACL. If all checks succeed, théhserves the gng time stamps will also avoid the requirement of cgchmg
. of two random numbers on the storage servers during the
request and sends back the appropriate response.

A and S can optionally setup a session keys one to encry%?themlcatlon process.

network traffic and another to ensure integrity (using HMAC I stora_tge SEIVers ha_ve the ability to cache some informatio
er session, then session keys can be cached for a longer dura

as follows: tion to avoid performing mutual authentication for eactecti
kl=MACkas (“ENC",A,rg) request. In addition standard techniques, such as maiatain
AS . . .
k2 = MACys (“HMAC",B,r ) single counter or using server encrypted cookies can be used
As to reduce the cache state on the server.

The client and the server can use these keys to ensure confit can happen that Bob can receive multiple SKCs for one
dentiality and integrity of messages and the data traredlérr  server from Alice. In this case we can extend the client-
subsequent communication. Finally, before verifying rages server mutual authentication by including multiglé AC's in
(10) the server should also checkdf C'4g g is revoked by (8). Optionally, the SGFS client can automatically “redéem
searching its local revocation list. multiple SKCs for one server by sending them A% and

receive a singe combined SKC in exchange. In this case,
Bob will have to maintain only one symmetric certificate per
Oﬁtorage server.

D. Discussion

Summary The client-server mutual authentication protoc
(section IV-C) prevents replay attacks and does not requiRevocation Since the SGFS SKCs are long-lived we need to
any time synchronization between the clients and the stonaintain revocation lists at the revocation server. EaclC SK
age servers. During mutual authentication, the server diashas an associated expiry information. Storage serversahec
maintain two random numbers. After mutual authenticatibn, the SKC is expired before granting access to the users.
secure data transfer is desired, then the storage serveo has In addition to expiry, AS can selectively revoke a user’s
maintain one session key for the duration of the data transf8KC by publishing the SKC identifier to the revocation
Only symmetric key operations are performed on the storagervers. The revocation servers can periodically send the
servers, which are computationally inexpensive. Admiaist appropriate revocation lists to the appropriate servete T
tors of collaborating domains do not have to perform ar§KC can contain the identity of the verifier (storage seivers
manual co-operation. A user can securely delegate acc&bg revocation server only needs to inform that storagesserv
rights to another user without any administrative intetigm The storage servers keep a copy of revocation lists locally
If necessary, Administrators can set appropriate politees so that they do not have to contact the revocation server
ensure that users do not misuse their delegation powers. on every request. The revocation lists on the storage server

SKC certificates gives us the flexibility to use SGFS igan be organized according to groups to enhance searching
various access control models and with existing policy manperations. For example, Aguilera et al. maintained a kjptma
agers. SKCs are long-lived and can be transferred in an@ffliof identities of revoked certificates in the RAM of a conteoll|
manner to local users, e.g., via email. Users do not havedba block based disk [9]. Each user certificate was assatiate
frequently contact AS; therefore, users can keep accefisingwith a unique ID and a group ID. The disk maintained a
data without any disruption even when the AS is down dist of group IDs and a bitmap indicating revocation state of
overloaded. Further, users can securely transfer SKCs frtimne certificate IDs. Certificate IDs were recycled by remgvin
one machine to another and access files seamlessly from grgup IDs from the list. The revocation table contained dgtup
machine. SGFS authentication protocols do not require o 6-bit index, a 64-bit group ID value, and 8K-bit bitmap for
maintain any long-term state on the storage servers. Usitgrtificate IDs. On average, each certificate took only 1i¢sl b
SKCs storage servers can make on-spot authorization desisiin a table of size 64KB. We can use a similar technique to
without having to contact any remote server. Therefore, SGBtore revocation lists on the storage servers.



it pairs and get them signed from local certification authority
Sze;;)er By default the public-key certificates, encrypted privasgsg
T and encrypted SKCs are stored in user’s home directory at
/home/$username/.sgfs/keys
P——— [ sars server | All of the authentication protocols described in section IV
—— BFSFS are implem_ented and fully functional. Below we demonstrate
C'(iiég_f/m:)ss : fileserver how the client works by an example. Lets assume that the
FUSE fibrary SGFS servesgfs.umn.edu  is mounted afsgfs . Lets say
77777777777777777777777777 } that the local user Alice attempts to accésgfs/foo . The
FUSE kernel SGFS client uses Alice’s private key to automatically esteis
Sp— Local flesystom the SKC for the d(_estination server, degrypts it, and iraBat
p—— the mutual authgntlcatlon protocol (section IV-C). Thevser
behaves according to the protocol and grants access based
Client Machine " Storage Server on information included in the public part of Alice's SKC
(Pg‘s). If the server is able to cache session keys for a longer
Fig. 2. The SGFS system components time, the SGFS client maintains a SGFS context for Alice

after the mutual authentication phase. This context costai
the shared session keys that are used to secure subsequent
V. PROTOTYPEIMPLEMENTATION communications with the storage server. Al file tansfers be

Figure 2 represents the SGFS system. The SGFS client risueen the client and the server are encryted using Blowfish in
in user space and is layered on the top of FSFS [21], a us¥B mode and then HMACed to guarantee integrity. If Alice
space file system designed to be mounted through an interfdoes not have a SKC, then the SGFS client uses Alice’s private
provided by FUSE [27]. The SGFS server is layered on top kéy to authenticate with the AS and acquires a SKC. It stores
the FSFS server, which is a multi-threaded user space daerttemencrypted SKC irthome/alice/.sgfs/keys/skc_
that accepts clients’ requests on a TCP socket. store and then initiates the mutual authentication protocol

We chose FUSE because it allowed us to implement owith the AS. The AS is contacted only when the SKC is
concepts in user space without having to manipulate complexpired.
kernel code. We chose FSFS because it is already a disttibuteSince all the keys are stored securely, Alice can easil\stran
file systems that allows users to access files stored on agenfet her files from his office computer to her home computer
server. The original FSFS code is embedded with its ovamd remote files just as she would access from her office
security layer. We stripped-down the FSFS (bFSFS) code ag@mputer. Thus, a user can move from one machine to another
used the bare version that allowed multiple users to accessl access file seamlessly.
files stored on the remote server. The SGFS client and servewe have also develped a command-line tool to assist Alice
code is not specifically tied to FSFS and can be layered on delegate her access rights to a remote user Bob and
top of any file system. Our ideal goal is to integrate SGFR§enerate a SKC for Bob (see section IV-B.2 for details).
into more general purpose file systems, such as NFS. Heritke SKC is encrypted using Bob’s public key. Alice can
we decided to build the SGFS system in a modular fashieend this SKC to Bob. After receiving the delegated SKC
without tying it to any particular file system. from Alice, the only operation that Bob has to perform is

. . . _to add this SKC to highome/bob/.sgfs/keys/skc_
Authentication Server AS is portable to any Unix-like operat delegation . When Bob tries to accedsgfs/foo  , Bob's

ing system. All cryptographic operations are performeahgisi : : :
the OpenSSL 0.9.8 [53] library. The AS uses MySQL databaseg;FS client automatically, acquires the delegated SKC from

v4.1 [48] to store user information of local users. There is ome/bp b/.sgfs/keys/skc_delegation_ L authent-
one entry in the database for every user. Each record csnteﬁﬁtes with Alice’s AS and (as described in IV-B), securely
Y Y ) ores the SKC returned by AS ifthome/bob/.sgfs/

. S
embership list, user . .
the username, ‘user lD.’ user group m P ieys/skc_store . Once the SKC is available, Bob's SGFS
public key, and constraints. Currently only UNIX style user . . .
client can use it to mutually authenticate wilyfs.umn.

groups are supported. This will be extended to support othé .
. . ‘T’éu and access files securely.

access control mechanisms, such as roles and file groups. The

AS shares a Unique Symmetric key with each storage server. V1. PRELIMINARY EVALUATION

Currently, this is done manually and in the future secure key

s . In order to measure the performance of SGFS, two Pentium
distribution algorithms can be used.

4, 2.5GHz computers with 1GB memory running Suse Linux
SGFS Client Every SGFS user is associated with a public9.3 were connected via 100Mbps Ethernet. One computer was
private key pair. These keys are used to securely store SK&mfigured as a client and one as a server. First, bFSFS was
(encrypted using the user’s public key), to securely commtun on the client and server and performance analysis was
nicate with the AS, and to securely communicate with othepnducted. Then, bFSFS with SGFS was run on the client
users. SGFS includes tools that assist users to createkidnese and server and the performance analysis was repeated.
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lozone 3.257 [2] was used to measure the read/write perf@lobal Naming and Automounting Currently FSFS client
mance of the filesystem. Figure 3 illustrates the perforrmancan mount only one file server, which has to be specified while
of read and write using 16KB blocks, reading and writing fileunning the FSFS client. It allows multiple users on the same
sizes from 64KB to 1024KB. During this experiment sharethachine to access the mounted file server. However, since one
session keys were established between the client and ter seFSFS client can access only one server, the SGFS users can
and all data was encrypted using Blowfish in OFB mode [44lccess only one server through one SGFS client. To eliminate
and HMACed using SHA-256. this problem, the next version of SGFS system will include
The performance difference between bFSFS and SGFSvi® new featuresglobal namingand auto mounting
due to several factors: first, encryption and decryptionas n We plan to modify FSFS client so that it will be
done in a pipelined fashion. That is, a large block of damounted on/sgfs . All SGFS pathnames will be of the
is encrypted completely before attempting to send over tfalowing format/sgfs/file.server.name/actual.
network. As a result, the the receiving end of the SGFS systgrathname . For example, in order to mount filesys-
remains idle for that period of time. Pipelining the encigpt tem /genomics/experiments stored onsgfs.umn.
and networking stages should reduce this penalty condijeraedu, Alice will run emacs™/sgfs/sgfs.umn.edu/
In addition, FSFS read throughput is much higher than wriggenomics/experiments . FUSE will transfer control to
throughput, which results in more overhead for reads, #® FSFS client. The FSFS client will hand-over the file
encryption becomes a larger fraction of total request serviserver namesgfs.umn.edu  and the request to read file
time. foo to the SGFS client. The SGFS client will acquire Al-
Further, we are using encrypt-then-mac authenticated ége’s SKC for sgfs.umn.edu , mutually authenticate with
cryption by following the recommendation by Bellare andgfs.umn.edu , and automatically mountgenomics/
Namprepre [16]. However, this is inefficient and difficuliexperiments . This will greatly improve the flexiblity of the
to pipeline since we first need to encrypt and then cor®GFS client. A user will be able to access any file server in the
pute HMAC for the whole encrypted block. In the futureworld as long as she has the appropriate SKC to authenticate
implementation, we will use new modes of operation suahith that server. We draw this inspiration from the SFS file
as GCM [43] and OCB [61], which provides authenticatedystem [42] that itself has the file server information in the
encryption without such serialization. pathname and uses a automounter to mount remote file systems
The gap between the read and the write performance is duedemand. Several challenges in building such a system were
to underlying filesystem and OS characteristics, as well igentified in [41]
peculiarities of the FSFS protocol that require more netwo
traffic for writes. FSFS splits every request into four resjge
a stat request for the destination directory, a stat redioest
the file, a open request for the file, and finally, followed b
multiple write requests. These problems are straight-dodw
to amend with little modifications to the current code.

hevocation and Policy Verification The current implemen-
tation does not include revocation servers and policy man-
gers. We have already described the high-level desigesssu
elated to revocation servers in section IV-D. One of the
main challenge realted to policy verification is choosing th
appropriate policy manager. To the best of our knowledge all
of the existing policy managers are tailored for public key
certificates. Therefore, to exploit the existing policy ragers
The SGFS system is in a preliminary implementation stagend give us the flexibility of public key certificates we define
Even though the authentication protocols are in placeethé8KC that mimic public key certificates. We are investigating
are several challenges that need to be addressed. appropriate policy languages that are easy to customize and

VIlI. FUTURE IMPLEMENTATION WORK



flexible enough to be used in various access control modelsi] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin. Thesisiwide
We also have to evaluate the pollcy engn’]es associated with area security architecture. Proceedings of the 7th USENIX Security
these languages to choose the one that provides better peﬁfa

mance.

VIII. CONCLUSION

In this paper, we have presented the architecture and design

(16]

of SGFS, a secure global file sharing system tailored fau7]

efficient data access. We have outlined important requinésne

for a global file sharing system that have influenced our desig, g

SGFS provides secure, efficient, and flexible global fileisigar

with minimal administrative interference. Users can dateg [19]
access permissions to remote users based on the locakgolici

Further, SGFS supports off-the-shelf policy engines thatte

[20]

used by the system administrators to control user deletmatio

Due to its minimal cryptographic overhead on the stora

servers, SGFS is suitable for emerging intelligent storage

devices. We have developed a easy to use user-space peotoi3g)

2

that features our authentication protocols and simplesttit

assist users to create keys and delegate access rightsdtere

users. All symmetric key certificates are stored securety an
can be moved from one machine to another to access 24

seamless manner. Experimental results confirm that witk lit

modifications, overhead of SGFS protocols will be negligibl [25]
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