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Abstract—Despite the well-known fact that sensing patterns ~ Our answer to this issue is a sensing area modeling tech-
in reality are highly irregular, researchers continue to develop nique called SAM, which obtains the coverage of sensor
protocols with simplifying assumptions about the sensingFor nodes through event training. The main idea is to identify
example, a circular 0/1 sensing model is widely used in most - .
existing simulators and analysis. While this model provide high- .the. ;ensmg coverage based on eve_nt detection results by
level guidelines, it could cause wrong estimation of systeperfor-  individual sensor nodes. A key architectural advantage of
mance in the real world. In this project, we design and implenent  this approach is a lightweight design in sensor node with
a practical Sensing Area Modeling technique, called SAM. By minimal overhead. Besides communication, each sensor node

injecting events through regular and hierarchical training, SAM ; ; ; e
estimates the sensing areas of individual sensor nodes acately. only needs tq support 9 S|mple.de.te?ct|on function. Spedifica
our contributions in this work lie in:

Especially, this work is the first to investigate the impact dirreg-
ular sensing area on application performance, such as covage o Modeling and Validation: We propose and imple-

scheduling. We evaluate SAM using outdoor experiments with ment regular and hierarchical training-based modeling
XSM motes, indoor experiment with 40 MicaZ motes as well approaches. We validate the accuracy of our modeling

as an extensive 1000-node simulation. Our evaluation regsl h usi td . t with XSM X
reveal serious problems caused by circular sensing model,hile approach using outdoor experiment wi motes,

demonstrating significant performance improvements in mapr indoor experiment with 40 MicaZ motes as well as an
applications when SAM is used. extensive 1000-node simulation.
I. INTRODUCTION « Impact Analysis and Solutions: Our model serves two

research purposes. First, SAM enhances the accuracy of
simulation, evaluating protocols in more realistic sgfin
Second, SAM bridges the gap between theory and prac-
tice, integrating logical analysis with physical inpute. T
our knowledge, this work is first to study the impact
of sensing irregularity on application performance such
as coverage scheduling algorithms. In these studies, we
identify several serious issues with the circular model,
and show significant improvements when SAM is used
instead.

As a bridge to the physical world, sensing is indispensable
for many sensor network systems, such as military surveil-
lance [1], habitat monitoring [2], infrastructure protiect [3]
and scientific exploration [4]. Compared with diversified so
lutions for communication among sensor nodes, research on
sensing is still premature. One well-known, but largely ig-
nored, issue is the sensing irregularity. It has been knawn f
years that the sensing pattern is not regular, but resaarche
still continue to develop, simulate and analyze sensor ortw
protocols, assuming a circular 0/1 sensing model, i.e., the
sensing boundary is represented by a circle (a sphere imhe rest of this paper is as follows. Section Il outlines
3D) centered at a sensor. We acknowledge that the resis SAM design, followed by a detailed modeling design in
based on this simplifying assumption or its derivations ca®ection Ill. We present outdoor experiment in Section IV and
reveal good insights, but they often lead to an all-too-cammindoor emulation in Section V. Section VI shows application

problem found today where solutions developed by simutatiperformance improvements when SAM is used. Section VII
and analysis do not work in the real world. Our work igoncludes the paper.

motivated by the fact that it is difficult to describe the rsiad

sensing coverage through theoretical modeling. For exampl Il. THE OVERVIEW OF THE SAM DESIGN

at the time of manufacturing, calibration might not be aeter  In this section, we introduce the design of SAM at the
enough, introducing heterogeneity among the same type apthitectural level. We target to static sensor networks (n
sensing devices. Even if it is possible to precisely calibtae mobility), which is the case for most existing deployed s&ns
sensors, environmental impact (e.g., obstacles) can elgvesystems [2], [4]. We assume the type of events is known.
affect the sensing characteristics, causing irregular ot This assumption is needed because the sensing area we obtain
uniform sensing patterns at different sensor nodes. Sirfoe one type of events (e.g., vehicles) cannot be applied to
irregularity is a common issue in sensor networks, theeefobther types of events (e.g., fire). If a network is designed to
it is unwise for the developers continue to ignore such tgalidetect several types of events, sensing modeling for eqzh ty
blindly assuming the circular sensing model. is required. Here, we intentionally describe our approach i

_ , . , _ conceptual terms independent of the concrete method used.
This research was supported, in part, by University of Maute McKnight-

Land Grant Professorship award, and NSF grant CNS-0626848:0615063 We are targeting sensors like PIR motion sensors, “ght
and CNS-0626609. sensors, etc. However, we do not consider sensors for neeasur



J@ Algorithm 1 RegularG(t) Process
Sensor Node n;
Event Sensor Node n; 1: output P;: The sensing area of;.
Generator G(t) 2: T = ( /lan empty set of timestamps
1) Generate Event> D;;i{“;n 3: repeat
Eft';o'cétto e 2) Detecton sito) optonan | S 4:  Eventgeneratofy creates:(t, p) at timet and locatiorp(z, y)
G(t) function lTwmeSiamps according tOG(t)
y p——— 5. if noden; detects evene(t,p), i.e. Si(t,p) = 1 then
T ) Deseription °'G“’7’ i 6: it stores the timestampinto setT
7. end if
i 8: until G stops generating events
9: Event generatoG disseminates the description 6f(¢) to all

Disseminate

nodes
Fig. 1. SAM architecture 10: Noden; obtains a set of location®; by correlatingG(t) with
11: P; is a set of positiong where S;(¢,p) = 1

ment of temperature, humidity, etc. To identify sensingaare
events are generated by real targets. For example, taggts (
person or object with mobility) can move around interesteggveral solutions to optimizé:(¢) under different system
area to activate PIR motion sensors in the field. Since tRenfigurations.

patterns of events are diversified, we describe our approa}gh

conceptually independent of the concrete type of eventd.use Regular G(¢)
_ To illustrate the basic functionality of an event generator
A. Main Idea we start with a simple sensor system where the sensing area

The main idea of training-based physical sensing arefa node is a line segment as shown in Figure 2(a). We shall
modeling is to relate the event location to the event degacti find out the portion of the line included in the sensing ranges
Events can be intentionally generated in the space wh@fesensor node; andn,. To achieve this, the event generator
sensor nodes are deployed. Or, we can collect adequat@hattreates discrete point events along this [ihg.] with constant
events and information on their locations. We call both sypspeedv with same intervalD. Formally, G(t) = ¢ - v,
of events training events. An event could be, for example, tiwvheret = kD/v and0 < k < L/D. For example, in
presence of an object in an area or a light spot projected bigure 2(a), a sensor nodg collects a set of six timestamps
a set of sensors. Ty = {t1,t9,...,t¢} at which the events are detected. Using

Formally, an event can be defined as a detectable pligaction G, the timestamps are converted to a set of actual
nomenone(t,p) that occurs at time and at locationp € event locationsP; = {tiv,tsv,...,tgv}. The sensing area
A Cc R* (k = 1,2,3). Without loss of generality, we useof sensorn; can be defined as the line segment that covers
k = 2 in the rest of the paper. To identify sensing area w . Sensom, reports timestamp®, = {t4, t5, t, t7} and the
need to match a relationship between the tinmsnd location sensing area of sensaes is defined as the line segment that
p. In other words, a set of training events can be described@wers P, = {t4v,t5v,tgv, t7v}. The intersection ofl; and
the event locations over the discrete tinie: R — R?, where T, T1NTs = {4,t5, 6} indicates that the coverage of the two
G(t) = pr = (w¢,yr) Wheret € {t1,ta, ..., tn}. sensors overlap as shown in Figure 2(a). The regular tiginin

Figure 1 shows the system architecture of SAM. It consistein be generalized to the case when the events occur in a plane
of two major parts: an event generat6t and a set of Figure 2(b) shows this approach. In this case, training @rea
sensor nodes; (i € N). The event generatai@ could be is divided into several linesy;,as,..., and we can obtain
a single target or multiple distributed targets that getgerssensing area in a plane in the similar way to the above. In
a sequence of eventgt, p) with spatiotemporal correlation addition to the progressive scanning, th¢t) function of the
G(t) = p(zt,y:). We defineS;(t,p) as the detection function regular training can generate events with an arbitrary secg.
of noden;. If noden; can detect event(t,p), S;(t,p) = 1; The detailed operations to identify the sensing area of giesin
otherwiseS;(¢,p) = 0. In the case of detection, sensor nodesoden; are described in Algorithm 1.
store the timestamplocally. By the end of training, a sensor The advantage of regular training is its simplicity and imnid
will have computed the location of all the events it detectectional communication. After a node receives the desorip
by inputting the timestamps int6:(¢). Therefore, a set of of G(t), its sensing area can be inferred locally. The detection
timestampsT; = {ti,t},...,t!} stored in noden; can be resultsS(¢,p) do not have to be reported. On the other hand,
converted to a set of locationd, = {p%,ps,...,p%} within the event overhead of regula¥(¢) is a concern, especially
the sensing area. The location ge&tcan be directly used to when the density of the sensor node is small and the area is
describe the sensing area of node large. This motivates us to consider a hierarchical satutio

[1l. DESIGN OFEVENT GENERATORG(t) B. Hierarchical G(t)

Since the overhead and accuracy of the sensing modelinddierarchical G(t) is motivated by the observation that the
is largely determined byG(t), it is important to consider boundary area of a sensing area requires more detail than the
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Fig. 2. Regular training Fig. 3. Hierarchical partition Fig. 4. Level of details Fig. 5. Hierarchical training
Algorithm 2 Hierarchical G(t) process adjacent events. In the example, sing&1,p1) = S(t3,ps)
1: output P;: The sensing area of;. and S(t2,p2) = S(ts,ps), NO event is generated in the

2: G(t) starts with level-1 events(, p) (The number of level-1 miqdle of ¢, and ey, not in the middle ofe, and es. These
events is decided by the minimum sensing area) SKi d | .
pped locations are assumed to have the same value as

3: Noden; reportsS;(t,p) for all level-1 events .
4: repeat S(t2,p2) = S(ts, pa) and S(t1,p1) = S(t3,ps), respectively.
5. for all level-k adjacent pairg(tm, pm) ande(t,, p,) do However, sinceS(t1,p1) # S(tz,p2), S(t1,p1) # S(ts, pa),
6 if any node detects only one event && no event is generates{ 5, p3) £ S(t4, ps), We need to provide an additional level
at position®= b= beforethen - . of detail by generating three new eveants e ande;. These
;I enﬁ?fn erate a levelk +1) event at positiorf-tx events are located at the middle of selected pairs of adjacen
9 end for events at times, tg, t7 as shown in Figure 4.
100 k=k+1 HierarchicalG(t) works recursively. After new events are
11: until (k = Maximum Level) added, new adjacent pairs can be created. For example, after
12: P is a set of positiong where S;(t,p) =1 we addes, e, €7, the events has new adjacent paieg < e1,

andes < ez, andes < eg. Such new pairs are checked with

the same procedure detailed in lines 4-8 in Algorithm 2,lunti
area in the middle of coverage. With hierarchi¢alt), we we reach the maximum level of detail we defined. For a sensor
can reduce the number of events required to obtain the sameall values in a se$ collected at all levels of detail are used
accuracy as regula® (t). for calculation of its sensing coverage.

As shown in Figure 3, a level-1 event divides the area into Hierarchical G(t) can be generalized for any number of
four sub-areas, and level-2 events divide the area into b6 sgensors involved where a certain area can be covered by
areas. In general, levélevents divide an area int¢ sub- more than one sensor. Similarly, a coarse shape of sensing
areas. If an event is a levélevent, it is also a levej-event, coverage is exposed and refined with a high level of detail
wherej > i. Two events are said to bamljacent (or a pair) in the boundary area. In a multiple nodes case, we need to
if they are neighboring each other vertically, horizontadk  check whether two adjacent evemtsand e¢; have the same
diagonally (e.g., an event could have maximal eight adjacerlue of S(t;, p;) and S(t;,p;) for all neighboring sensors.
events). Two adjacent events are said to Heoandary pair In other words, two adjacent events are said to be a boundary
if only one of two adjacent events is within a sensing rangeir as long as there exists a sensor that detects only one
of some node. (e.ge; andes in Figure 4 form a boundary event. Figure 5 shows an example. The area is covered by
pair). The event in a boundary pair is callebaindary event. two sensor nodesy; andn.. After level-1 event generation,

The main idea of Hierarchicak(t) is to recursively gen- the detection results of two adjacent events are compared.
erate new events in the middle of boundary pairs. It works in  Although noden; detects both events; and e;, node n
a way similar to the binary search within a two-dimensiongletects onlye;. Therefore,e; and e; form a boundary pair
space. We describe the step by step operation of Hieratchigad a new event should be generated in the middle of the two
G(t) in Algorithm 2. events. Recursively, more level-2 events are generatetieon t

1) A Walkthrough of Hierarchical G(t): We illustrate boundary area of the sensing coverage as shown in Figure 5.
the main idea how to find the sensing area of one sen- _ )
sor using hierarchical training. Figure 4 shows four level-C- Sensing Area Representation
eventsey, e, e3 and ey that are generated coarsely at time In the basic SAM design, we use a set of locatidis
T = {t1,t2,t3,t4}. By definition, these events are adjacertb represent the sensing area of node Evidently, this
to each other. In the example, the sensing area of a naderesentation based on raw sampling data requires exeessi
covers about half of the area; therefore, the event genmerattemory and unnecessary message overhead, especially when
G obtains the detection resultS(t1,p1) = S(ts,p3) = 0 the sensing area is large. To address this issue, we caaetbstr
and S(t2,p2) = S(ts,ps) = 1. According to lines 4 - 8 in a set of discrete locations (which is estimated to be covered
Algorithm 2, we compare the valug(t, p) for each pair of by a sensor) as a polygon by walking across the boundary
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o V. EXTENSIVE EVALUATION
Fig. 6. Coverage without obstacle Fig. 7. Coverage with obstacle Without knOWIe_dge Qf the ground truth Of.r(?al sensing
coverage we can investigate only the characteristics cfisgn
TABLE | coverage and the feasibility of our proposed methods for
SENSING AREA IN OUTDOOR EXPERIMENT training. In this section, we extend the evaluation of our
Without obstacle With obstacle method by incorporating knowledge of the ground truth.
Irregularity | Confidence Irregularity | Confidence A Ground Truth
[0.367 [0.83 [ 0387 [ 0.80 | '

We use aroracle algorithm that assumes knowledge of the
sensing area of the nodes. Basically, this algorithm aetsva
points either clockwise or counterclockwise (using the-lefSENsor node (e.g., through projecting light to a sensotheif
hand or right-hand rule as in GPSR [5]). Once the coveragecgntm"ed event(t, p) is within the sensing area of the node.
represented as a polygon twapping, we can furthesimplify We want to emphasize that the oracle algorithm and generated

the polygon using the Douglas-Peucker (DP) algorithm [6] irground trutr_l are useml_yfor the purpose of evaluation_. This
O(n?) wheren is the number of vertices. knowledge is not used in any part of the SAM algorithm. The

oracle generates a sensing pattern according to the folgpwi
IV. OUTDOOR EXPERIMENTS irregularity model, which is an extension of the DOI modél [7

To evaluate the practicality of our design, we used ExScal, _ | BEmin + (Rmaz — Rmin) - Rand 0 =10°
i i ; i =\ R¢_1+ Rand - var 0°<f<2 @
XSM motes to obtain empirical results on irregular sensing -1 &
patterns outdoors. PIR sensors detect movements throggWhereRmm is the minimum coverage rang&... is the max-
changes in infrared radiation, which could be caused Bypum possible coverage range, amth € [Rmin,ma] is the

walking persons or moving vehicles. We adopted the regu%qnsing range at ange Rand is random number between 0 and
, andvar is a variation of the ranges at consecutive angles due

training approach; however, instead of training the mo&#sg. 4 the jrregularity. With a higher value ofar, we introduce more
parallel lines as shown in Figure 2b, we used people’s natujigegularity.

movement. To map the event time to the event position, we
exposed a camera during training. Then, the time an event was } . ) .
detected was compared with the camera capture time on th&Ve designed and implemented a complete version of train-
people’s movement, converted to the people’s location, aitd which includes regular and hlerarch|cgl training on the
included in the coverage of the detecting sensor node. ~ TiNyOS/Mote platform. We attached 40 MicaZ motes on a
Figures 6 and 7 show the sensing area we obtain aﬁ@ltex. black _board and used a projector to generate regular
training a sensor which is placed (1) in an open area aﬁad hierarchical events. We representgd the deploymeat are
(2) in an area with a obstacle. A person moved around§0 & 128 by 128 grid with 10 to 40 micaZ motes randomly
sensor sufficiently (10 times straight cross over the area Rifced. Starting fronf,, ., at0°, the real irregular coverage
different directions and positions). The positions belaggo Was generated for each sensor according to Equation (1) with
the detected events were associated to the closest gritspoffmin = 10.0, Rmae = 30.0 and var = 1.0, 2.0 or 3.0
which we indicated in the figure. As can be seen in the figufglefault is 2.0). The intervaD was chosen fron2’, where
the sensing area is irregular even without a obstacle. TheS @ < [l0g2Rmin], SO that2' < Ry.;,. In the regular
obstacle affects the sensing area significantly. With theleci training, the interval is fixed. However, in the hierarctica
model (a disk with radiugm), we expect a point within the tramlng starting from a certain initial intervd) = 2* at Ievel_
circle to be associated with event detection and a pointiyol: the interval decreases 251 at level 2, and so on, until
the circle range not to be associated with event detectitiar A the smallest possible intervat is reached at the last level
repeating training test, we obtained irregularity andnireg * —J T L.
confidence as shown in Table I. They were calculated for @l Evaluation Metrics
points associated with training events as follows:
ni + n2

System Implementation and Setup

We defined (1¥alse positive fp and (2)false negativefn
error as: . ) . , ,
__area size included in training but not in reality

3
. . . . . s fp= area size of real sensing coverage
wheren; is number of points inside the circle the events of which area size not included in training but is in reality

are not detecteds is number of points ogtS|d¢ the circle .the events « fn= area size of real sensing coverage
of which are detectedss is number of points inside the circle.

irregularity =




Section IlI-C). In the circular model, the sensing coverage
assumed to be a disk at the center of the sensor location with
radius Zmithmer — 20, Since the simplification approach
uses fewer vertices to describe the area, it is less accurate
than the wrapping. From Figure 10 and 11, we can clearly
see that SAM significantly outperform the circular model in
terms of fp and fn rates.

coverage error
coverage error

01

VI. APPLICATION IMPROVEMENTS

In evaluation, we apply full coverage scheduling [8] based
on individual sensor coverage by a circle model and by
the SAM training model. The design goal of full coverage
scheduling is to cover every physical point within an area
with minimal energy consumption. The fraction of blind area
and energy consumption are two key metrics for coverage
applications. Figure 12 shows the fraction of blind areamvhe
different node densities are provided for a given deployimen
area. As we increased the number of nodes f20mMto 1400,
the blind area by coverage scheduling in SAM significantly
decreases. On the other hand, with optimistic circular rhode
Fig. 10. The CDFfp curves for Fig. 11. The CDFfn curves for (@ diskwith radius?. = 30), the percentage of blind area stays
circular model and two representationcircular model and two representation at about 15%, despite the fact that over 1400 nodes have been
methods in SAM model methods in SAM model deployed into the area. Figure 13 shows the average energy
consumption per node. When a circular model is conservative
R, 10, the energy consumption remains the same for
every different density, while SAM has accurate sensing are
information with smaller energy consumption.

Fig. 9. Errors in hierarchicaGG(t)
with varying interval and irregularity

Fig. 8. Errors in regulaG(t) with
varying interval and irregularity
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This paper intends to draw attention to the sensing irreg-
ularity issue known but largely ignored by many designers.
We contribute to this area by designing two training-based
Fig. 13. Avg. energy consumed with methods that accurately identify the sensing patterns. Our
varying densities design has been fully implemented and evaluated by outdoor

experiment as well as by indoor emulation. Also importantly
. the impacts of sensing irregularity on typical applicateme
D. fp and fn of Sensing Coverage identified and the improvements by SAM are shown as well.

Coverage error increases under the following two conditiohVe hope this work motivates our community to seriously
(i) the irregularity of sensing area increases, or (ii) tlaéning consider the reality issues existed in the sensor networks.
interval becomes larger. In regular training, the evenolay
generated are grids with different intervals (from 1 to 4. |

o

o

600 800 1000 1400

number of nodes

1200 14

8

400 600 800 1000

number of nodes

1200

Fig. 12. Fraction of blind area with
varying densities
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