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ABSTRACT

Keypads are commonly used to enter personal identification
numbers (PIN) which are intended to authenticate a user
based on what they know. A number of those keypads such
as ATM inputs and door keypads provide an audio feedback
to the user for each button pressed. Such audio feedback are
observable from a modest distance. We are looking at quan-
tifying the information leaking from delays between acoustic
feedback pulses. Preliminary experiments suggest that by
using a Hidden Markov Model, it might be possible to sub-
stantially narrow the search space. A subsequent brute force
search on the reduced search space could be possible with-
out triggering alerts, lockouts or other mechanisms design
to thwart plain brute force attempts.
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1. INTRODUCTION

Personal Identification Numbers (PIN) and access codes
are common secrets used to authenticate users. Examples
include passcode locks on touch screen smartphones, access
codes for restricted doors (such as those in medical facili-
ties) and PINs for ATMs. A number of PIN input devices
have acoustic feedback mechanisms, especially if the buttons
are virtual and drawn on a touch screen. An attacker at a
modest distance can overhear those acoustic signals and use
them to reduce the passcode combination search space. This
attack becomes more important for stand-alone door access
codes which are not coupled with a device that the attacker
must possess such as an ATM card. To compound the prob-
lem, those keypads tend to have a loud acoustic feedback to
maximize the chances of the user hearing it in a noisy en-
vironment. We apply the techniques developed by Song et
al. [4] for inter-keystroke timing attacks including a gaussian
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model for the inter-keystroke timings followed by a Hidden
Markov Model [3]. The original attack was modeled for a
full keyboard and used timings observed by the lower lay-
ers of the network communication protocol stack. We adapt
those techniques to numeric keypads and use acoustic signals
of keystrokes on those numeric keypad. We are investigat-
ing the practicality of such attacks in the real world against
deployed systems that use such numeric keypads. We aim
at quantifying the amount of information leaking through
those timings and thus modeling bounds on the reduction
in search space for PINs and access codes.

2. CONTRIBUTION

Timing attacks using inter-key delays have been stud-
ied and shown to be successful by observing network traffic
caused by those keystrokes [4]. Analyzing acoustic emana-
tion from keyboard based on the unique sounds produced
by each keys has been used to recover text being typed [1,
5]. Using those studies as a starting point, we are using the
audio feedback beeps that are easier to obtain and analyze
in noisy environments than characteristic acoustic emissions
from individual physical keys. This becomes more impor-
tant for devices that do not have a readable screen such as
door keypads.

2.1 User Interface Audio Feedback

We recorded the audio feedback samples from three types
of keypads; an iPhone 3G passcode lock, an office door key-
pad and an ATM. The numbers recorded were arbitrary and
do not contain any valid secret pass codes. Figure 1 shows
sample traces of the three input devices where the onset of
the signal is apparent. The acoustic recordings were done in
a quiet environment except for the ATM digits at the bot-
tom of the figure. For that particular noisy sample, it was
relatively easy for the human ear to separate the beeps, but
it was hard to identify the key strokes on the plotted trace.
To clean the trace and filter out all unwanted frequencies, we
ran the acoustic sample through a Fast Fourier Transform
and clipped anything outside of the 4KHz to 5KHZ range.
The resulting trace is shown at the bottom of Figure 1. If
we were faced with an even noisier environment, additional
techniques such as source separation could be used.

2.2 iPhone Distance and Timing Measurements

As a first step, we looked at the iPhone keypad and the
passcode lock mechanism. The physical layout is a standard
phone keypad with the numbers “1, 2, 3” on the top row.
The individual keys drawn on the touch screen are 17mm
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Figure 1: Audio Feedback from three sources: (from
top to bottom) iPhone 3G, door and ATM.

17mm

Figure 2: Physical layout of the iPhone keypad.

wide by 8mm tall. The layout is illustrated in Figure 2.
An application was written asking users to enter random
two-digit numbers and it measured the inter-key timings.
Those timings were very close to those observed from an
audio recording of the acoustic feedback. Figure 3 shows
the distribution of the measured timings for the key pair
{6, 7} for a single user.

2.3 Analysis

From a previous work [4] we adopt the method to study
keystroke timings but apply it to a 10 digit keypad instead
of a full QWERTY keyboard. We are building a Gaussian
model for the inter-key delays to produce a statistical model
that would work across many users. It has been reported
that users tend to have unique keystroke rhythms [2] which
have been proposed for inclusion in current authentication
mechanisms. By producing a distinct Gaussian distribution
for equidistant key pairs, we take into account the variations
by user while still providing enough information to reduce
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Figure 3: Distribution of inter-keystroke timing for
the key pair {6,7}.
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Figure 4: Linear model of timing versus distance on
the iPhone keypad

the search space. We reuse the assumptions in [4] and use
only key pairs to build longer passcodes.

2.4 Inter-Keystroke Timings and Distance

Intuitively, a user having to cover longer distances would
result in longer delay in inter-keystroke timings. Measure-
ments using the iPhone keypad show a linear relationship be-
tween inter-key distance and the inter-keystroke delay tim-
ing measurements. Figure 4 shows the result of a linear
regression from a test user with the inter-keystroke timings
as the exploratory variable and the distance between keys
as the explanatory variable. For this particular experiment,
the p-value was 1.387 x 107 for the user indicating that a
linear correlation is highly likely.

The linear relationship between timing and distance seems
consistent between users, but appears to vary in magnitude.
In our analysis, the gradient of the linear models between
users are not the same, although the p-values for each linear
model are very small and on the same magnitude as the
one illustrated above. Those results seem to suggest that
different users move at different paces on the keypad and
thus need to be accounted for in our Gaussian model.

3. INFERRING DIGIT SEQUENCES

With a method of observing inter-keystroke timings, we
then use it to infer key sequences in PINs and passcodes.
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3.1 Hidden Markov Model

Given the correlation of key pair timings and distance cov-
ered, we use a Hidden Markov Model (HMM) with the tim-
ings as the observable outputs as the system moves to a dif-
ferent state. With a sequence of n timings ¥ = (y1,y2, ..., Yn),

we are trying to determine the hidden states ¢ = (q1, g2, -.., ¢n),

where ¢; represents a given key pair. For each observed tim-
ing y;, where 1 < ¢ < n, we compute a set of most likely
states {qa, qp,..}. We can then use those key pair sets and
look for possible combinations of keys.

3.2 Reducing the Search Space

We extract possible sequences from the list of key pairs
{4a,qv,..} for each timing by aligning possible pairs with
overlapping keys. For example the pairs {{0, 5}, {5, 6}, {6, 2}}
is a possible combination giving the sequence {0, 5,6, 2},
while the pairs {{0,5}, {7,6},{4,2}} do not yield a possible
sequence although both sets of pairs have the same timing
sequence.

Figure 5 shows the search space size under ideal condi-
tions where the inter-key delay has an exact mapping to
the distance covered. The median case produces 20 possible
PINs for a given timing sequence. In this model, we only
considered distance covered and we don’t account for delay
differences between keys that are different but equidistant.
For example, we assume that the two pairs {1, 0} and {3,0}
have the same timing since they cover the same distance.
As a further refinement, timing differences for equidistant
pairs can be taken into account. Thus the two pairs above
may have different timings due to keys being obscured by
the tapping hand.

3.3 Limitations

There is a many-to-one relationship between the set of
possible sequences and the set of observed timings. In other
words, it is possible to have multiple key sequences result in
about the same distance traveled between keys, and there-
fore multiple state vectors ¢ matching the observed timings
vector ¢. Our experiments seem to indicate that under ideal
conditions, the search space is reduced by at least 2 orders of
magnitude, but the search space might still be large enough
to activate secondary protection mechanisms such as per-
manent lock outs. However, if we observe at least one key
press, we can significantly shrink the already reduced search
space.

4. ONGOING WORK

Our experiments suggest that the distribution of the inter-
keystroke timing is not symmetrical and has a long tail. In-
tuitively, it is harder for a user to move quicker than to
move slower. The current Gaussian model is symmetrical.
We are in the process of moving our model to use empirical
measurements for the distribution instead.

We are investigating the difference between tapping sep-
arate key pairs instead of full passcodes, with four digits
being a very common passcode length. This will either val-
idate the assumptions we made earlier, or give us a new
model for numeric keypads. In addition, we intend to take
into account the familiarity of the users with the keypads.
Currently, we are considering all timings in our experiments.
However, as the users get more familiar with the keypad, the
timing patterns might change.

In our current experiments, users were given a random key
pair to enter. In future experiments, we intend to give the
users some practice on longer sequences as proposed in pre-
vious work [4] before doing the actual measurement. This
will simulate users who are familiar with their PINs or pass-
codes.

In contrast with previous studies [4, 5], there may not
be a common habit between users on their use of keypads.
Therefore, we need to factor the user’s tapping habits. On
a smartphone’s touchscreen, users can use a thumb, both
thumbs, indexes or multiple fingers. On door keypads, users
can use their thumbs or index fingers. On ATMs, users
might not use their thumbs, but other combinations of fin-
gers are possible.

Possible countermeasures include introducing random de-
lays in the audio feedback that are long enough to prevent
the attack described here, but short enough to prevent eval-
uation gaps from the user’s perspective. Another counter-
measure could be a system that dictates the pace at which
digits need to be entered, thus avoiding timing attacks.
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