
SGFS: Secure, Efficient and Policy-based Global
File Sharing

Vishal Kher, Eric Seppanen, Cory Leach, and Yongdae Kim
Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

{vkher,seppanen,leach,kyd}@cs.umn.edu

Abstract— This paper presents SGFS - a secure global file
sharing system. SGFS is designed based on important design
requirements for building a secure global file sharing system.
These requirements include: efficiency for high performance data
access, flexibility of cross-domain file sharing without adminis-
trative interference, support for flexibly policies and off-the-shelf
policy managers, ability to be deployed in diverse environments,
ease of management and low administrative overheads. Unlike
existing systems that satisfy a proper subset of these require-
ments, SGFS is designed to satisfy all of these requirements. In
this paper, we present the architecture and design of SGFS. We
illustrate how these requirements have influenced our design and
present the implementation and the preliminary evaluation of the
SGFS user-space prototype.

I. I NTRODUCTION

There is a rising trend of collaboration and global sharing
of information across multiple domains. For example, consider
a group of faculty members in a certain University that want
to collaborate with a group of faculty members from another
University and share their project’s source code repository and
experimental results. As another example, consider a groupof
scientists who want to share files generated by their simulation
applications with scientists from a different organization to
allow them to analyze their data and share the knowledge
gathered through those results. In both of these examples, local
users need to freely share data and collaborate with remote
users. In addition, in the second example, users need high
performance data access.

Existing cross-domain file sharing systems [14], [36], [47],
[58] are not tailored for high performance data access. These
systems assume that users have to share a small number
of files (e.g., class project files or photos) and also assume
that these files are stored on traditional centralized servers.
Recently, network-attached intelligent storage devices [11],
[29], [30], [37], [45], [54], [57] have gained importance in
industry and academia. These devices enable low-latency data
transfers directly between the client and the storage device to
provide high performance data access. They utilize the avail-
able embedded processing power, which is typically less than
general purpose servers, to perform activities such as block
management [29], [54], remote execution [7], [59], search and
indexing [33], and light-weight security operations [28],[66].
One can envision a network of heterogeneous storage servers
composed of traditional storage servers as well as special

purpose storage devices providingfast global data accessto its
clients. As a result, cross-domain file sharing systems should
be designed to work efficiently, not only in the presence of
traditional storage servers, but also in the presence of such
intelligent storage devices.

In this paper we present SGFS -A secure global file system
- that enables efficient cross-domain data sharing even in
the presence of such heterogeneous environments. The goal
of SGFS is to provide high performance data access and at
the same time enable cross-domain collaboration. For better
understanding of the design challenges of a global file sharing
system, we list the requirements that in our opinion should be
satisfied by a global file sharing system with heterogeneous
storage servers1.

• A global file sharing system should be deployable in
diverse environments, for example, on the top of recent
intelligent storage devices, such as those similar to [7],
[28]–[30], [33], [59], [66]. It could be used for distributed
high performance data access as well. Therefore, the
cryptographic overhead on the storage servers should be
minimal.

• In a global file sharing system, sharing of files should
not be restricted only to users belonging to previously
joined domains. It should be flexibly enough to allow
users to collaborate without requiring the administrators
of various domains to work together in order to setup a
collaborative environment.

• If a local user Alice wants to collaborate with a remote
user Bob, then Alice should be able to do so without
asking her administrator to create an account for Bob. To
reduce administrative interference, increase flexibilityof
sharing, and reduce management overhead, users should
be able delegate access rights to other users. At the
same time the system should be able to keep track
(and maintain audit trails) of such delegations and the
administrator should be able to revoke these delegations.

• Different organizations choose different policies. For ex-
ample, policies used in Universities can be more relaxed
than those used in enterprises. Therefore, a global file
sharing system should support flexible policies and off-

1A storage server can be any entity that serves data, for example, traditional
file servers, network-attached disks, etc.

the-shelf policy engines so that the administrators can set
the policies as per their requirements.

• The system should not have a central point of failure.
Clients should be able to directly access files from the
storage servers without having to frequently contact any
online entities (such as an authentication server). Such
entities can become single point of failure and an attrac-
tive attack target. If this entity fails, the entire system can
come to a halt.

• In order to share files with remote groups, users should
not have to list remote group names on the local access
control lists (ACLs). Listing remote groups on local
ACLs increases the overhead of naming and locating
remote groups, resolving remote group memberships, and
mapping them to groups within the local domain. Besides,
if the local and remote domains are not joined, then local
users may not be able to list remote groups names on
local ACLs.

• The authorization protocols should be flexible enough
so that they can be used with various access control
models, such as UNIX groups, role-based access control
(RBAC) [25], or even file-groups [35]2.

Previous solutions such as Kerberos [39], [50] and those
using public-key certificates [14], [36], [47], [58] only satisfy a
proper subsetof these requirements. As can be seen from these
aforementioned examples, collaboration can be performed
between two independent parties that may not have any pre-
established administrative relationships. The machines used
to mount file systems by remote users can under different
administrative domains. Further, the remote group may be
a group of independent researchers that may not be under
a single administrative domain. Therefore, existing solutions
such as Kerberos do not work in these settings as in or-
der to use Kerberos the administrators of the two domains
should collaborate in order to setup their systems for cross-
domain authentication, which is known to be tiresome and
may not be always feasible. In practice, very few independent
organizations actually setup joined Kerberos realms. If the
collaborating users’ realms are not joined, then the only way
to collaborate is to set-up accounts for remote collaborators.
Therefore, user-to-user delegation, that is delegation ofaccess
from one user to another is important to increase flexibilityof
file sharing and reduce administrative burden.

Typically, delegation of access rights from one user to
another is performed using X.509 certificate chains [5]. In
order to access files, users present a signed request and
entire chain of certificates to the storage servers. In this
case, the storage servers verify the chain of certificates before
granting access to users. Verifying certificate chains involve
traversing trust hierarchies to find common ancestors. During
this process, the storage server has to verify multiple public-
key signatures, which is a computationally expensive process
and may require accessing remote databases. This verification

2Group of files with identical sharing attributes, e.g., fileswith same access
permissions.

process will increase access latencies since all these operations
have to be performedduring data-path. The whole purpose
of storage devices is to allow fast and direct access to data.
Therefore, verification of certificate chains on these devices
should be avoided, which will allow them to utilize their CPU
without any disruption to perform assigned tasks, such as
search and indexing, high-performance data delivery, version-
ing, etc. Further, verification of certificate chains can introduce
access latencies even when used on traditional storage servers.
Therefore, a light-weight authorization mechanism is always
desirable.

The main contribution of this paper is to present a complete
system that is designed to satisfy of all the requirements listed
above. SGFS is designed to provide efficient global file sharing
without any administrative interference. It is designed towork
with existing policy managers [18], [19], [24] so that system
administrators can set appropriate local policies. The system
ensures that users behave according to these policies. SGFS
offer great flexibility, low administrative overhead, and can
be used in diverse environments. The authentication protocols
are designed to be efficient and resilient to central point of
failures.

SGFS usessymmetric-key certificates(SKC) that resemble
X.509 attribute certificates. SKCs achieve the nice properties
of X.509 certificates, but are light-weight as compared to
X.509 certificates. As a result, SGFS can support different
access control models and can utilize existing policy languages
that are designed with X.509 certificates in mind. In SGFS,
user-to-user delegation is performed using SKC, which in-
cludes all the necessary information required by the file server
to verify user credentials. To ensure traceability of delegation,
the authentication protocols are designed to leave audit trails
that can be used by the system administrators to selectively
revoke users. Further, the use of SKC obviates the need to map
remote group names to local identifiers and greatly reduces the
administrative burden.

A. Organization

The rest of the paper is organized as follows. Section II
presents a detail overview of previous work. Section III
describes the architecture and design of SGFS. The SGFS
authentication protocols are presented in sectionIV. Section V
introduces our user-space prototype. Future work is outlined
in section VII and section VIII concludes this paper.

II. RELATED WORK

Distributed File Systems AFS [62], [63] and NFSv4 [51],
[55], [64], the most commonly used networked file systems
use Kerberos [39], [50] for authentication. As explained in
the introduction section, in order to enable cross-domain col-
laboration between two domains, their system administrators
should collaborate and setup shared secretes - a complicated
operation which is rarely performed between two organiza-
tions. Even if the realms are joined, a user should be registered
to in remote realms in order to access files from that realm.
There is no way to avoid this problem as Kerberos does not

allow user-to-user delegation3. Finally, trust in Kerberos is
binary, that is a if realms are joined a user can grant access to
any remote user or if realms are not joined user cannot share
files with remote users. SGFS support flexible policy that can
be used to perform flexible and fine-grained trust management.
Microsoft Windows 2003 servers [3] is based on Kerberos as
well and has similar shortcomings.

In addition to Kerberos, NFSv4 supports SPKM3 [8] a
public key based authentication mechanism. Every user (local
and remote) has to be registered with the local domain, which
requires system administrator intervention. Further, currently
NFSv4 does not support user-to-user delegation of certificates.

SFS [36], [42] and DisCFS [47] were designed to avoid
some of the drawbacks of AFS and NFS when used with Ker-
beros. SFS [42] introduced a notion ofself-certifying
pathnames - pathnames that effectively contain public key
of the host file server which is used by the client to securely
communicate with the server. The basic SFS protocol was
extended further to provide cross domain authentication [36].
In this approach, a local user adds to the ACL the remote
authentication server name and the remote group name with
which she wants to collaborate. The local authentication server
uses this information to periodically download the group
memberships list from the remote authentication server. Thus,
remote groups become local groups. Since local authentication
server periodically downloads remote group information, a
newly added member of the remote group cannot access
files until the next download cycle. SFS does not provide
client-to-server mutual authentication. In order to provide
mutual authentication every client machine will be required
to have a certificate from some CA trusted by the server.
In addition, this will increase the computational overhead
on the file server. SFS does not have any policy support
and a local user can grant access to any user. SGFS uses
a natural way of delegation; a user creates symmetric-key
certificates for a remote user. AS does not need to download
any remote group membership lists, which keeps the local
group membership information clean and easy to manage.
The SGFS authentication protocols are efficient, ensure client-
server mutual authentication, and have flexible policy support.

CapaFS [58] and DisCFS [47] attempts to provide flexible
and global file sharing by using capability certificate. In
order to access a file, a user has to acquire a capability
certificate from the administrator, which identifies the files
and the operations that can be performed on that file. A user
can delegate his access rights to a remote user by issuing a
capability certificate for that user. The file server trusts the
administrators certificate and verifies the chain of certificates
before granting access to file listed in the certificate. In DisCFS
files are identified by their i-node numbers; however, inode
numbers are not suitable for global identification and can be

3Kerberos allows proxy-delegation, which is sometimes also referred as
user delegation. However, proxy delegation is equivalent to giving away user
password, and, thus, creating a proxy. This delegation modelis different
from user-to-user delegation where the delegator and the delegatee are two
independententities.

reused (a fact that was admitted by the authors). Verifying
a chain of certificates for every file can overload the file
server and increase access latencies since the verificationhas
to performed during data path. Further, since certificates are
generated for every file revocation of certificates can result in
bigger revocation lists. Finally, this model is not suitable for
sharing files within a group of users, rather it is suitable for
simple file sharing, such as for sharing a photo with a friend.

Network Attached Storage DevicesNetwork-attached stor-
age devices [11], [29], [30], [45], [54], [56], [57] enable data
transfers directly between client and storage to provide high
performance data access. The NASD [29], [30] project from
CMU was one the first to widely demonstrate the advantages
of network-attached storage devices. The NASD drives offload
the block management and security operations from the file
system. The drives were intelligent enough to a authorize
access to the locally stored objects. In order to access an
object, every client has to acquire a capability key for that
object from a trusted third party (called file manager). A
capability keyidentifies an object and operations that can be
performed on that object. Using the capability key a user
can authenticate and communicate securely with the drives.
The NASD project was further extended in [11] and laid
foundations to the emerging Object-based Storage (OSD)
paradigm [54]. Files systems for OSD were presented in [12],
[68].

The client obtains a capability for each object; therefore,
the file manager has to be online and presents an attractive
attack target and a central point of failure. If the file manager
is down the entire system comes to a halt. Further, the
capability is bound to the device and the object; therefore,if
the object is replicated (or migrated) to a different device, the
clients have to acquire one or more fresh capability keys [52].
SCARED [11] replaced usedidentity keysinstead of capability
keys. These keys can contain a user’s identity and group
information. SGFS uses SKCs that are designed to mimic
X.509 attribute certificates in a symmetric key setting, which
gives us flexibility to represent different kinds of privileges,
constraints, and policy requirements. For example, our SKC
can be used to represent roles and can be used in systems
that use RBAC [25]. Further, symmetric key certificates offer
us the flexibility of using off-the-shelf policy languages such
as [18], [19], [24] that are designed for X.509 certificates in
mind (to the best of our knowledge a powerful policy manager
for symmetric key techniques is not yet designed).

Similar to our basic authentication protocol described in
section IV-C, all of protocols described above are based on
symmetric key techniques and do not perform any public key
operations on the storage device. These protocols are focused
on providing efficient mutual authentication protocol between
the client and the server. However, they do not provide global
file sharing and secure user-to-user delegation functionality.

Encrypting File SystemsThere have been numerous propos-
als for securing data at rest [17], [20], [26], [31], [32], [34],
[40], [46], [49], [60]. These systems do not trust the storage

servers. Data is encrypted by the writers before it is sent to
the storage and decrypted by readers after is received from
storage. In addition to encryption, some of these systems also
ensure integrity of data and meta-data [26], [31], [40], [46],
[60]. Plutus [35], SiRiUS [60], SNAD [31], SFS [32], [34] and
Cepheus [46] also allow sharing of encryption keys in a group
of users. Naor et al. proposed an encrypting file system that
avoids public-key operations for performance reasons [49].

Other SystemsIn general, public key certificates are used for
authentication in several different areas [13], [14], [67], [69],
[70]. The Taos operating system [70] provides a operating
system component that manages principles and credentials.
Authentication is based on credentials certificates that are as-
signed for each individual. WebFS, the file system component
of WebOS [67] implements a network file system on the
top of HTTP protocol. It runs a user-level web server that
translates file system requests to HTTP requests. It uses the
CRISIS [14] security architecture. Every CRISIS user has a
X.509 certificate and uses this certificate to authenticate with
remote servers. The rest of the systems cited above work on
the same model.

Shibboleth [65] is a joint project of Internet2 and IBM. It is
investigating architectures to support inter-institutional sharing
and access to web services. The Infocard [1] is an effort from
Microsoft to unify databases of identity providers (such as
government and e-commerce sites) to form a federated identity
meta-system. The goal is to minimize the users’ overhead of
identity management. It requires sites to perform changes in
order to conform to the Infocard requirements and have to
adopt to SAML [4]. Similar to Kerberos different domains
have to co-operate in order to set-up a federated identity man-
agement system. A comprehensive survey of storage security
literature can be found in [38], [60].

III. SYSTEM DESIGN

A. The SGFS Symmetric Key Certificates

In SGFS, the authentication server grants every usersym-
metric key certificates(SKC) that are used by the user to
authenticate herself with the storage server and share keys
with them. The SGFS SKCs are designed to mimic the X.509
attribute certificates [5], but in a symmetric key setting.

A SKC is generated by an entityT for a userU to be
verified by a verifierV as follows:

SKCU
T,V = {PU

T , prfKT V
(PU

T)}

Where, prf is a pseudo-random function (HMAC [15] in
practice) . KTV is the key shared between the verifierV

and the certificate generation entityT . PU
T is the public

information of userU defined byT , andKU
T = prfKT V

(PU
T)

is the secret key forU . If PU
T is made available toV , thenV

can generateKU
T , and, thus, share a key withU . Using KU

T ,
U can authenticate withV and assert the privileges listed in
PU

T). A similar but restrictive type of symmetric key certificate
was used in [57].

Properties A symmetric key certificate bindsPU
T to the holder

of the correspondingKU
T and the certificate has a designated

verifierV , but the verifier does not need to contactT each time
to generateKU

T . Similar to X.509 attribute certificates, SKCs
bind information such asidentity, privileges, rolesto the holder
of the key KU

T . They can be long-lived and one can apply
policies similar to that applied to X.509 attribute certificates.
Further, the verifier does not have to contact any other online
entity to verify the certificate. However, since they are based
on symmetric key techniques, SKCs differ from public key
certificates - they can be verified by a single designated party,
they can be used by the user to establish a shared key only
with a single verifier (and vice-versa), they do not provide non-
repudiation, and SKCs cannot be entirely stored in a public
database (KU

T is secret).
A different (and commonly known) notion of symmetric key

certificates [44] was used in [10], [22]. In these approaches,
a SKC is of the formEKT

(KBT , B). Where, KT is the
key known only to a central trusted entityT and KBT is
the key shared by a userB with T . Any user A (that has
EKT

(KAT , A)) who wants to send an authentic message (or
a key) toB should encrypt the message withKAT and send
the encrypted message, andB’s SKC to T . T then translates
the message fromA to B by decryptingB’s SKC and re-
encrypting A’s message toB. The main drawback of this
approach is thatT has to be online to translate messages
between any two entities.

The Contents of a SKC A symmetric key certificate is
comprised of a public partPU

T and a secret partKU
T . The

public part contains the following information:
• a unique identifier of this SKC
• unique identification of the holder
• unique identification of the issuing server
• issuing servers DNS/IP address, if applicable
• list of privileges granted to the holder
• validity period of this SKC
• delegator
• constraints
The holder and the issuer can be identified by local user

name, email address, or reference to public key. If the issuer
is a server, then the identifier can be servers global identifier,
such as DNS name or reference to public key. Privileges can be
a list of roles, list of groups, list of file groups, etc. Constraints
can restrict certain type of access. For example, they can
specify if access granted to the holder is read-only or the time
duration during which a user can access files. Constraints can
also specify whether the holder can delegate a subset of her
privileges to other users.

B. Design Rationale

In this section we explain the factors that have influenced
the design of SGFS.

Low cryptographic overhead on storage serversIn order
to achieve our first goal of designing authentication protocols
that impose minimal cryptographic overhead on the storage

servers, we decided toavoid performing public key operations
on the storage servers. SGFS is designed to be used for
high performance data access in the presence of network
attached storage devices as well as traditional file servers.
Therefore, we do not perform any public key operations on
the storage servers and the authentication protocols are based
on symmetric key operations. User-to-user delegation is also
performed without using certificate chains. This allows the
storage servers to perform their assigned task (indexing, self-
securing, high performance data provisioning etc.) without any
disruption.

Resilience to central point of failuresTo make our system
resilient to central point of failures, we attempted to reduce
interactions between the user and any online entity (except
storage servers), especially between the users and the au-
thentication server. If the user has to frequently contact the
authentication server to get access credentials, then if the au-
thentication server is down or overloaded with authentication
requests, the user will not be able to access files even if the
storage server is available. Therefore, we desire a solution
in which files could be unavailable to the user only when
the storage server is unavailable. To achieve this goal, users
are granted long-term access keys. We believe that in most
of the cases, changes to user credentials are infrequent. For
example, in Role-based Access Control (RBAC) [25], users’
roles are usually associated with their job in the organization,
which do not change frequently [6], [23]. Similarly in UNIX
environments, a particular user’s group membership does not
change daily. The lifetime of access keys should be decided
based on the policies. In SGFS, access keys are storedsecurely
on the client side.One common tradeoff of long-lived access
key is revocation. SGFS design includes revocation servers
which periodically publish appropriate new revocation lists to
the storage servers. The revocation server can also perform
emergency updates if immediate revocation is required.

Flexible file sharing with minimal system administrative
interference In SGFS if a local user Alice wants to share
files with an external user Bob, Alice can delegate a subset
of her access rights to Bob (if the policies allow her to do
so). If Alice’s organization policies allow Bob to delegateto
other users (e.g., his group members), then Bob can further
delegate the access rights acquired from Alice. User-to-user
delegation does not require any system administrative inter-
ference, increases flexibility of sharing, and also reducesthe
management burden.

Traceable delegation and audit trails In practice, even if
Alice is allowed to delegate to Bob, the delegation should be
traceable. Audit logs should be maintained to clearly indicate
the delegator-delegatee relationships. This informationcan be
used for auditing as well as revocation. The SGFS delegation
protocol is designed in such a way that Bob has to perform
one time set-up with the Alice’s authentication server (AS)
to receive a SKC from the AS. During this process the AS
can verify polices and create audit logs. The file server only

trusts the AS and verifies whether the requester has acquired
the SKC from AS. This allows AS to maintain audit logs and
verify policies, keeps the file server simple, and eliminates any
need of verifying certificate chains at the file server.

Flexible policy support Organizations use different policies
in different settings. Many of the existing policy languages,
such as PolicyManager [19], KeyNote [18], and SPKI [24],
offer the ability to formally express policies making it possible
to automate enforcement. These systems were designed with
X.509 certificates in mind. To exploit the flexibility of X.509
certificates in a non-public key setting and at the same time
use the existing policy languages, SGFS uses symmetric key
certificates that contain similar information as that contained
in the X.509 certificates.

C. System Architecture

Fig. 1. The SGFS Architecture.

Figure 1 depicts the SGFS architecture. It consists of five
entities: authentication server (AS), policy manager (PM),
storage servers, clients4 (or end users), and revocation servers.

The AS is trusted by all other entities. It is responsible
to authenticate users and give them appropriate credentials.
The AS shares a unique symmetric key with every storage
server and is responsible for securely managing these keys.It
also maintains a database of local users and their associated
privileges and group memberships. We assume that the AS
can communicate securely with all entities. The PM is trusted
to set appropriate policies.

The revocation server is responsible to store and publish
revocation lists. It periodically publishes the appropriate new

4“User” and “Client” refer to the end user of the system and areused
interchangeably.

revocation lists to the storage servers. It can also send emer-
gency revocation messages to storage servers, if immediate
revocation is required. It is assumed that the revocation server
can securely communicate with the storage servers and the
AS.

Clients are not trusted. They can launch various active and
passive attacks. Communication links between the clients and
the storage servers are assumed to be insecure. Since in a
global file sharing system a client can access files from any
computer (e.g., home computer, remote domains etc.), we do
not assume any time synchronization between the clients and
the storage servers.

Storage servers are trusted to perform their part of authen-
tication and authorization securely. The data stored on these
servers is not encrypted. In the future, this can be performed
using existing file encryptors [17], [31], [32], [34], [40],[46],
[60].

D. Usage Overview

Let us denote the key shared between the AS and a SGFS
storage serverS asK. Let Alice be a local user belonging to
groupgenomics and Bob be an external user (belonging to
a different organization). Let user Alice be denoted asA and
let user Bob be denoted asB.

Local User Auth. Only the AS is trusted by the storage
servers. Therefore, if Alice wants to access files stored onS,
Alice should acquire a SKC forS from AS. This is denoted
by step 1 in figure 1. After receiving Alice’s request, AS
authenticates Alice and acquires necessary information, such
as Alice’s group membership list, policies, and constraints. It
can also consult with the PM to perform some initial policy
verification. Using this information, AS issues a symmetric
key certificate for Alice as follows.

SKCA
AS,S = {PA

AS ,KA
AS = MACK(PA

AS)}

Alice securely storesSKCA
AS,S and usesKA

AS to initiate a
mutual authentication protocol (details in section IV) with
S. The storage server knowsK, and, hence can generate
KA

AS using PA
AS sent by Alice during the authentication

process. UsingKA
AS Alice andS can authenticate each other

and securely communicate with each other. After successful
completion of the mutual authentication phase (step 2 of
figure 1),S asserts the policies and constraints listed by AS in
PA

AS . Finally, the storage server extracts the group membership
information or role-privilege information (depending upon the
access control model) and performs access control using the
ACLs stored locally along with the files.

Delegation Now let us see how a local user Alice and
her genomics group can share files with an external user
Bob. Alice first generates a symmetric key certificate for
Bob SKCB

A,AS = {PB
A ,KB

A = MACKA

AS

(PB
A)} and sends

SKCB
A,AS along with herPA

AS securely to Bob (step 3 of
figure 1). Alice includes necessary information inPB

A and
includes hergenomics group in the group membership list

in PB
A . TheSKCB

A,AS is a notification that tells AS that Alice
wants to add Bob to thegenomics group.

After receiving SKCB
A,AS , Bob can go to the AS and

authenticate himself usingKB
A (step 4 of figure 1). Using

PA
AS the AS can re-generateKA

AS and verifySKCB
A,AS . AS

then performs policy checks, for example it verifies if Aliceis
allowed to delegate. If all checks succeed, AS then generates
a new SKCB

AS,S for Bob and sends it to securely to Bob.
Bob has thus become a local user with rights to access files
belonging to groupgenomics . As in the case of Alice, Bob
usesSKCB

AS,S to authenticate withS and access files stored
on S. The file server does not need know that Bob is an
external user (although this information is included inPB

AS

for auditing). It only verifies that Bob has a valid SKC from
the AS and grants access based on the information embedded
in SKC. Further, the file server does not need to map any
remote group-ids as all the necessary local group information
is already in SKC. If Bob needs to acquire a key for a different
storage server, Bob can useSKCB

AS,S again to get a new SKC
from the AS.

Transparency It is important to note that step 1,2,4, and 5
are done transparently and the user is not aware of these
operations. All SKCs are automatically stored securely at
the client. Once the SKC for the storage server is available,
the SGFS client initiates the authentication protocol withthe
server whenever necessary.

IV. A UTHENTICATION PROTOCOLDETAILS

Notations used for the protocol description are as follows:

S Storage Server
AS Authentication Server

SKCC
T,V

Symmetric key certificate
generated byT for verifier V given to userC

K Secret key shared betweenAS andS

MACki
Keyed-MAC function using keyki

rC unique random number generated byC

H Collision resistant hash function

A. Acquiring SKC for Local Users

A local user Alice acquires her SKC from theAS on the
first access to a storage serverS. Initial SKCs can also be
transferred to Alice when her account is created, e.g., using
email. Let A denote Alice andB denote Bob. The protocol
messages are shown below.

A → AS : SKC request (1)

AS → A : SKCA
AS,S = {PA

AS ,MACK(PA
AS)} (2)

Upon receipt of message (1), AS authenticates Alice and
verifies that Alice is a legitimate user of the system. The
authentication protocol can be any of the standard authentica-
tion protocols. AS then queries the user database and acquires
Alice’s group membership information. AS also acquires con-
straints, and other policy information from PM and asks PM
to perform initial policy verification, if any. AS then fills the
necessary fields (described in section III-A) ofPA

AS , generates
the SKC as shown in (2) and securely transfers it to Alice.
Since SKCs are long-lived no further communication with AS

is required. Alice can directly access files fromS without
contacting AS.

B. Acquiring SKC for Remote Users

Now let us see how an external user Bob acquires a SKC
to access files stored onS.

1) Naive Approach: The protocol messages are shown
below:

A → B : SKCB
A,S , PA

AS (3)

B → S : M,PB
A , PA

AS ,MACKB

A

(M) (4)

Where M = {rB , SKC request}, and SKCB
A,S =

{PB
A ,KB

A = MACKA

AS

(PB
A)}. In order to share files with

Bob, Alice sendsSKCB
A,S to Bob in message (3). A adds

genomics to the group list inPB
A . SKC is signed by Alice

usingKA
AS and anyone who can generate this key can verify

the authenticity ofSKCB
A,S .

Upon receipt of (4),S can generateKA
AS = MACK(PA

AS).
S can then generateKB

A = MACKA

AS

(PB
A). Thus,S and B

now shareKB
A and they can authenticate each other using

this key. After successful authentication,S extracts the group
membership information fromPB

A and performs access control
accordingly.

DiscussionThis approach is flexible since Alice can delegate
access rights to any user. Further,B can directly access file
stored onS, S can efficiently authenticateB, andS can make
access control decisions by itself.

However, the first drawback of this scheme is that sinceA

andB both knowKB
A , A can access files asB. Therefore,S

cannot distinguish betweenA andB.
The second drawback of this scheme is thatS cannot per-

form any policy verification sinceS cannot uniquely identity
B or B’s parent organization. For example, if policies allow
A to delegate access rights to users from a certain companyS

cannot determine whetherB belongs to that company. Even
if S was able to determineB’s parent organization, in order
to verify policies S should have all the policy information
available to it. This will either require replication ofPM on
all the storage servers or constant online communication with
the PM . Both the approaches are inefficient.

The third drawback is thatAS is completely unaware of
any delegations byA. Therefore, all storage servers will have
to maintain audit trails andAS will have to constantly gather
these audit trails to ensure that policies are met and gather
information for revocation purposes.

Summary Therefore, we need - 1) a way to uniquely identify
B, 2) a way to uniquely identifyB’s parent organization 3)
a way to efficiently verify policies, and 4) a way to maintain
audit trails atAS.

2) Final Approach: Alice sends the following information
to Bob:

A → B : SKCB
A,AS , PA

AS (5)

Where, SKCB
A,AS = {PB

A ,KB
A = MACKA

AS

(PB
A)}. Alice

can define her own policies for Bob by setting appropriate

fields in thePB
A . For example, Alice can set the expiry period

of SKCB
A,AS ; she can also specify whether Bob can further

delegateSKCB
A,AS to his group members.

UsingSKCB
A,AS Bob acquires a SKC from AS as follows:

B → AS : M,PB
A , PA

AS ,MAC∗

KB

A

(M) (6)

AS → B : SKCB
AS,S = {PB

AS ,KB
AS} (7)

Where, M = {rB , SKC req} and KB
AS = MACK(PB

AS).
Upon receipt of message (6), the authentication server gen-
eratesKA

AS = MACK(PA
AS) and KB

A = MACKA

AS

(PB
A).

It then generatesMACKB

A

(M) and compares it withMAC∗

sent in (6). If they are same, AS concludes thatA has delegated
some of her rights toB. Then, AS checks whetherA is allowed
to delegate the rights included inSKCB

A,AS .
If yes, AS checks with the PM whether the delegation is

conforming to the policies.PB
A which is included in Bob’s

symmetric key certificate generated by Alice (SKCB
A,AS),

contains the serial number of Bob’s public key certificate that
can be issued by his organization. This is included because
Alice’s local policies may dictate that Alice can delegate
only to users from certain organizations. Using Bob’s certifi-
cate Alice’s PM can easily perform this check by verifying
whether Bob’s certificate is from a trusted CA. This feature
can be more useful in enterprise where users are partially
trusted and the PM wants to prevent a malicious insider
from delegating access rights to a user from a competing
organization. Universities, for example, may trust their local
faculty members to delegate permission at will. In this case,
the system administrator can to configure the PM accordingly
and the PM will not verify Bob’s certificate. Thus, by setting
suitable policies, one can achieve a balance between user
delegation and centralized control.

If all checks succeed, AS creates a new SKC for Bob and
sends it to Bob in (7). Bob now has rights to access files
belonging to groups listed inPB

AS . SKCB
AS,S allows Bob to

access files belonging to thegenomics group stored onS. If
Bob needs additional SKCs to access files stored (belonging to
thegenomics) on other storage servers, then Bob can repeat
step (6) above indicating the name of the storage server in the
request.

C. Client - Server Mutual Authentication

The SGFS storage servers only trust the AS. Any client
no matter remote or local should get a SKC from the AS to
authenticate with the storage server. We have already discussed
above how local and external users can acquire a SKC from
the AS. Below we discuss how a userA with a SKCA

AS,S can
authenticate withS. The protocol messages are as follows.

A → S : rA, PA
AS (8)

S → A : rS ,MAC∗

KA

AS

(rA, rS , A) (9)

A → S : R,MACKA

AS

(rS , rA, R, S) (10)

Upon receipt of (8),S checks if A’s SKC is expired by
checking the expiry field inPA

AS . If not expired,S generates

KA
AS = MACK(PA

AS) and sends a response toA as shown
in (9). Upon receipt of (9)A generatesMACKA

AS

(rA, rS , A)
and verifies that thisMAC is same as theMAC∗ sent by
S in (9). If yes, the client concludes thatS is authentic
(since onlyAS andS know KA

AS). A uses the actual request
R (e.g, read,write) andrS acquired in (9) to build message
(10). S verifies the authenticity of message (10) by generating
MACKA

AS

(rS , rA, R, S) and by checking it against theMAC

sent byA. At the end of step (10)S concludes thatA has
authentic SKC created by AS (and thusA is an authentic
client). S then checks if the request meets all the policy
requirements listed inPA

AS . Finally, S extracts the group
membership list fromPA

AS and checks if the user can perform
the requested operation on the requested object by checking
that object’s ACL. If all checks succeed, thenS serves the
request and sends back the appropriate response.

A andS can optionally setup a session keys one to encrypt
network traffic and another to ensure integrity (using HMAC)
as follows:

k1 = MACKA

AS

(“ENC ′′, A, rB)

k2 = MACKA

AS

(“HMAC ′′, B, rA)

The client and the server can use these keys to ensure confi-
dentiality and integrity of messages and the data transferred in
subsequent communication. Finally, before verifying message
(10) the server should also check ifSKCA

AS,S is revoked by
searching its local revocation list.

D. Discussion

Summary The client-server mutual authentication protocol
(section IV-C) prevents replay attacks and does not require
any time synchronization between the clients and the stor-
age servers. During mutual authentication, the server has to
maintain two random numbers. After mutual authentication,if
secure data transfer is desired, then the storage server hasto
maintain one session key for the duration of the data transfer.
Only symmetric key operations are performed on the storage
servers, which are computationally inexpensive. Administra-
tors of collaborating domains do not have to perform any
manual co-operation. A user can securely delegate access
rights to another user without any administrative intervention.
If necessary, Administrators can set appropriate policiesto
ensure that users do not misuse their delegation powers.

SKC certificates gives us the flexibility to use SGFS in
various access control models and with existing policy man-
agers. SKCs are long-lived and can be transferred in an offline
manner to local users, e.g., via email. Users do not have to
frequently contact AS; therefore, users can keep accessingthe
data without any disruption even when the AS is down or
overloaded. Further, users can securely transfer SKCs from
one machine to another and access files seamlessly from any
machine. SGFS authentication protocols do not require to
maintain any long-term state on the storage servers. Using
SKCs storage servers can make on-spot authorization decisions
without having to contact any remote server. Therefore, SGFS

allows secure, flexible, failure resistant and efficient global file
sharing without any administrative interference.

Extensions For mutual authentication, we purposely used
random numbers instead of timestamps, since in a global file
sharing system it is not realistic to assume that all client
machines will be time synchronized with all of the storage
servers. Due to this requirement, the mutual authentication
protocol as described in section IV-C requires two extra rounds
of communication as compared to a mutual authentication pro-
tocol between time synchronized entities [44]. In environments
where time synchronization is feasible, these communication
rounds can be avoided by using timestamps instead of random
numbers and making simple changes to the protocol [30].
Using time stamps will also avoid the requirement of caching
of two random numbers on the storage servers during the
authentication process.

If storage servers have the ability to cache some information
per session, then session keys can be cached for a longer dura-
tion to avoid performing mutual authentication for each client
request. In addition standard techniques, such as maintaina
single counter or using server encrypted cookies can be used
to reduce the cache state on the server.

It can happen that Bob can receive multiple SKCs for one
server from Alice. In this case we can extend the client-
server mutual authentication by including multipleMACs in
(8). Optionally, the SGFS client can automatically “redeem”
multiple SKCs for one server by sending them toAS and
receive a singe combined SKC in exchange. In this case,
Bob will have to maintain only one symmetric certificate per
storage server.

RevocationSince the SGFS SKCs are long-lived we need to
maintain revocation lists at the revocation server. Each SKC
has an associated expiry information. Storage servers check if
the SKC is expired before granting access to the users.

In addition to expiry, AS can selectively revoke a user’s
SKC by publishing the SKC identifier to the revocation
servers. The revocation servers can periodically send the
appropriate revocation lists to the appropriate servers. The
SKC can contain the identity of the verifier (storage servers).
The revocation server only needs to inform that storage server.

The storage servers keep a copy of revocation lists locally
so that they do not have to contact the revocation server
on every request. The revocation lists on the storage servers
can be organized according to groups to enhance searching
operations. For example, Aguilera et al. maintained a bitmap
of identities of revoked certificates in the RAM of a controller
of a block based disk [9]. Each user certificate was associated
with a unique ID and a group ID. The disk maintained a
list of group IDs and a bitmap indicating revocation state of
the certificate IDs. Certificate IDs were recycled by removing
group IDs from the list. The revocation table contained a tuple
of 6-bit index, a 64-bit group ID value, and 8K-bit bitmap for
certificate IDs. On average, each certificate took only 1.01 bits
in a table of size 64KB. We can use a similar technique to
store revocation lists on the storage servers.

Fig. 2. The SGFS system components

V. PROTOTYPEIMPLEMENTATION

Figure 2 represents the SGFS system. The SGFS client runs
in user space and is layered on the top of FSFS [21], a user
space file system designed to be mounted through an interface
provided by FUSE [27]. The SGFS server is layered on top of
the FSFS server, which is a multi-threaded user space daemon
that accepts clients’ requests on a TCP socket.

We chose FUSE because it allowed us to implement our
concepts in user space without having to manipulate complex
kernel code. We chose FSFS because it is already a distributed
file systems that allows users to access files stored on a remote
server. The original FSFS code is embedded with its own
security layer. We stripped-down the FSFS (bFSFS) code and
used the bare version that allowed multiple users to access
files stored on the remote server. The SGFS client and server
code is not specifically tied to FSFS and can be layered on
top of any file system. Our ideal goal is to integrate SGFS
into more general purpose file systems, such as NFS. Hence,
we decided to build the SGFS system in a modular fashion
without tying it to any particular file system.

Authentication Server AS is portable to any Unix-like operat-
ing system. All cryptographic operations are performed using
the OpenSSL 0.9.8 [53] library. The AS uses MySQL database
v4.1 [48] to store user information of local users. There is
one entry in the database for every user. Each record contains
the username, user ID, user group membership list, user’s
public key, and constraints. Currently only UNIX style user
groups are supported. This will be extended to support other
access control mechanisms, such as roles and file groups. The
AS shares a unique symmetric key with each storage server.
Currently, this is done manually and in the future secure key
distribution algorithms can be used.

SGFS Client Every SGFS user is associated with a public-
private key pair. These keys are used to securely store SKCs
(encrypted using the user’s public key), to securely commu-
nicate with the AS, and to securely communicate with other
users. SGFS includes tools that assist users to create thesekey-

pairs and get them signed from local certification authority.
By default the public-key certificates, encrypted private keys,
and encrypted SKCs are stored in user’s home directory at
/home/$username/.sgfs/keys

All of the authentication protocols described in section IV
are implemented and fully functional. Below we demonstrate
how the client works by an example. Lets assume that the
SGFS serversgfs.umn.edu is mounted at/sgfs . Lets say
that the local user Alice attempts to access/sgfs/foo . The
SGFS client uses Alice’s private key to automatically retrieves
the SKC for the destination server, decrypts it, and initiates
the mutual authentication protocol (section IV-C). The server
behaves according to the protocol and grants access based
on information included in the public part of Alice’s SKC
(PA

AS). If the server is able to cache session keys for a longer
time, the SGFS client maintains a SGFS context for Alice
after the mutual authentication phase. This context contains
the shared session keys that are used to secure subsequent
communications with the storage server. All file tansfers be-
tween the client and the server are encryted using Blowfish in
OFB mode and then HMACed to guarantee integrity. If Alice
does not have a SKC, then the SGFS client uses Alice’s private
key to authenticate with the AS and acquires a SKC. It stores
the encrypted SKC in/home/alice/.sgfs/keys/skc_
store and then initiates the mutual authentication protocol
with the AS. The AS is contacted only when the SKC is
expired.

Since all the keys are stored securely, Alice can easily trans-
fer her files from his office computer to her home computer
and remote files just as she would access from her office
computer. Thus, a user can move from one machine to another
and access file seamlessly.

We have also develped a command-line tool to assist Alice
to delegate her access rights to a remote user Bob and
generate a SKC for Bob (see section IV-B.2 for details).
The SKC is encrypted using Bob’s public key. Alice can
send this SKC to Bob. After receiving the delegated SKC
from Alice, the only operation that Bob has to perform is
to add this SKC to his/home/bob/.sgfs/keys/skc_
delegation . When Bob tries to access/sgfs/foo , Bob’s
SGFS client automatically, acquires the delegated SKC from
/home/bob/.sgfs/keys/skc_delegation , authenti-
cates with Alice’s AS and (as described in IV-B), securely
stores the SKC returned by AS in/home/bob/.sgfs/
keys/skc_store . Once the SKC is available, Bob’s SGFS
client can use it to mutually authenticate withsgfs.umn.
edu and access files securely.

VI. PRELIMINARY EVALUATION

In order to measure the performance of SGFS, two Pentium
4, 2.5GHz computers with 1GB memory running Suse Linux
9.3 were connected via 100Mbps Ethernet. One computer was
configured as a client and one as a server. First, bFSFS was
run on the client and server and performance analysis was
conducted. Then, bFSFS with SGFS was run on the client
and server and the performance analysis was repeated.

a. SGFS read performance. b. SGFS write performance
Fig. 3. Iozone Throughput

Iozone 3.257 [2] was used to measure the read/write perfor-
mance of the filesystem. Figure 3 illustrates the performance
of read and write using 16KB blocks, reading and writing file
sizes from 64KB to 1024KB. During this experiment shared
session keys were established between the client and the server
and all data was encrypted using Blowfish in OFB mode [44]
and HMACed using SHA-256.

The performance difference between bFSFS and SGFS is
due to several factors: first, encryption and decryption is not
done in a pipelined fashion. That is, a large block of data
is encrypted completely before attempting to send over the
network. As a result, the the receiving end of the SGFS system
remains idle for that period of time. Pipelining the encryption
and networking stages should reduce this penalty considerably.
In addition, FSFS read throughput is much higher than write
throughput, which results in more overhead for reads, as
encryption becomes a larger fraction of total request service
time.

Further, we are using encrypt-then-mac authenticated en-
cryption by following the recommendation by Bellare and
Namprepre [16]. However, this is inefficient and difficult
to pipeline since we first need to encrypt and then com-
pute HMAC for the whole encrypted block. In the future
implementation, we will use new modes of operation such
as GCM [43] and OCB [61], which provides authenticated
encryption without such serialization.

The gap between the read and the write performance is due
to underlying filesystem and OS characteristics, as well as
peculiarities of the FSFS protocol that require more network
traffic for writes. FSFS splits every request into four requests:
a stat request for the destination directory, a stat requestfor
the file, a open request for the file, and finally, followed by
multiple write requests. These problems are straight-forward
to amend with little modifications to the current code.

VII. F UTURE IMPLEMENTATION WORK

The SGFS system is in a preliminary implementation stage.
Even though the authentication protocols are in place, there
are several challenges that need to be addressed.

Global Naming and Automounting Currently FSFS client
can mount only one file server, which has to be specified while
running the FSFS client. It allows multiple users on the same
machine to access the mounted file server. However, since one
FSFS client can access only one server, the SGFS users can
access only one server through one SGFS client. To eliminate
this problem, the next version of SGFS system will include
two new features:global namingandauto mounting.

We plan to modify FSFS client so that it will be
mounted on/sgfs . All SGFS pathnames will be of the
following format:/sgfs/file.server.name/actual.
pathname . For example, in order to mount filesys-
tem /genomics/experiments stored onsgfs.umn.
edu , Alice will run emacs˜/sgfs/sgfs.umn.edu/
genomics/experiments . FUSE will transfer control to
the FSFS client. The FSFS client will hand-over the file
server namesgfs.umn.edu and the request to read file
foo to the SGFS client. The SGFS client will acquire Al-
ice’s SKC for sgfs.umn.edu , mutually authenticate with
sgfs.umn.edu , and automatically mount/genomics/
experiments . This will greatly improve the flexiblity of the
SGFS client. A user will be able to access any file server in the
world as long as she has the appropriate SKC to authenticate
with that server. We draw this inspiration from the SFS file
system [42] that itself has the file server information in the
pathname and uses a automounter to mount remote file systems
on demand. Several challenges in building such a system were
identified in [41]

Revocation and Policy Verification The current implemen-
tation does not include revocation servers and policy man-
agers. We have already described the high-level design issues
related to revocation servers in section IV-D. One of the
main challenge realted to policy verification is choosing the
appropriate policy manager. To the best of our knowledge all
of the existing policy managers are tailored for public key
certificates. Therefore, to exploit the existing policy managers
and give us the flexibility of public key certificates we defined
SKC that mimic public key certificates. We are investigating
appropriate policy languages that are easy to customize and

flexible enough to be used in various access control models.
We also have to evaluate the policy engines associated with
these languages to choose the one that provides better perfo-
mance.

VIII. C ONCLUSION

In this paper, we have presented the architecture and design
of SGFS, a secure global file sharing system tailored for
efficient data access. We have outlined important requirements
for a global file sharing system that have influenced our design.
SGFS provides secure, efficient, and flexible global file sharing
with minimal administrative interference. Users can delegate
access permissions to remote users based on the local policies.
Further, SGFS supports off-the-shelf policy engines that can be
used by the system administrators to control user delegations.
Due to its minimal cryptographic overhead on the storage
servers, SGFS is suitable for emerging intelligent storage
devices. We have developed a easy to use user-space prototype
that features our authentication protocols and simple tools that
assist users to create keys and delegate access rights to remote
users. All symmetric key certificates are stored securely and
can be moved from one machine to another to access in a
seamless manner. Experimental results confirm that with little
modifications, overhead of SGFS protocols will be negligible.

IX. A CKNOWLEDGEMENTS

This work was supported in part by the National Science
Foundation (NSF) under Grant CNS-0448423 and by the In-
telligent Storage Consortium at the Digital Technology Center
(DTC), University of Minnesota.

REFERENCES

[1] Infocard. http://blogs.msdn.com/andyhar/ .
[2] IOzone Filesystem Benchmark. http://www.iozone.org/.
[3] Kerberos authentication in windows server 2003.http://www.

microsoft.com/windowsserver2003/technologies/
security/kerber%os/default.mspx .

[4] Security assertion markup language.http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=security .

[5] Internet x.509 public key infrastructure certificate and crl profile. IETF
RFC 2459, January 1999.

[6] Role-Based Access Control. Artech House, Inc., 2003.
[7] A. Acharya, M. Uysal, and J. Saltz. Active disks: programming model,

algorithms and evaluation. InASPLOS-VIII: Proceedings of the eighth
international conference on Architectural support for programming
languages and operating systems, pages 81–91, 1998.

[8] W. Adamson and O. Kornievskaia. Low infrastructure mutualauthenti-
cation using spkm-3. Internet-Draft, October 2005.

[9] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. Oertli, D. G.
Andersen, M. Burrows, T. Mann, and C. Thekkath. Block-LevelSecurity
for Network-Attached Disks. InProc. 2nd USENIX Conference on File
and Storage Technologies, March 2003.

[10] G. Ateniese and S. Mangard. A new approach to dns security (dnssec).
In Proceedings of the 8th ACM conference on Computer and Commu-
nications Security, New York, NY, USA, 2001.

[11] A. Azagury, R. Canetti, M. Factor, S. Halevi, E. Henis, D. Naor,
N. Rinetzky, O. Rodeh, and J. Satran. A two layered approach for
securing an object store network. InSISW, December 2002.

[12] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky,
O. Rodeh, J. Satran, A. Tavory, , and L. Yerushalmi. Towards anobject
store. InIn the 20th IEEE Symposium on Mass Storage Systems, 2003.

[13] J. Bacon, K. Moody, and W. Yao. A model of oasis role-basedaccess
control and its support for active security.ACM Transactions on
Information and System Security (TISSEC), 5(4):492–540, 2002.

[14] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin. The crisis wide
area security architecture. InProceedings of the 7th USENIX Security
Symposium, San Antonio, Texas, January 1998.

[15] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash function for
message authentication. Proceedings of CRYPTO, 1996.

[16] M. Bellare and C. Namprempre. Authenticated encryption:Relations
among notions and analysis of the generic composition paradigm. In
ASIACRYPT ’00: Proceedings of the 6th International Conference on the
Theory and Application of Cryptology and Information Security, 2000.

[17] M. Blaze. A cryptographic file system for UNIX. InProceedings of
the 1st ACM Conference on Communications and Computing Security,
Fairfax, VA, 1993. ACM Press.

[18] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The
keynote trust management system version 2.

[19] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management.
In Proceedings of the IEEE Symposium on Security and Privacy,
Washington, DC, USA, 1996.

[20] E. Z. Charles P. Wright, Michael C. Martino. Ncryptfs: A secure and
convenient cryptographic file system. InUSENIX Annual Technical
Conference, June 2003.

[21] N. Cocchiaro. Fsfs - the fast secure file system.http://fsfs.
sourceforge.net/ .

[22] D. Davis and R. Swick. Network security via private-keycertificates.
ACM Operating System Review, 1990.

[23] D. G. D.F. Ferraiolo and N. Lynch. An examination of federal and
commercial access control policy needs. In NIST-NCSC National
Computer Security Conference, 1993.

[24] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
Spki certificate theory. IETF RFC (Proposed Standard) 2693,September
1999.

[25] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R.Chan-
dramouli. Proposed NIST standard for rolebased access control. ACM
Transactions on Information and System, August 2001.

[26] K. Fu. Group sharing and random access in cryptographicstorage file
system. Master’s thesis, MIT, 1999 June.

[27] Fuse: Filesystem in userspace.http://fuse.sourceforge.
net/ .

[28] G. R. Ganger and D. Nagle. Better security via smarter devices. In
HotOS, pages 100–105, 2001.

[29] G. Gibson, D. Nagle, K. Amiri, F. Chang, E. Feinberg, H. Gobioff,
C. Lee, B. Ozceri, E. Riedel, D. Rochberg, and J. Zelenk. Fileserver
scaling with network-attached secure disk. InSIGMETRICS, June 1997.

[30] H. Gobioff, G. Gibson, and D. Tygar. Security for network attached stor-
age devices. Technical report, Carnegie Mellon University, Pittsburgh,
PA, October 1997.

[31] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing
Remote Untrusted Storage. InProceedings of the Tenth Network
and Distributed Systems Security (NDSS) Symposium, pages 131–145,
February 2003.

[32] J. Hughes and D. Corcoran. A universal access, smart-card-based, secure
filesystem. InAtlanta Linux Showcase, October 1999.

[33] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan,
G. Ganger, E. Riedel, and A. Ailamaki. Diamond: A storage architecture
for early discard in interactive search. InProceedings of USENIX File
and Storage Technologies (FAST), April 2004.

[34] C. F. J. Hughes. Architecture of the secure file system. InProceedings of
the Eighteenth IEEE Symposium on Mass Storage Systems, April 2001.

[35] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K.Fu. Plutus
— scalable secure file sharing on untrusted storage. InUSENIX File
and Storage Technologies (FAST), San Francisco, CA, March 2003.

[36] M. Kaminsky, G. Savvides, D. Mazieŕes, and M. F. Kaashoek. De-
centralized user authentication in a global file system. InProceedings
of the 19th ACM Symposium on Operating Systems Principles, Bolton
Landing, NY, October 2003.

[37] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A casefor intelligent
disks (idisks).ACM SIGMOD Rec., 27(3):42–52, 1998.

[38] V. Kher and Y. Kim. Securing distributed storage: challenges, tech-
niques, and systems. InProceedings of the 2005 ACM workshop on
Storage security and survivability (StorageSS), pages 9–25, 2005.

[39] J. Linn. The kerberos version 5 GSS-API mechanism. RFC 1964, June
1996.

[40] E. Mauriello. TCFS: Transparent cryptographic filesystem. Linux
Journal, 40, August 1997.

[41] D. Mazieres. A toolkit for user-level file systems. InProceedings of the
General Track: 2002 USENIX Annual Technical Conference, 2001.

[42] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating
key management from file system security. InProceedings of 17th ACM
Symposium on Operating Systems Principles (SOSP ’99), Kiawah Island,
South Carolina, December 1999.

[43] D. A. McGrew and J. Viega. The security and performance ofthe
galois/counter mode of operation (full version). Cryptology ePrint
Archive, Report 2004/193, 2004.

[44] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.Handbook of
Applied Cryptography. CRC Press, October 1996.

[45] R. V. Meter, S. Hotz, and G. Finn. Derived virtual devices: A secure
distributed file system mechanism. InProceedings of the Fifth NASA
Goddard Space Flight Center Conference on Mass Storage Systems and
Technologies, College Park, MD, September 1996.

[46] E. Miller, D. Long, W. Freeman, and B. Reed. Strong security for
distributed file systems. InProceedings of the Conference on File and
Storage Technologies (FAST 2002), pages 1–13, January 2002.

[47] S. Miltchev, V. Prevelakis, S. Ioannidis, J. Ioannidis, A. Keromytis, and
J. Smith. Secure and flexible global file sharing. InProceedings of the
USENIX Technical Annual Conference, Freenix Track, 2003.

[48] Mysql database.http://dev.mysql.com/ .
[49] D. Naor, A. Shenhav, and A. Wool. Toward securing untrusted storage

without public-key operations. InStorageSS ’05: Proceedings of the
2005 ACM workshop on Storage security and survivability, 2005.

[50] B. C. Neumann and T. Ts’o. Kerberos: An authentication service for
computer networks. IEEE Communications, 32(9):33–38, September
1994.

[51] NFS Version 4.http://nfsv4.org/ .
[52] C. Olson and E. L. Miller. Secure capabilities for a petabyte-scale object-

based distributed file system. InStorageSS ’05: Proceedings of the 2005
ACM workshop on Storage security and survivability, 2005.

[53] OpenSSL Project team. Openssl, May 2001. http://www.openssl.org/.
[54] Information technology - SCSI Object-Based Storage Device Commands

-2 (OSD-2). T10 Working Draft, October 2004.http://www.t10.
org/ftp/t10/drafts/osd2/osd2r00.pdf .

[55] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler,
D. Noveck, D. Robinson, and R. Thurlow. The NFS version 4 protocol.
SANE 2000, May 2000.

[56] B. Reed, E. Chron, R. Burns, and D. D. E. Long. Authenticating network
attached storage.IEEE Micro, 20(1):49–57, January 2000.

[57] B. C. Reed, M. A. Smith, and D. Diklic. Security considerations when
designing a distributed file system using object storage devices. InSISW,
December 2002.

[58] J. T. Regan and C. D. Jensen. Capability file names: Separating
authorisation from user management in an internet file system. In
USENIX Security Symposium, 2001.

[59] E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage for large-scale
data mining and multimedia. InProceedings of the 24th International
Conference on Very Large Data Bases (VLDB), 1998.

[60] E. Riedel, M. Kallahalla, and R. Swaminathan. A frameworkfor
evaluating storage system security. InProceedings of the Conference
on File and Storage Technology, January 2002.

[61] P. Rogaway, M. Bellare, and J. Black. Ocb: A block-cipher mode of
operation for efficient authenticated encryption.ACM Trans. Inf. Syst.
Secur., 6(3), 2003.

[62] M. Satyanarayanan. Integrating security in a large distributed system.
ACM Transactions on Computer Systems, 7(3):247–280, 1989.

[63] M. Satyanarayanan. Scalable, secure, and highly available distributed
file access.IEEE Computer, 23(5), May 1990.

[64] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck. NFS version 4 protocol. RFC 3530, April 2003.

[65] The shibboleth project.http://shibboleth.internet2.edu/ .
[66] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and

G. R. Ganger. Self-Securing storage: Protecting data in compromised
systems. InOSDI, October 2000.

[67] A. Vahdat, P. Eastham, C. Yoshokawa, E. Belani, T. Anderson, D. Culler,
and M. Dahlin. Webos: Operating system services for wide area
applications. InThe Seventh IEEE Symposium on High Performance
Distributed Computing, 1997.

[68] F. Wang, S. Brandt, E. Miller, and D. Long. OBFS: A file system
for object-based storage devices. In21st IEEE / 12th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST), 2004.

[69] B. S. White, M. Walker, M. Humphrey, and A. S. Grimshaw. Le-
gionfs: a secure and scalable file system supporting cross-domain high-
performance applications. InProceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM), 2001.

[70] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication
in the taos operating system.ACM Transactions on Computer Systems
(TOCS), 1994.

