
Peer Pressure:
Exerting Malicious Influence on Routers at a Distance

Max Schuchard1, Christopher Thompson2, Nicholas Hopper1, and Yongdae Kim3

1Department of Computer Science and Engineering, University of Minnesota, Twin Cities
2Department of Electrical Engineering and Computer Science, University of California, Berkeley

3Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)

Abstract—Both academic research and historical incidents
have shown that unstable BGP speakers can have extreme,
undesirable impacts on network performance and reliability.
Large amounts of time and energy have been invested in
improving router stability. In this paper, we show how an ad-
versary in control of a BGP speaker in a transit AS can cause a
victim router in an arbitrary location on the Internet to become
unstable. Through experimentation with both hardware and
software routers, we examine the behavior of routers under
abnormal conditions and come to three conclusions. First, that
unexpected but perfectly legal BGP messages can place routers
into those states with troubling ease. Second, that an adversary
can implement attacks using these messages to disrupt the
function of victim routers in arbitrary locations in the network.
And third, modern best practices do not blunt the force of these
attacks sufficiently. These conclusions lead us to recommend
more rigorous testing of BGP implementations, focusing as
much on protocol correctness as on software correctness.

Keywords-Router; BGP; Security;

I. INTRODUCTION

Routers are a critical piece of the Internet infrastructure.
They provide path discovery and selection services needed
for hosts on the Internet to communicate with each other. We
say that a router is stable when it exhibits three properties:
high up-time, long lived BGP sessions, and a converged view
of the network. It is easy to see that a router meeting these
criteria will be able to provide IP layer forwarding services.
A router demonstrating instability, on the other hand, will
fail to demonstrate one or more of these qualities. It is
well known that routers suffering from instability will be
unable to perform their duties. Historical incidents, such as
the Code Red and Slammer worm events [4, 12, 23], cable
cuts [20], and improper configurations [19, 25], only serve
to emphasize this fact. For the most part, however, these
accidents have been rare and the overwhelming majority of
the time routers on the Internet are stable.

While routers function well under normal conditions,
there is one obvious question: What happens if one router
forces another to operate under abnormal conditions? In this
paper, we will demonstrate that an adversary in control of a
router can cause an arbitrary honest router on the Internet
to fail, even if the adversary is not directly connected to

the victim. We present the results of a collection of experi-
ments on hardware and software routers running the Border
Gateway Protocol (BGP) to illustrate three key points. First,
that unexpected but perfectly legal BGP messages can place
routers into unstable states with troubling ease. Second, that
an adversary can implement attacks using these messages to
disrupt the function of victim routers in arbitrary locations
in the network. And third, that modern best practices do not
blunt the force of these attacks sufficiently.

Through experimentation on hardware and software
routers, we examined what happens when modern routers
find themselves without free memory. In all cases, we
found that routers fail to handle this scenario gracefully. We
witnessed a variety of failure modes, ranging from severe
performance degradation to the unrecoverable failure of all
active routing sessions. Given the negative impact of these
unstable states, one might be tempted to believe that placing
a router in such a state is difficult. Sadly, it turns out that
the opposite is true. We found it relatively easy to send BGP
messages to a router that would directly place it into one
of these states. We focused on exploring corner cases that
are unlikely to be found “in the wild” but are still perfectly
valid in the eyes of BGP. We will examine examples of these
messages later in the paper.

While it is unlikely a router would see any of these mes-
sages normally, they are easily generated by an adversary.
By utilizing these BGP messages, an adversary who controls
a BGP speaker is capable of launching powerful attacks
against other routers. We will show how our adversary can
manipulate honest routers into propagating these malicious
BGP messages across the network, allowing our adversary to
attack routers not directly connected to himself. In addition,
by triggering loop detection mechanisms, the attacker can
contain attack updates so that they are only seen by routers
on paths between the malicious router and victim.

It might be comforting to assume that deployed routers
could be hardened to these attacks via proper configuration.
We demonstrate that the commonly accepted best practices
would do little to slow these attacks. We examine four
options in detail: prefix filtering, prefix aggregation, prefix
limits, and AS path length limits. In each case, we use

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.48

419

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.48

571

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.48

571

observations based on the contents of real world routing
tables to reason about both the extent to which these best
practices are used and the degree to which these practices
could prevent our attacks.

The contributions of this paper are fourfold. First, we pro-
vide experimental evaluations of both hardware and software
routers in abnormal operating conditions. We validate and
expand upon previous work looking at memory issues in
routers and investigate causes of CPU exhaustion. Second,
we examine the response of multiple BGP implementations
to unexpected inputs. We present clear scenarios, along with
experimental evidence, that illustrate the implementation
failings of two commonly used BGP daemons. Third, we
present clear scenarios to underscore how an adversary
might take advantage of these unexpected inputs. Fourth,
we look at why current best practices provide an insufficient
defense against these attacks.

The rest of this paper is organized as follows. In Sec-
tion II, we will discuss background material relevant to
understanding this work. Then, in Section III, we will
examine how an adversary can attack the functionality of
a victim router to which he can directly send messages to.
In Section IV we will expand upon these attacks, showing
how they can be applied not just to directly connected peers,
but to victims located at arbitrary positions in the network.
In Section V, backed up with experimental observations, we
will examine why operator best practices fail to blunt these
attacks.

II. BACKGROUND

A. Routers

Routers are network hosts tasked with building paths to
end destinations in layer three networks, most notably the
Internet. In order to accomplish their task, routers exchange
reachability information with other routers using a routing
protocol. We will discuss BGP, the routing protocol we focus
on in this work, in Section II-B. Routers are often, but not
always, responsible for forwarding data plane traffic using
the paths they have built. Routers can be broadly partitioned
into two categories: hardware routers and software routers.

Hardware routers are constructed using high-performance,
highly specialized components in order to cope with the
task of forwarding millions to billions of packets per sec-
ond. Hardware routers are costly pieces of equipment and
represent a large capital investment by operators. Because
of this, hardware routers typically have little in the way
of spare resources. A clear example of this is the route
processor’s memory. Modern routers generally have between
256 and 4096 MB of memory [2, 11]. In contrast to highly
specialized hardware routers, software routers are built using
commodity hardware, and have access to the same level
of resources any desktop computer does. However, they
lack the high performance line cards and switching fabric

of hardware routers, preventing them from handling packet
volumes typically found on today’s data plane.

B. BGP

Throughout the course of this paper we will focus on
routers running the Border Gateway Protocol, or BGP [15].
BGP is the current de facto standard routing protocol spoken
between a pair of routers in different Autonomous Systems,
or ASes; this key role makes it vitally important. BGP is a
path vector routing algorithm with policies. These policies
are used to augment the route selection process, allowing
decisions to be made based on business relationships rather
than path length.

Neighboring routers connect to each other and establish a
BGP session. A router can advertise a path to any other
router it currently has a BGP session with. To do this,
it sends a BGP UPDATE message containing the block of
IP addresses reached by the path and a collection of path
attributes. The receiving router then stores this information
in a Routing Information Base, or RIB, and recalculates
the best path to the listed block of IP addresses from
available paths. Update messages are required to have certain
attributes: the path (by Autonomous System number) to the
destination, whether the route was learned from a peer inside
or outside of this AS, and the next hop in the path. Updates
can also contain optional attributes, such as Community
Attributes [14].

In order to understand why instability in BGP speakers
is so problematic, we must introduce the concept of conver-
gence. BGP is a distributed routing protocol, meaning that
routers do not have global knowledge; information about
the network, therefore must come from other nodes. When
routers have settled on a consistent view of the network we
call this convergence. When BGP speakers have converged,
network traffic will flow correctly. It is a well-studied fact
that this guarantee does not hold when the network has not
converged. Why this lack of convergence causes the data
plane to fail has been studied extensively in the work of
Feamster et al. [7], Wang et al. [22], Pei et al. [17], and
others. When a BGP session fails, routers are forced to
withdraw all routes learned via that session, remove the
routes from their forwarding tables, recalculate best routes
to affected prefixes, and send out updated advertisements.
In otherwords, when router become instable, the network is
no long er converged, and ceases to function correctly.

III. CRASHING ROUTERS

In this section we will outline the mechanisms an ad-
versary in control of a BGP router can use to disrupt the
functionality of victim routers. We will examine how an
adversary can consume all of a target’s free memory, causing
the target to crash. As covered in Section II-A, routers
have two different types of memory, small amounts of high
speed memory for line card operation, and larger amounts

420572572

of general purpose memory for control plane operation. We
are interested in the latter, consequently for the rest of the
paper when we refer to memory we mean general purpose
memory. Previous research by Chang et al. [1] examined
what happens when a router runs out of free memory. They
found that when a router exhausts its free memory, the BGP
process crashes, causing the failure of all BGP sessions and
the halting of data plane operation.

Our observations in this and later sections come from
experiments run on hardware and software routers. The
hardware router we had access to was a CISCO 7603 series
router. It is important to note that in this work we are
experimenting with the behavior of a router’s software, not
its hardware. Our 7603 is an acceptable test router since it
runs the same version of IOS deployed on many larger and
more powerful CISCO routers. For a software router we
selected the Quagga suite. In order to ensure isolation, our
software routers were run on Qemu virtual machines running
Linux. Our experiments in this section were done with a
simple topology where attacking routers, in this case BGP
injectors, were directly connected to the victim router. In
Section IV we will expand to more complicated topologies
to explore how our attacks function on distant targets.

While we will not discuss it here, it should be noted that
in our experimention we also came across several ways to
exhaust the CPU resources of a router. The methods we ex-
perimented with included crafting single updates that, when
propagated through the network, will cause the targeted
router to destroy one or more active BGP sessions with
other honest peers and algorithmic DOS. In both the attacks
against BGP sessions and the algorithmic DoS attacks, we
utilize valid advertisement messages that are designed to
take advantage of slow or buggy code designed to handle
odd “edge cases” found in BGP. Full details of these attacks
can be found in our tech report 1.

A. Available Router Memory

The immediate question that springs to mind is: how
difficult is it to force a router to exhaust its supply of mem-
ory? Clearly this is dependent on how much free memory a
router has. The amount of total memory varies widely based
on exactly what model of router is used and where in the
network it is deployed. As discussed in Section II-A, routers
commonly have between 256 MB to 4 GB of total memory.
However, what we are interested in is the free memory. The
main demand placed on a BGP router’s memory comes from
storage of the Routing Information Bases, RIBs, which are
tables of known valid routes, currently used routes, and
currently advertised routes. It is easy to see now how a
router’s position in the network will alter the demands on
its memory. If a router is located in the dense core of the

1http://www.cs.umn.edu/research/technical reports.php?page=
report&report id=11-030

Internet, where it has a large number of peers, the majority
of which are advertising a global BGP table, it will have
higher memory usage compared to a router that exists on
the fringes of the Internet, where it might only receive one
or two global BGP tables along with a collection of very
small tables.

Because of this diversity, building an exact model of
router memory usage is impossible. We can build a rough
estimate by examining both how much memory a single
global routing table requires and how many of those tables
a router could in theory receive. The first quantity can be
measured directly. We collected global routing tables from
April of 2012 via RouteViews [21] and performed a series
of experiments involving our routers. We advertised global
routing tables to both types of router and measured their
memory usage. The plot of measured memory usage versus
the total number of prefixes can be seen in Figure 1a. We
then examined a sample of representative routers, noting
how many line cards the routers can have, presenting an
upper bound on the number of full tables a router could
receive 2, and their total memory. We can combine this data
and the results in Figure 1a to build an upper bound on the
amount of free memory a router could have as a function of
the fraction of its line cards receiving a global table from a
neighbor, shown in Figure 1c. While this figure does not give
us a definitive target for memory consumption, it does give
us an idea about the state of free router memory. Smaller
routers, like the 7603, will more than likely have little to no
free memory available, while larger, more powerful routers
will not have free memory in abundance, likely no more
than 1 GB.

B. Consuming Memory via Updates

With a ballpark figure in mind, we can examine how an
adversary would consume the memory of a target router.
Our basic approach is simple: an adversary will send BGP
advertisements to the victim router, which will in turn store
those advertised routes in its RIB. The challenge for the
adversary is to craft BGP routes that take up as much
space as possible. It is important to note that the routes
the adversary sends need not be considered the best by
the victim, they need only be considered valid. We set out
to establish what is the maximum amount of memory an
adversary could consume per BGP route accepted. Routes
crafted using various strategies were advertised to the target
router, and its resulting memory load measured.

An starting point for building an update construction
strategy would be to revisit the experiments done by Chang
et al. [1], where injectors simply advertised successive IP
blocks with a single hop AS path. We re-ran their experi-
ments with our CISCO router, the results of which can be

2Routers could in theory have more BGP sessions than they have line
cards, via multi-hop BGP sessions, however these are not commonly used
in practice.

421573573

seen in Figure 1b. We estimate that it would take on the order
of 2 million routes in order to exhaust the free memory on
modern routers using their methods, but can an adversary
do better?

The first thing to notice is that all of the AS paths being
advertised in the first set of experiments are identical, simply
the ASN of the advertising router. In an effort to shrink the
memory footprint of RIBs, routers only store identical AS
paths once. In fact, if one compares the memory usage in
Figure 1b, where all AS paths are the same, to the memory
usage from storing real world routes in Figure 1a, where
there is some degree of path distinctness, one can quickly see
that the small amount of path distinctness results in increased
memory load. Therefore, if the adversary can ensure all of
the routes being advertised have distinct paths, we should see
a larger increase in memory usage. Figure 1b shows memory
consumption when routes have distinct AS paths compared
to routes with identical AS paths. This increase in memory
load of 33% is a start, but clearly the adversary still needs to
consume more memory per update for the attack to become
realistic.

The next observation is that we can make the AS paths
longer, forcing the router to spend more memory storing
them. While the BGP RFC allows AS level paths of any
length so long as they are packaged in the update message
correctly, software bugs related to long AS paths and the
practice of limiting AS paths (discussed in Section V-E)
constrain our adversary’s ability to create arbitrarily long
paths. Of course, paths longer than the single hop used by
Chang et al. are still possible. We ran another series of
injections using distinct AS paths of varying lengths. The
per path memory consumption as a function of path length
can be seen in Figure 2a. While the Quagga router allocates
memory proportionally based on AS path length, we can
see that the CISCO router instead allocates memory in a
fixed size block for AS paths longer than 21 and switches
to a proportional allocation only for paths longer than 120.
This means that by advertising AS paths of length 22, the
adversary can consume the same amount of memory he
could by advertising paths of length 120. This is important,
as AS paths of length 22 are smaller than limits imposed
by current best practices, something we will cover in more
detail in Section V-E.

Our last observation is that our simple update, even with
an above normal size path, only takes up a small fraction
of the total available bytes in a BGP update message.
The adversary can fill the remainder of that space with
Community Attributes [14] in an effort to consume more
memory. Community Attributes are well known optional
transitive attributes which allow operators to specify ar-
bitrary path properties. The impact these attributes have
on memory usage are highly similar to AS paths: each
unique community attribute needs to be stored in a receiving
router’s RIB, and increasing the number of community

attributes increases memory consumption. We repeated our
route injection experiments, padding the update messages
with unique community attributes. A plot of memory usage
as a function of accepted routes can be seen in Figure 2b.
Memory values beyond the capacity of our CISCO router,
are extrapolated. We can see that the combination of distinct
AS paths, increased modestly in length, and surrounded with
unique community attributes increases the per route memory
consumption by a factor of 7.48. The change is dramatic.
Instead of needing more than 2.2 million routes to consume
1 GB of memory, 300 thousand routes can accomplish this
task, a fraction of the size of today’s global routing table.
In fact the total memory of our CISCO router could be
consumed with 76 thousand routes.

C. Exhaustion Through I/O

An alternative tactic for exhausting a router’s free memory
is by increasing the demands from its I/O buffers. We
observed crashes that resulted from running out of memory
in our victim router when its neighbors became CPU starved.
To understand why this occurs, we must take a look at
what happens when the rate of incoming updates to a router
exceeds its computational capacity. In this case the receiving
router will have to buffer the unprocessed updates. We found
that both our Quagga and CISCO router will only buffer a
fixed number of BGP messages. When those limits have
been reached, the BGP process will stop fetching packets
from the operating system’s buffers. Network buffers are
of fixed size as well—when the receiving router’s network
buffer is full, it will send TCP ZERO WINDOW messages to
the advertising router, preventing new packets from being
placed on the wire. New packets are then buffered in the
sender’s network buffers. When those fill, the updates are
buffered inside the advertising router’s BGP process. These
buffers are unbounded in size. We term this behavior back
pressure.

We performed a simple experiment to illustrate back
pressure involving three routers: an injector, a victim router,
and a potentially computationally starved peer. The injector
was directly connected to the victim router, as was the
CPU strained router. All routers started with empty tables,
and the injector would proceed to advertise routes taken
from RouteViews to the victim router, which would in
turn attempt to advertise them to its other peer. Runs
were performed when the third peer was both CPU starved
and when it had sufficient computational resources. The
difference in memory loads of the victim router when it’s
peer was CPU strained versus when it was not can be seen
in Figure 2c. The CISCO router experienced an increase in
memory consumption of more than 40 MB, with spikes over
60 MB. Quagga saw an increase of 30 MB by the end of our
experiment. It is important to note that these added memory
costs are per peer, meaning that routers with more peers are
more susceptible to this attack.

422574574

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0

 0 5 10 15 20 25 30 35

M
em

or
y

C
on

su
m

ed
 (

M
B

)

Routes Advertised (Ten Thousands)

CISCO

Quagga

(a)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

 0 2 4 6 8 10 12 14 16 18 20

M
em

or
y

U
sa

ge
 (

M
B

)

Routes Advertised (Ten Thousands)

Same - CISCO

Distinct - CISCO

Same - Quagga

Distinct - Quagga

(b)

0.0

500.0

1000.0

1500.0

2000.0

 0 0.2 0.4 0.6 0.8 1

Fr
ee

 M
em

or
y

(M
B

)

Fraction Line Cards With Global Table

7603

7606

ASR 1006

(c)

Figure 1: Measured memory consumption of BGP process as a function of the number of real world routes advertised to it in Figure 1a and repeating
the Chang et al. experiments compared to distinct routes in Figure 1b. Figure 1c shows an estimate of the upper bound of free memory in various models
of CISCO router as a function of the number of line cards receiving full global routing tables from peers.

0.5

0.7

0.9

1.1

1.3

1.5

 0 50 100 150 200 250 300
0.0

1.0

2.0

3.0

4.0

5.0

C
IS

C
O

 M
em

or
y

/ R
ou

te
 (

K
B

)

Q
ua

gg
a

M
em

or
y

/ R
ou

te
 (

K
B

)

AS Path Length

CISCO

Quagga

(a)

0

200

400

600

800

1000

1200

1400

 0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000
C

IS
C

O
 M

em
or

y
U

sa
ge

 (
M

B
)

Q
ua

gg
a

M
em

or
y

U
sa

ge
 (

M
B

)

Routes Advertised (Ten Thousands)

Starting - CISCO

Final - CISCO

Starting - Quagga

Final - Quagga

(b)

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 0 500 1000 1500 2000 2500

M
em

or
y

(M
B

)

Time (s)

CISCO

Quagga

(c)

Figure 2: Figure 2a shows the per update memory usage as a function of path length for Quagga and CISCO routers for both unique and identical
sets of paths. Note how Quagga’s memory allocation is always a function of the path length, while CISCO allocates fix size blocks for all paths between
24 and 108 ASes in length. Figure 2b shows the measured memory consumption when applying path distinctness, increased AS path length, and distinct
community attributes compared to Chang et al.’s attack. Figure 2c shows the increase in memory load for a Quagga and CISCO router when advertising
to a CPU starved peer compared to a normal peer, demonstrating exhaustion of memory via I/O backlog.

This increase in memory usage was not the strangest
behavior that resulted from update back pressure. On the
CISCO router, we noticed that if the amount of back pressure
was large enough, the processes controlling BGP I/O started
to fail. Specifically, it ceased interacting correctly with the
peers responsible for the back pressure. The memory-starved
router ceased attempting to send BGP related packets to
these peers. We assumed tearing down the BGP session,
which would result in a new TCP session, would solve this
I/O issue. It did not. While the back pressure causing peers
could complete a TCP handshake, no response to their BGP
OPEN message came from the CISCO router. This I/O issue
was limited to BGP, however, as we could initiate a telnet
console with the CISCO router from the Linux box hosting
the troubled peer. This problem was only fixed when the
CISCO router was restarted.

Of course in order for back pressure to exist a router’s
neighbors need to be in a CPU starved state. This can occur
for a variety of reasons. The most obvious one is as a result
of nearby router failures. As discussed in Section II-B router
failures push the network out of convergence, forcing routers
to spend processing power recomputing the best paths to
large swaths of the IP address space.

IV. ATTACKING DISTANT ROUTERS

The attacks of Section III provide a peek into how a
malicious router can force a victim into a non-functional
state via legitimate BGP messages. However, one might feel
skeptical about these examples, as they were tested with an
adversary that is directly connected to its victim. In this
section, we will provide examples of how an adversary in
control of a router could force other routers at arbitrary
locations in the topology into an unstable state. We will lay
out how our adversary can launch this attack by convincing
honest routers to forward these malicious updates through
the network to the victim while at the same time minimizing
his direct impact on other routers in the system.

A. Threat Model

Our threat model focuses on legitimate BGP speakers in
transit ASes 3 that have become malicious. These adversaries
are the result of either an autonomous system electing to act
in an adversarial manner or an outside entity compromising
one or more BGP routers. We focus on transit ASes since
stub ASes have very limited abilities within the BGP net-
work. Our chosen threat model gives our adversary two key
capabilities.

3By transit AS, we mean any AS that has other ASes as customers.

423575575

First, the adversary can send BGP messages to other
routers. The malicious router cannot simply send arbitrary
messages to any router, however; it can only directly send
BGP messages to its legitimate peers. This is an issue for our
attacker, as his previously stated goal is to disrupt arbitrary
routers or BGP sessions, not simply those he is directly
connected to. In order to have malicious update messages
reach arbitrary routers, our adversary will need to convince
honest peers to propagate those updates in such a manner
that the intended victims receive them. We will cover how
our adversary does that in Section IV-B.

The second ability our adversary has is the capacity
to act in a non-standard, or even protocol non-compliant
manner. Our adversary can, for example, locally ignore paths
with loops, use non-standard path selection, not apply best
practices, and advertise paths in a manner that does not
conform to Valley Free Routing. However, our adversary
again runs into the issue that only he can act in this way;
honest nodes will act normally and can use best practices.
We will cover how these attacks work in relation to best
practices in Section V.

B. Propagating Malicious Updates

In our threat model the adversary only has the capacity
to send update messages directly to his legitimate peers.
In order to get malicious updates to targeted routers, the
adversary will need to convince routers that lie on paths
between him and his victim to forward the updates. Honest
routers only re-advertise the routes they consider “best”. This
is an issue for our adversary because, as we have seen in
Section III, some of the malicious updates will have a longer
than average AS path length. Because AS path length is one
of the key path selection metrics, this will make it less likely
that the malicious updates will be considered best if there
is an alternative.

If our attacker could advertise IP blocks that have
no competing paths, the malicious routes would be the
best by default. To do this, our attacker will take
advantage of the fact that BGP considers more spe-
cific IP prefixes to be distinct. For example, BGP
considers the IP block 123.101.0.0/16 to be dis-
tinct from 123.101.128.0/17 and 123.101.0.0/17.
Since these blocks are considered distinct, path selection
for 123.101.128.0/17 will be done separately from
123.101.128.0/16. Our adversary simply couples his
malicious advertisements to highly specific IP blocks (e.g.
123.101.128.0/24) for which there are not pre-existing
routes. Due to this forced de-aggregation, his malicious
updates will have no competition and will be the best. We
discuss how this tactic interacts with best practices such as
aggregation and prefix length filtering in Section V.

C. Building Attack Flows

The adversary cannot blindly send these “best paths” out
to all of his peers in the hope that they eventually reach

his target. Our adversary will take advantage of the fact
that honest routers operate in a predictable manner in order
to construct “flows” of updates from himself to the victim.
When determining whether to propagate a best path to its
neighbors, a router takes into account the customer/provider
relationships it has both with its neighboring routers and
with the route’s next hop. A well known set of policies
called Valley Free Routing [8] are applied based on these
relationships. Valley Free Routing states that a path will be
advertised if and only if: a) the party being advertised to
is the AS’s customer or b) the route was learned from a
customer. While the AS relationships are technically private
information, a large amount of work has been done to
infer them. By building a topology based on a data set of
these relationships between ASes [21] and applying Valley
Free Routing policies to this topology, a model for how
the malicious routes will travel through the network can
be built. Central to this construction is the concept of a
customer cone. An AS’s customer cone is the set of all of
its customers, plus all of its customer’s customers, and so
on.

With this model of path propagation in mind, the adver-
sary can construct a directed graph based on Internet topol-
ogy and inferred AS relationships. The adversary starts with
an edge-less AS graph. The adversary then adds a directed
edge between his AS and every AS he is directly connected
to, this represents his ability to send advertisements to any
peer he is directly connected to. For each of the ASes added
to the connected component containing the adversary that
are part of the adversary’s customer cone, an edge is added
from that node to its customers. This represents the “A”
clause of Valley Free Routing. If instead the AS added to the
connected component is the adversary’s provider, an edge
is added from that AS to all of its customers, peers, and
providers, the “B” clause of Valley Free Routing. If a path
exists from the adversary to the victim, that means that there
is some neighbor of the adversary which, if the adversary
sends an update, will start up a chain of advertisements
that will end with the update reaching the victim. We call
such a path through this directed graph an attack flow. In
a densely connected graph such as the Internet, there will
typically be multiple paths, which will allow the adversary
to load balance his malicious updates. We will examine the
prevalence of attack flows in Section IV-D.

Once attack flows are found, it might be in the attacker’s
interest to contain updates to only their assigned flow.
The adversary must prevent routers that are next to the
attack flows from accepting the malicious routes. To do
this, our attacker can use loop detection to his advantage.
In BGP, loop detection is achieved by scanning the AS
path for the router’s ASN. If the router detects itself in
the path, it considers the route in-feasible, neither storing
it in memory nor propagating it. It is important to note that
when loop detection is triggered it does not result in a BGP

424576576

NOTIFICATION. The first step for our adversary is to define
the “borders” of each attack flow. These are all of the nodes
in the directed graph which are not part of the attack flow,
but have an edge leading from a node in the attack flow
to themselves, we call these nodes bystander nodes. These
are the nodes that will see the malicious updates, but have
nothing to do with the actual propagation of the updates to
the victim. He then ensures that the ASNs of all neighbors
of the attack flow are included inside the fabricated AS path
of any update utilizing that flow. Since the neighbors of the
flow will not propagate the malicious updates, the routers
behind those neighbors will never see the updates.

D. Experimental Observations

In order to validate that our attack works, we utilized our
software router test-bed from Section III. Our topology was
a small subset of the AS level topology of the Internet built
by doing an expansion from a node chosen at random. An
example topology including AS relationships can be seen in
Figure 3a. We launched the attack we have just described
from random attackers to random victims and monitored the
memory of routers in the test-bed. We set a goal, based on
our findings in Section III-A, of 1 GB of additional memory
consumption. The routers in the test-bed fall into one of three
different groups. First, there are routers that are on the attack
flows from the adversary to the victim. Those routers will see
increased memory utilization, but not enough to push them
over the 1 GB threshold. Second, there is the victim, who
should see memory consumption over the 1 GB threshold if
the attack is successful. The last group of routers are those
directly connected to the victim or an attack flow, but not
actually part of the flow. Our loop detection technique should
cause them to see no additional memory load.

A collection of memory traces from an example run can
be seen in Figure 3b. In this run two attack flows were used
by the attacker to push malicious updates. The injection of
malicious routes to directly connected neighbors starts at
time 0 and completes at roughly time 2900. As can be seen,
the attack flow routers show an increase in memory that ends
with them having less than the 1 GB barrier, exactly what
we expected to see. The victim router’s memory load lags
behind the average memory load of the attack flow routers, a
result of it being the last router in the chain that the updates
propagate to. At time 5200 we see the victim router cross
the 1 GB threshold. In our case the router did not crash as
the virtual machine had added memory to handle this load.
The last set of routers, those protected by loop detection,
showed zero increased memory load, as all of the incoming
routes were discarded as loops.
1) Counting Attack Flows.: Another interesting question

to ask is how many attack flows an adversary is likely to
have available for a given victim. To answer this question,
we examined the AS level topology (considering only those
ASes that meet the threat model discussed in Section IV-A)

and calculated the attack flows between each pair of ASes,
counting the number of flows. The results of this calculation
appear in Figure 3c.

As the figure shows, in the worst case a random adversary
has a 73.5% chance of possessing multiple attack flows to a
random victim; almost half of all pairs have at least 3 attack
flows. Furthermore, adversaries in the “transit core” of the
Internet are even more advantageously situated: for example,
around 10% of tier 2 routers can access 20 or more attack
flows when targeting a tier 1 router; and if an adversary is in
control of a tier 1 router, at worst he has roughly 60 attack
flows open to him, and on average far more. This supports
our contention that our attacks can indirectly target arbitrary
routers in the AS topology.

V. DEFEATING BEST PRACTICES

In this section, we examine how various “best practices”
interact with the proposed attack of Section IV. We focus
on the following practices: prefix length limits, prefix filters,
prefix aggregation, prefix count limits, and AS path limits.
We will show that each of these fails to disrupt the adver-
sary’s actions to any sizeable extent. A summary can be
seen in Table I. While not covered here, in our tech report 4

we also consider how a global deployment of BGPSec [16]
would impact our adversary.

A. Prefix Length Limits

One commonly applied best practice is to drop updates
for highly specific prefix blocks. Filtering in this manner
is done in an effort to control the size of routing tables.
This policy is an issue for our attacker because, as discussed
in Section IV-B, our adversary relies on advertising very
specific prefix blocks which do not have pre-existing paths.
Two questions are raised because of this practice.

First, how specific of a prefix can our adversary advertise
without it being filtered? To answer this, we examined what
length of prefixes we can actively observe being forwarded
by various Autonomous Systems based on RouteViews data,
the results of which can be seen in Figure 4a. What we
found was straightforward: 88.5% of transit ASes forwarded
prefixes that were /24s or shorter, while 6.8% forwarded
prefixes longer than this. Thus, in the majority of cases, our
adversary can advertise routes containing a /24 or shorter
successfully.

This leads us to our next question: Given that we can
advertise no more specific a prefix than a /24, can our
adversary find enough un-advertised prefixes to complete
his attacks? This can be answered with a quick back of
the envelope calculation. There are approximately 1.6×10

7

prefix blocks of length /24, and of those 98% correspond
to routable IPs (the other 2% are un-routable bogons [5]).
The current size of the full Internet routing table is roughly

4http://www.cs.umn.edu/research/technical reports.php?page=
report&report id=11-030

425577577

(a)

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

 0 2000 4000 6000 8000 10000

M
em

or
y

U
sa

ge
 (

M
B

)

Time (s)

Victim Goal

Attack Flow Routers

Victim

Bystander Routers

(b)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 0 20 40 60 80 100 120

C
D

F

Number of Attack Flows

Random

T2 -> T1

T1 -> T1

(c)

Figure 3: A graphical representation of one topology configuration used for our experiments is shown in Figure 3a. AS relationship is represented by
vertical placement. Figure 3b is a trace of memory loads for BGP processes of various classes of routers during an update based memory exhaustion
attack. Memory load for attack flow routers and bystander routers is an average over all routers in that class. Our 1 GB goal is highlighted on the graph
for clarity. A CDF of the number of attack flows existing between various tiers of transit routers based on AS level topology can be seen in Figure 3c.

Best Practice Why It Does Not Help Experimental Evidence

Prefix Length Limits Limits still give the attacker access to /24s advertised by 88.5% of transit
millions of prefixes ASes (Fig 4a)

Prefix Aggregation Not done to routes from transit ASes Observation of hole punches and
non-aggregated IP blocks (Fig 4b)

Prefix Count Limits Malicious updates target receives based on Prefix limits applied on a per connection (Fig 4c)
sum of victim prefix limits basis combined with AS level topology

AS Path Limits Weakened by generous path limits CISCO routers allocate memory in
and how Routers allocate memory fixed size blocks (Fig 2a)

Table I: Summary of best practices we considered, why they fail to stop the attack from Section IV, and what experimental evidence backs each
conclusion.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 0 5 10 15 20 25 30

Fr
ac

tio
n

of
 A

Se
s

A
dv

er
tis

in
g

Prefix Length

Transit ASes Only

All ASes

(a)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fraction of Advertised Prefixes Deaggregated

(b)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 0.1 1 10 100 1000

C
D

F

Per Flow Prefixes (x 103) to Reach 1 GB

Random

T2 -> T1

T1 -> T1

(c)

Figure 4: The fraction of ASes observed view RouteViews advertising prefixes of a given length can be seen in Figure 4a. Figure 4b is a CDF of the
fraction of prefixes originated by transit ASes that could be aggregated into more general prefixes. Lastly, Figure 4c is a CDF of the number of malicious
updates required per attack flow to reach 1 GB of memory consumption for different classes of attacker and target nodes.

4×10
5 prefixes [10], meaning that if all IP blocks advertised

were /24s then there would still be over 1.5× 10
7 /24s un-

advertised. Clearly this means that our adversary can find a
sufficient number of un-advertised /24 blocks to utilize.

B. Prefix Filtering

Modern routers have the ability to filter incoming updates
based on a combination of the CIDR being advertised and
the AS sending the update. This capability, if widely and
correctly deployed could have an impact on our adversary’s
strategy as outline in Section IV. Sadly, it is not a forgone
conclusion that prefix filtering is deployed in such a manner.
Prefix filtering must be done manually, and changes in filters
requires a reconfiguration of routers. Additionally, establish-
ing exactly what blocks of IP addresses an AS should or
should not advertise is a non-trivial task. Measuring exactly

how many ASes deploy prefix filtering correctly would re-
quire operators to share confidential information, specifically
the active configurations of their routers. However, we can
gain an intuition as to how widely and correctly prefix filters
are deployed by examining several historical incidents of
prefix leaks and hijackings [19, 25, 3] which were only been
possible because prefix filtering is not correctly and widely
used. As an example, in 2010 China Telecom accidently sent
advertisements for 50 thousand blocks of IP addresses that
it did not own.

C. Prefix Aggregation

Tied closely with the subject of filtering long prefixes is
the concept of prefix aggregation. Upstream routers have
the ability to aggregate multiple advertisements from down-
stream peers into a single, less specific, advertisement which

426578578

they pass on to their peers. This again presents an issue for
our adversary, as aggregation could cause his attack updates
to be merged into a small number of aggregated routes.
However, this issue is actually a non-factor for our adversary
for several reasons.

First, we have to take into account how, where, and
why aggregation is and is not done. Aggregation must be
manually configured, and while it is fairly straightforward
to aggregate updates from non-transit ASes, as these routes
are essentially static stubs, this is not the case for routes
from transit providers, where our attacker was assumed to
be. In fact, a commonly used traffic engineering trick called
hole punching assumes that transit providers do not forcibly
aggregate each other’s announcements. In hole punching, a
router announces a path to both a prefix and a different
path to a more specific prefix contained in the first. In
this way the router can hint at different policies for this
specific destination or can encourage load balancing. Using
RouteViews data, we observed 569 core transit ASes actively
using hole punching. The fact that hole punching is actively
done is of great value to our adversary, as the way in
which he builds prefixes makes them appear identical to
hole punches.

Moreover, one can examine RouteViews to see exactly
how many ASes aggregate routes at all. By scanning Route-
Views for ASes that advertise easily aggregatable blocks, for
example 1.2.1.0/24 and 1.2.0.0/24, we can quickly
get a sense for how much aggregation is actually done in
practice. We found that 100% of transit providers are ob-
served advertising trivially aggregatable prefixes. Figure 4b
shows a CDF of the fraction of advertised prefixes seen from
transit providers that could be aggregated.

D. Prefix Count Limits

A different best practice that directly impacts our adver-
sary is limiting the number of prefixes one router will accept
from another. While there have been historical incidents
that call into question whether a majority of ASes actually
do this [19], let us assume the best case: that all ASes
follow this practice. While some of the attacks covered in
Section III center around sending a single malicious path to
a target, others require the adversary to send sets of paths.
Therefore, prefix limiting might present an issue for our
attacker: if prefix limits prevent him from sending enough
paths, his attack could fail. However, when examined more
closely, this turns out not to be an issue. There are two
different sets of prefix limits that will interact: those that
the adversary’s neighbors have set for it, and those that
the victim has set with his neighbors. Somewhat counter-
intuitively, the actual number of prefixes the attacker can
push to a victim several hops away can be higher than the
number of prefixes he can push to his neighbors. This is
because the attacker can set up multiple attack paths that
utilize the same first hop. In this case the maximum number

of malicious updates the attacker can send to the victim is
the sum of the victim’s prefix limits. We can examine our
results from Figure 3c, where we examined the estimated
number of attack flows an adversary would have to a given
target, to get an estimation of the number of per BGP
session advertisements an adversary would need to send
for various attackers and targets. The results of this can be
seen in Figure 4c. Even in the topologically worst case of a
randomly chosen attacker and target, the median number of
routes required is less than half of the routes in the current
global routing table. This is well within the resources of our
threat model. In the case of a tier 1 attacker against a tier 1
target, on average only 5000 prefixes per flow are sufficient.

Another reason prefix limits do not have a large impact
on the attacker is how large these prefix limits might be. The
value of prefix limits depends on where the victim sits within
the Internet topology. In general the victim falls into one of
two places: either on the fringe of the network or not. If the
victim is on the fringe of the network, then he is expecting
to receive full BGP tables from a single digit number of
providers, in which case his prefix limits are set at full table
size (on the order of hundreds of thousands of updates). If
the victim is not on the fringe, he might be expecting smaller
amounts of updates from each individual peer, ranging from
tens of thousands of prefixes up to full tables. However,
victims who are not on the fringe of the Internet also have
an increase in their number of peers of an order of magnitude
or more [21] compared to their counterparts in the fringes.
This means that, even if we assume the core victim has
prefix limits on the order of tens of thousands of routes, his
aggregate route acceptance will be equivalent to that of the
fringe victim, since the core victim has more peers. Lastly, it
is advised practice to keep a safety margin of as large as 25%
on prefix limits, so as to not accidentally exceed them [6].
This means our adversary can allow normal operation to
continue, while using that safety margin to advertise his
malicious routes.

E. Path Length Filtering

Recommended best practice is to limit the maximum
accepted AS path length. Again, recent historical incidents
call into question whether this is actually done [25]. Even
if routers set a small AS path length limit (the current
recommendation is 100 or less), we can recall back to
Figure 2a in Section III-B and see that the length of the
path is not a dominating factor for memory consumption
in CISCO routers. With a path length of 22, each update
accepted takes up 0.8 KB of memory. With a full path of
length 253, we only see a marginal improvement to 1.1 KB
of memory per update accepted. In our memory consumption
attack, we cause a much greater memory consumption by
adding community attributes to the updates.

427579579

VI. RELATED WORK

Previous works have examined the ability of adversaries
to propagate BGP updates to routers multiple hops away.
Two such examples are Pilosov and Kapela from Defcon
16 [18] and Goldberg et al. from SIGCOMM 2010 [9]. In
these works the authors examine how to propagate updates
for individual IP blocks, which the adversary does not own,
with the goal of hijacking traffic bound for hosts inside those
IP blocks. We share some techniques with each of these
works. For example, Pilsov uses the technique of adding
ASNs to the path in an effort to hide the updates from the
victim AS. We expand upon this idea in Section IV-C, using
prepending ASes to build attack flows. In addition, the goals
of our attacks different greatly from these works. In prior
work the adversary’s goal was to use the accepted routes to
hijack BGP traffic, our adversary’s goal on the other hand
is to use the side effects of the accepted routes to disrupt
the victim router.

Issues with memory load has also been covered from
different perspectives in prior work. As mentioned earlier,
Chang et al. [1] examined the impact of large BGP RIBs
on router functionality. While Chang et al. covered the
direct impacts of a router running out of memory, they
neither examine what makes routers more likely to run
out of memory nor how and adversary can leverage router
memory allocation to induce stability issues. In contrast, our
work examines both of these items in detail. Routing table
growth has also been covered extensively by the networking
community [13]. These works are concerned with the growth
of routing tables by non-malicious means, specifically the
natural expansion of the Internet and traffic engineering
techniques. Our work instead examines how an adversary
can artificially expand routing table size. Possible solutions
to these issues have been proposed as well [24], however
these solutions focus nearly exclusively on line card memory
load, and not the RIB, our adversary’s target.

VII. CONCLUSION

In this paper we demonstrated how an adversary in control
of a BGP router can disrupt victim routers located across
the Internet. We have shown through experimentation with
hardware and software routers three key points. First, that an
adversary in control of a BGP speaker can use unexpected
but perfectly legal BGP messages to crash victim routers.
Second, that such attacks can be launched against victims
located at arbitrary locations in the network by taking
advantage of the natural behavior of honest routers. And
third, modern best practices do not prevent these attacks.
Acknowledgments: This work was supported by NSF
project CNS-1223421.

REFERENCES

[1] D.-F. Chang, R. Govindan, and J. Heidemann. An empirical study of
router response to large BGP routing table load. In Proceedings of

the 2nd ACM SIGCOMM Workshop on Internet measurment, IMW
’02, pages 203–208, New York, NY, USA, 2002. ACM.

[2] CISCO Systems. CISCO Systems - Routers. http://www.cisco.com/
en/US/products/hw/routers/index.html.

[3] J. Cowie. China’s 18-minute mystery. Renesys Corp., http://www.
renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml, 2010.

[4] J. Cowie, A. Ogielski, B. Premore, and Y. Yuan. Global routing
instabilities during Code Red II and Nimda worm propagation, 2001.

[5] T. Cymru. Team Cymru Bogon List. http://www.team-cymru.org/
Services/Bogons/bogon-dd.html.

[6] T. Cymru. Team Cymru Secure BGP Template. http://www.
team-cymru.org/ReadingRoom/Templates/secure-bgp-template.html.

[7] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek.
Measuring the effects of Internet path faults on reactive routing. In
Proceedings of the 2003 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, SIGMETRICS
’03, pages 126–137, New York, NY, USA, 2003. ACM.

[8] L. Gao and J. Rexford. Stable Internet routing without global
coordination. IEEE/ACM Trans. Netw., 9:681–692, December 2001.

[9] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford. How
secure are secure interdomain routing protocols. SIGCOMM Comput.
Commun. Rev., 41:87–98, August 2010.

[10] G. Huston. BGP Routing Table Analysis Reports. http://bgp.potaroo.
net/.

[11] Juniper Networks. Juniper Network Routing Solutions. http://www.
juniper.net/us/en/products-services/routing/.

[12] M. Lad, X. Zhao, B. Zhang, D. Massey, and L. Zhang. An analysis
of BGP update surge during Slammer attack. In Proceedings of 5th
International Workshop on Distributed Computing, 2003.

[13] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang. Ipv4
address allocation and the bgp routing table evolution. SIGCOMM
Comput. Commun. Rev., 35(1):71–80, Jan. 2005.

[14] Network Working Group. RFC1997 - BGP Communities Attribute.
http://tools.ietf.org/rfc/rfc1997.txt, August 1996.

[15] Network Working Group. RFC4271 - A Border Gateway Protocol 4
(BGP-4). http://tools.ietf.org/html/rfc4271, January 2006.

[16] Network Working Group. BGPSEC Protocol Specification.
https://http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-04,
July 2012.

[17] D. Pei, X. Zhao, D. Massey, and L. Zhang. A study of BGP path vec-
tor route looping behavior. In Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS’04), ICDCS
’04, pages 720–729, Washington, DC, USA, 2004. IEEE Computer
Society.

[18] A. Pilosov and T. Kapela. Stealing the internet. In Defcon 16, 2008.
[19] A. Popescu, B. Premore, and T. Underwood. Anatomy of a leak:

AS9121. Renesys Corp., http://www.renesys.com/tech/presentations/
pdf/renesys-nanog34.pdf, 2005.

[20] A. Popescu, B. Premore, and E. Zmijewski. Middle east meltdown:
A global BGP perspective. Renesys Corp., http://www.renesys.com/
tech/presentations/pdf/apricot-plenary-08.pdf, 2008.

[21] ieee RouteViews. RouteViews Dataset. http://www.routeviews.org/.
[22] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush. A measurement

study on the impact of routing events on end-to-end Internet path
performance. SIGCOMM Comput. Commun. Rev., 36(4):375–386,
2006.

[23] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu,
and L. Zhang. Observation and analysis of BGP behavior under stress.
In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, IMW ’02, pages 183–195, New York, NY, USA, 2002.
ACM.

[24] X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the aggregatability of
router forwarding tables. In Proceedings of the 29th conference on
Information communications, INFOCOM’10, pages 848–856, Piscat-
away, NJ, USA, 2010. IEEE Press.

[25] E. Zmijewski. Reckless driving on the internet. Renesys Corp., http:
//www.renesys.com/blog/2009/02/the-flap-heard-around-the-worl.
shtml, 2009.

428580580

