
Trustworthy Distributed Computing
on Social Networks

Aziz Mohaisen, Member, IEEE, Huy Tran, Abhishek Chandra, Member, IEEE, and
Yongdae Kim, Member, IEEE

Abstract—In this paper we investigate a new computing paradigm, called SocialCloud, in which computing nodes are governed
by social ties driven from a bootstrapping trust-possessing social graph. We investigate how this paradigm differs from existing computing
paradigms, such as grid computing and the conventional cloud computing paradigms. We show that incentives to adopt this paradigm
are intuitive and natural, and security and trust guarantees provided by it are solid. We propose metrics for measuring the utility and
advantage of this computing paradigm, and using real-world social graphs and structures of social traces; we investigate the potential of
this paradigm for ordinary users.Westudyseveral design options and trade-offs, such as scheduling algorithms, centralization, and straggler
handling, and show how they affect the utility of the paradigm. Interestingly, we conclude that whereas graphs known in the literature
for high trust properties do not serve distributed trusted computing algorithms, such asSybil defensesVfor their weak algorithmic properties,
such graphs are good candidates for our paradigm for their self-load-balancing features.

Index Terms—Distributed computing, trust, social computing
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1 INTRODUCTION

CLOUD computing is a new paradigm that overcomes
restrictions of conventional computing systems by

enabling new technological and economical aspects, such
as elasticity and pay-as-you-goVwhich free users from
long-term commitments and obligation towards service
providers. Cloud computing is beneficial for both consumers
and cloud service providers. Despite many benefits this
paradigm provides, it poses several challenges that hinder
its usability [2]. Examples of these challenges include the
need for architectures to support various potential appli-
cations, programming models to address large scale data-
centric computing [3], new applications that benefit from
the architectural and programming models in the cloud, and
the need for strong security and data privacy protection
guarantees [4]. Indeed, both outsider and insider threats to
security and privacy of data in cloud systems are unlimited
[5]. Also, incentives do exist for cloud providers to make
use of users’ data residing in cloud for their own benefits,
for the lack of regulations and enforcing policies [6].

In this paper, we oversee a new computing paradigm,
called SocialCloud. The described paradigm enjoys parts of
the merits provided by the conventional cloud and extends
features of other distributed computing paradigmsVnamely
the grid computing. Imagine the scenario of a computing

paradigm where users who collectively construct a pool of
resources perform computational tasks on behalf of their
social acquaintance. Our paradigm and model are similar
in many aspects to the conventional grid-computing
paradigm. It exhibits such similarities in that users can
outsource their computational tasks to peers, complemen-
tarily to using friends for storage, which is extensively
studied in literature [7], [8]. Our paradigm is, however,
very unique in many aspects as well. Most importantly, our
paradigm exploits the trust exhibited in social networks as
a guarantee for the good behavior of other ‘‘workers’’ in the
system. Accordingly, the most important component in our
paradigm is the social bootstrapping graph, a graph that
enables recruiting workers used for performing computa-
tion tasks in SocialCloud.

In the recent years, social networks and their appli-
cations in enabling trust in distributed systems have
seen an increasing attention in the research community
[9], [10], [11], [12], [13]. Problems that are unsolvable in the
cyberspace are becoming solvable using social networks,
for that they possess both algorithmic propertiesVsuch
as connectivityVand trust. These properties are used to
reason about the behavior of benign users in the social
network, and to limit the misbehavior introduced by
malicious users. Also, these properties are the main feature
used in the design of social network based systems and to
support their efficiency and usability. Most important to
the context of SocialCloud is the aggregate computational
power provided by users who are willing to share their idle
time and available compute cycles [14]. In SocialCloud,
owners of these computing resources are willing to share
their computing resources for their friends, and for a
different economical model than in the conventional cloud
computing paradigmVfully altruistic one. This behavior
makes our work share commonalities with an existing stream
of work on creating computing services through volunteers
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[15], [16], although by enabling trust driven from social
networks. Our results hence highlight technical aspects
of this direction and pose challenges for designs options
when using social networks for recruiting such workers
and enabling trust. Assumptions in SocialCloud are not far-
fetched, and the initial results of SocialCloud have attracted
media attention [17], [18], [19], [20] justifying its potential
use and acceptance.

1.1 Contribution
The contribution of this paper is twofold:

. First, we investigate the potential of the social cloud
computing paradigm by introducing a design that
bootstraps from social graphs to construct distrib-
uting computing services. We advocate the merits of
this paradigm over existing ones such as the grid
computing paradigm.

. Second, we verify the potential of our paradigm
using simulation set-up and real-world social graphs
with varying social characteristics that reflect different,
and possibly contradicting, trust models. Both
graphs and the simulator are made public [21] to
the community to make use of them, and improve
by additional features.

1.2 Organization
The organization of this paper is as follows. In Section 2 we
argue for the case of our paradigm. In Section 3 we review
the preliminaries of this work. In Section 4, we introduce
the main design, including an intensive discussion on the
design options. In Section 5, we describe our simulator
used for verifying the performance aspects of our design.
In Section 6 we introduce the main results and detailed
analyses and discussion of the design options, their benefits,
and limitations. In Section 7, we summarize some of the
related work, including work on using social networks for
building trustworthy computing services. In Section 8,
we conclude and suggest some of the future work and
directions that would be interesting to explore.

2 THE CASE FOR SOCIALCLOUD

In this paper, we look at the potential of using unstructured
social graphs for building distributed computing systems.
These systems are proposed with several anticipated
benefits in mind. First, such systems would exploit locality
of data based on the applications they are intended for,
under the assumption that the data would be stored at
multiple locations and shared among users represented in
the social networkVc.f. Section 3.3 and [15] for concrete
examples of such applications. This is in fact not a far-
fetched assumption. For example, consider a co-authorship
social graph, like the one used in our experiments, where the
SocialCloud is proposed for deployment. In that scenario, data
on which computations are to be performed is likely to be at
multiple locations; on machines of research collaborators,
co-authors, or previous co-authors. Even for some online
social networks, the assumption and achieved benefits are
not far-fetched as well, considering that friends would have
similar interests, and likely to have contents replicated across

different machines, which could be potentially of interest to
use in our computing paradigm. Examples of such settings
include photos taken at parties, videosVfor image proces-
sing applications, among others.

The second advantage of this paradigm is its trust-
worthiness. In the recent literature, there has been a lot of
interest in the distributed computing community for exploit-
ing social networks to perform trustworthy computations.
Examples of these literature works include exploiting social
networks for cryptographic signing services [22], Sybil
defenses (i.e., addressing attacks in which a single node
creates multiple identities and tries to act as if it is multiple
nodes to tamper with the normal operation of a distributed
system) [11], [23], and routing in many settings including
the delay tolerant networks [24], [25]. In all of these cases,
along with the algorithmic property in these social networks,
the built designs exploit the trust in social networks. The trust
in these networks rationalizes the assumption of collaboration
in these built system, and the tendency of nodes in the
network to act according to the intended protocol with the
theorized guarantees. Same as in all of these applications,
SocialCloud tries to exploit the trust aspect of the social
network, and thus it is easy to reason about the behavior
of nodes in this paradigm (c.f. Section 3.2).

Related to trust exhibited in the social fabric utilized in
our paradigm, the third advantage is that it is also easy to
reason about the recruitment of workers. In this context,
workers are nodes that are willing to perform computing
tasks for other nodes (tasks outsourcers). This feature, when
associated with the aforementioned trust, is quite advanta-
geous when compared to the challenge of performing
trustworthy computing on dedicated workers in the conven-
tional grid-computing paradigm, where it is hard to recruit
such workers. Finally, our design oversees an altruistic
model of SocialCloud, where nodes participate in the system
and do not expect in return. Further details on this model
are in Section 3.2.

2.1 Grid vs Cloud Computing
While the SocialCloud uses a similar paradigm to that of
the grid computing paradigmVin the sense that both try
to outsource computations and use high aggregate com-
putational resources, the SocialCloud is slightly different.
Here we use the comparison features of grid and cloud
computing paradigms listed in [4]. In particular, in the
SocialCloud, there is a pre-defined relationship between the
task outsourcer and the computing worker, which does
not exist in the grid-computing paradigm. We limit the
computations to 1-hop neighbors, which further improve
trustworthiness of computations in our model, and proves
to be effective as shown in Section 6.5.3. We invasion that
our system combines the application oriented paradigm from
the grid computing paradigm, and the service computing
paradigm from the cloud computing, although at an altruistic
economical model supported by the social relationships
among computations outsourcers and works. Architecture-
wise, SocialCloud uses similar structure like grid-computing,
by not having a unified infrastructure [4]. We invasion also
the programming and application models of SocialCloud
to be closer to grid computing, in which process-based
computing is enabled, rather than cloud computing in which

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2014334



the unified infrastructure requires dedicated programming
models. Security and trustworthiness provided by Social-
Cloud is unique, and exhibits similar characteristics to trusted
cloud computing paradigms than the trust used in traditional
grid computing.

3 ASSUMPTIONS AND SETTINGS

In this section, we review the preliminaries required for
understanding the rest of this paper. In particular, we
elaborate on the social networks, their popularity, and their
potential for being used as bootstrapping tools for systems,
services, and protocols. We describe the social network
formulation at a high level, the economical aspect of our
system, and finally, the attacker model.

3.1 Social GraphsVHigh Level Description
In this paper we view the social network as an undirected
and unweighted graph G ¼ ðV; EÞ, where V ¼ fv1; . . . ; vng
is the set of vertexes, representing the set of nodes in
the social graph, and correspond to users (or computing
machines), and E ¼ feijg (where 1 � i � n and 1 � j � n) is
the set of edges connecting those verticesVwhich implies
that nodes associated with the social ties are willing to
perform computations for each other. jV j ¼ n denotes the
size of G and jEj ¼ m denotes the number of edges in G.
In the rest of the paper, social network, network, and graph
are used interchangeably to refer to both the physical
computing network and the underlying bootstrapping
social graph, and the meaning depends on the context.
Also, we refer to computing entities associated with users
in the social network as nodes.

3.2 Economics of SocialCloud
In our design we assume an altruistic model, which
simplifies the behavior of users and arguments on the
attacker model. In this altruistic model, users in the social
network donate their computing resourcesVwhile not using
themVto other users in the social network to use them for
specific computational tasks. In return, the same users who
donated their resources for others would anticipate others
as well to perform their computations on behalf of them
when needed.

One can further improve this model. Social networks are
rich of trust characteristics that capture additional features,
and can be used to rationalize this model in several ways.
For example, trust in social networks, a well studied vein of
research in this context [26], can be used to adjust this
model so as users would bind their participation in
computations to trust values that they assign to other
users. In this work, to make use of and confirm this model,
we limit outsourced computations at 1-hop.

3.3 Use Model and Applications
For our paradigm, we envision compute intensive applica-
tions for which other systems have been developed in the
past using different design principles, but lacking trust
features. These systems include ones with resources
provided by volunteers, as well as grid-like systems, like
in Condor [27], MOON [28], Nebula [16], and SETI@Home
[29]. Specific examples of applications built on top of these

systems, that would as well fit to our use model, include
blog analysis [15], web crawling and social apps (collaborative
filtering, image processing, etc) [30], scientific computing [31],
among others.

Notice that each of these applications requires certain
levels of trust for which social ties are best suited as a
trust bootstrapping and enabling tool. Especially, reasoning
about the behavior of systems and expected outcomes
(in a computing system in particular) would be well-served
by this trust model. We notice that this social trust has been
previously used as an enabler for privacy in file-sharing
systems [32], anonymity in communications systems [33],
and collaboration in sybil defenses [23], [26], among others. In
this work, we use the same insight to propose a computing
paradigm that relies on such trust and volunteered resources,
in the form of shared computing time. With that in mind,
in the following section we elaborate on the attacker used in
our system and trust models provided by our design, thus
highlight its advantage and distancing our work from prior
works in the literature.

3.4 Attacker Model
In this paper, as it is the case in many other systems built on
top of social networks [23], [26], we assume that the attacker
is restricted in many aspects. For example, the attacker has a
limited capability of creating arbitrarily many edges between
himself and other nodes in the social graph.

While this restriction may contradict some recent results
in the literature [34]Vwhere it is shown that some social
networks are prone to infiltration, it can be relaxed to
achieve the intended trust and attack model by considering
an overlay of subset of friends of each users. This overlay
expresses the trust value of the social graph well and
eliminates the influence introduced by the attacker who
infiltrated the social graph [26]. For example, since each
user decides to which node among neighbors to outsource
computations to, each user is aware of other users he
knows well and those who are just social encounters that
could be potential attackers. Accordingly, the user himself
decides whether to include a given node in his overlay or
not, thus minimizing or eliminating harm and achieving
the required trust and attack model.

The description of the above attacker model might be at
odds with the rest of the paper, especially that we use some
online social networks that do not reflect characteristics of
trust required in our paradigm. However, such networks
are used in our demonstration for two reasons. First, to
derive insight on the potential of such social networks, and
others that share similar topological characteristics, for
performing computational tasks according to the method
devised in this paper. Second, we use them to illustrate
that some of these social networks might be less effective
than the trust-possessing social graphs, which we strongly
advocate for our computing paradigm.

The restrictions of the adversary model are used
when demonstrating the trust-based scheduling described
in Section 4.3. In that context, we limit the adversary
in the number of edges he can create with honest nodes in
the social graph, thus limiting the similarity graph used for
characterizing trust as a similarity. When using interactions
as an indicator of trust, the adversary is also limited by the
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number of interactions he can create with honest nodes.
Notice that our experimental settings avoid discussing or
considering the compromise of social identify and other
attacks since addressing them is orthogonal to our work.
Furthermore, simple fixes can be deployed to address that
issue. For example, identify compromise can be confirmed
in an offline manner, or by testing the adversary against
the correctness of the returned computation resultsVby
replicating computations on other hosts in case of suspecting
such compromise, among other techniques.

3.4.1 Comparison with Trust in Grid Computing Systems
While there has been a lot of research on characterizing and
improving trust in the conventional grid computing paradigm
[35], [36]Vwhich is the closest paradigm to compare to
ours, trust guarantees in such paradigm are less strict than
what is expressed by social trust. For that, it is easy to see
that some nodes in the grid computing paradigm may act
maliciously by, for example, giving wrong computations,
or refusing to collaborate; which is even easier to detect and
tolerate, as opposed to acting maliciously [37].

4 THE DESIGN OF SOCIALCLOUD

The main design of SocialCloud is very simple, where
complexities are hidden in design choices and options. In
SocialCloud, the computing overlay is bootstrapped by the
underlying social structure. Accordingly, nodes in the social
graph act as workers to their adjacent nodes (i.e., nodes which
are one hop away from the outsourcer of computations). An
illustration of this design is depicted in Fig. 1. In this design,
nodes in the social graph, and those in the SocialCloud overlay,
use their neighbors to outsource computational tasks to
them. For that purpose, they utilize local information to
decide on the way they schedule the amount of computations
they want each and every one of their neighbors to take care
of. Accordingly, each node has a scheduler which she uses
for deciding the proportion of tasks that a node wants to
outsource to any given worker among her neighbors. Once a
task is outsourced to the given worker, and assuming that
both data and code for processing the task are transferred to
the worker, the worker is left to decide how to schedule the
task locally to compute it. Upon completion of a task, the
worker sends back the computations result to the outsourcer.

4.1 Design Options: A Scheduling Entity
In SocialCloud two schedulers are used. The first scheduler
is used for determining the proportion of task outsourced

to each worker and the second scheduler is used at each
worker to determine how tasks outsourced by outsourcers are
computed and in which order. While the latter scheduler can
be easily implemented locally without impacting the system
complexity, the decision used for whether to centralize or
decentralize the former scheduler impacts the complexity
and operation of the entire system. In the following, we
elaborate on both design decisions, their characteristics,
and compare them.

4.1.1 Decentralized Scheduler
In our paradigm, we limit selection of workers to 1-hop
from the outsourcer. This makes it possible, and perhaps
plausible, to incorporate scheduling of outsourcing tasks at
the side of the outsourcer in a decentralized mannerVthus
each node takes care of scheduling its tasks. On the one hand,
this could reduce the complexity of the design by eliminating
the scheduling server in a centralized alternative. However,
on the other hand, this could increase the complexity of
the used protocols and the cost associated with them for
exchanging statesVsuch as availability of resources, online
and offline time, among others. All of such states are
exchanged between workers and outsourcers in our para-
digm. These states are essential for building basic primitives
in any distributed computing system to improve efficiency
(see below for further details). An illustration of this design
option is shown in Fig. 1. In this scenario, each outsourcer, as
well as worker, has its own separate scheduling component.

4.1.2 Centralized Scheduler
Despite the fact that nodes may only require their neighbors
to perform the computational tasks on behalf of them and
that may require only local informationVwhich could be
available to these nodes in advance, the use of a centralized
scheduler might be necessitated to reduce communication
overhead at the protocol level. For example, to decide upon
the best set of nodes to which to outsource computations, a
node needs to know which of its neighbors are available,
among other statistics. For that purpose, and given that
the underlying communication network topology may not
necessarily have the same proximity of the social network
topology, the protocol among nodes needs to incur back
and forth communication cost. One possible solution to the
problem is to use a centralized server that maintains states.
Instead of communicating directly with neighbor nodes,
an outsourcer would request the best set of candidates
among its neighbors to the centralized scheduling server.
In response, the server will produce a set of candidates,
based on the locally stored states. Such candidates would
typically be those that would have the most available
resources to handle outsourced computation tasks.

An illustration of this design option is shown in Fig. 2.
In this design, each node in SocialCloud would periodically
send states to a centralized server. When needed, an out-
sourcer node contacts the centralized server to return to it
the best set of candidates for outsourcing computations,
which the server would return based on the states of these
candidates. Notice that only states are returned to the
outsourcer, upon which the outsourcer would send tasks to
these nodes on its ownVThus, the server involvement is
limited to the control protocol.

Fig. 1. Depiction of the main SocialCloud paradigm as viewed by an
outsourcer of computations. The different nodes in the social network act
as workers for their friends, who act as potential jobs/tasks outsourcers.
The links between social nodes are ideally governed by a strong trust
relationship, which is the main source of trust for the constructed
computing overlay. Both job outsourcers and workers have their own,
and potentially different, schedulers.
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The communication overhead of this design option to
transfer states between a set of d nodes is 2d, where d
messages are required to deliver all nodes’ states and d
messages are required to deliver states of all other nodes to
each node in the set. On the other hand, dðd � 1Þ messages
are required in the decentralized option (which requires
pairwise communication of states update). When outsourc-
ing of computations is possible among all nodes in the
graph, this translates into OðnÞ for the centralized versus
Oðn2Þ communication overhead for the decentralized
optionVnotice that the communication overhead in the
decentralized design would be in reality OðmÞ, where
m� n2 (for an illustration, see Table 2). To sum up, Table 1
shows a comparison between both options. In the rest
of this paper and through the simulation, we use the
decentralized setting, accounting for the communication
overhead but not requiring trust by depending on any
additional entity in the paradigm, not requiring additional
hardware, and not suffering from a single point of failure.

4.2 Tasks Scheduling Policy
While using distributed or centralized scheduler resolves
scheduling at the outsourcer, two decisions remain untackled:
how much computation to outsource to each worker, and
how much time a worker should spend on a given task for a
certain outsourcer. We address these two issues separately.

Any off-the-shelf scheduling algorithm can be used to
schedule tasks at the outsourcer’s side, which can be further
improved by incorporating trust models for weighted job
scheduling [26]. On the other hand, we consider several
scheduling algorithms for workers scheduling, as follows.
1) Round Robin (RR) Scheduling Policy This is the simplest
policy to implement, in which a worker spends an equal
share of time on each outsourced task in a round robin
fashion among all tasks he has. 2) Shortest First (SF)
Scheduling Policy The worker performs shortest task
first. 3) Longest First (LF) Scheduling Policy The worker
performs longest task first.

Notice that we omit a lot of details about the underlying
computing infrastructure, and abstract such infrastructure
to ‘‘time sharing machines’’, which further simplifies much
of the analysis in this work. However, in a working version
of this paradigm, all of these aspects are addressed in a
similar manner is in other distributed systems and

paradigms. See Section 6 for details on limitations of this
approach and possible extensions in the future work.

4.3 Trust-Based Scheduling
Both of the scheduling components at the worker and the
outsourcer we discussed so far have considered only the
availability of a host for performing computations. How-
ever, one interesting feature of social networks that can be
used to bias the way according to which scheduling is done is
the underlying differential trust. Oftentimes, strength of ties
between nodes in the social network varies, and that strength
can be measured using various ways. In a more realistic
context of social network-based computing systems, nodes
would capitalize on this differential trust in assigning com-
putations to other nodes. In principle, biasing the sched-
uling according to the method above is similar to the
‘‘Weighted Differential Scheduler’’, where weights of sched-
uling (at the outsourcer) are assigned on pre-computed trust
value.

4.3.1 Defining Trust-Based Scheduling
There are several ways used in the literature for computing
the strength of ties between social nodes [26]. Two widely
used notions for the strength of ties are characterized in
the following:

. Similarity-based: the similarity-based metric for es-
timating the strength of ties between two nodes
captures the number of common nodes between
then. Formally, for two nodes vi, and vj, with their
neighbors being NðviÞ and NðvjÞ respectively, the
similarity between node vi and vj is defined as

Sðvi; vjÞ ¼ jNðviÞ\NðvjÞjjNðviÞ[NðvjÞj (where j � jmeans the cardinality

of the resulting set ð�Þ). Every node vx in the social
graph computes its similarity with the neighboring
nodes in the social graph and assigns a trust value to
those nodes according to the resulting similarity. Fur-
thermore, when scheduling tasks to be computed on
those neighboring nodes, each node uses the similarity
value with those neighbors for weighting the distrib-
uted portions of tasks.

Fig. 2. Centralized versus decentralized model of task scheduling in
SocialCloud. In the centralized model, an additional centralized entity is
used for coordinating to which worker tasks are to be outsourced,
whereas the decentralized model does not require this entity and rely on
rounds of communication between the outsourcer and workers to
coordinate outsourcing of computations.

TABLE 2
Social Graphs Used in Our Experiments

TABLE 1
Comparison between the Centralized and Decentralized

Schedulers. Compared Features are Failure, Communication
Overhead, Required Additional Hardware, and Required

Additional Trust
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. Interaction-based: the interaction-based metric for
estimating the strength of ties between two nodes
captures the volume of interactions between those
nodes over time. Let the neighbors of a node vi be
NðviÞ ¼ fvi1; . . . ; vidg (where the degree of vi is d).
Let the volumes of interactions between the node vi
and its neighbors listed above be Ivi ¼ fIvi1 ; . . . ; Ividg
as observed over a period of time. The node vi, when
having a task to outsource, uses the interaction
volumes observed with other nodes as an indicator
for trust and weights the amount of computations
outsourced to them accordingly. That is, for a node
vix that is a neighbor of vi, the portion of computa-
tions outsourced is Iix=

P
8j Iij.

4.3.2 Evaluation of Trust-Based Scheduling
While evaluating the performance of SocialCloud under
those trust-based scheduling policies using the same
metric defined in Section 6.1 and used with other policies
is straightforward, it is worth noting that both models have
a slightly different implication on the underlying graphs,
which is worth considering in the experiments. It has been
observed in the literature that an adversary that introduces
malicious nodes in a social graph (e.g., similar to those
created in Sybil attacks, attacks in which a single node
creates multiple identities and pretends as if it is multiple
nodes; further details on those attacks and defenses are
in [38]) still cannot afford to create many meaningful inter-
actions with real social network nodes. Similarly, while it is
potentially possible to create a single association with a node
in a social network, it is quite harder to do that at scale by
creating associations with that node and a large portion of its
friends. Accordingly, if that adversary is to be considered in
the scheduling system, it will always end up with a small
portion of the computations outsourced to it. Even in case
where computations are not performed in a timely manner,
re-outsourcing them to a more trusted node would not
substantially delay the overall computation time (with respect
to the evaluation metric explained below for evaluating the
performance of SocialCloud).

To capture this difference from scheduling policies, we
assume that there is a small portion of nodes ðpdÞ that is
controlled by the adversary. Also, given that we lack any
information on a ground truth of the volume of interactions
of this adversary and other honest nodes, we assume a budget
of interactions distributed among all nodes controlled by this
adversary and study how that impacts the evaluation metric.

We study that as well as the straightforward implication
of the time-to-complete evaluation metric (in Section 6.1)
without an adversary, but rather with the modified graph
according to the trust policies defined above.

4.4 Handling Outliers
The main performance criterion used for evaluating
SocialCloud is the time required to finish computing tasks
for all nodes with tasks in the system. Accordingly, an
outlier (also called a computing straggler) is a node with
computational tasks that take a long time to finish, thus
increasing the overall time to finish and decreasing the
performance of the overall system. Detecting outliers in our
system is simple: since the total time is given in advance,
outliers are nodes with computing tasks that have longer
time to finish when other nodes participating in the same
outsourced computation are idle. Our method for handling
outliers is simple too: when an outlier is detected, we
outsource the remaining part of computations on all idle
nodes neighboring the original outsourcer. For that, we use
the same scheduling policy used by the outsourcer when
she first outsourced this task. In the simulation part, we
consider both scenarios of handled and unhandled outliers,
and observe how they affect the performance of the system.

Notice that our outlier handling requires an estimation
of tasks timing to be able to determine the time-to-finish,
and decided whether to reschedule a task or not. Alterna-
tively, we can use similar techniques like those used in other
distributed computing systems, like Mapreduce: once an
outlier is detected as the task that is taking longer than the
rest of other tasks to perform, it is rescheduled to other
available nodes without modifying it on the original node.
Depending on which node finishes the computation first,
the outsourcer then sends a signal to kill the computation
on the node that did not finish yet.

4.5 Deciding Workers Based on Resources
In real-world deployment of a system like SocialCloud, we
expect heterogeneity of resources, such as bandwidth,
storage, and computing power, in workers. This hetero-
geneity would result in different results and utilization
statistics of a system like SocialCloud, depending on which
nodes are used for what tasks. While our work does not
address this issue, and leaves it as a future work (c.f. Sections 6.6
and 8). We further believe that simple decisions can be
made in this regard so as to meet the design goals and
achieve the good performance. For example, we expect that
nodes would select workers among their social neighbors
that have resources and link capacities exceeding a thresh-
old, thus meeting an expected performance outcome.

5 SIMULATOR OF SOCIALCLOUD

To demonstrate the potential of SocialCloud as a computing
paradigm, we implement a batch-based simulator [21] that
considers a variety of scheduling algorithms, an outlier
handling mechanism, job generation handling, and failure
simulation.

The flow of the simulator is in Fig. 3. First, a node factory
uses the bootstrapping social graph to create nodes and
workers. Each node then decides on whether she has a task

Fig. 3. Flow diagram of SocialCloud: social graph is used for
bootstrapping the computing service and recruiting workers, nodes are
responsible for scheduling their tasks, and each worker uses its local
scheduler to divide compute time on neighbors’ compute tasks.
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or not, and if she has a task she schedules the task according
to her scheduling algorithm. If needed, each node then
transfers code on which computations are to be performed
to the worker along with the chunks of the data for these codes
to run on. Each worker then performs the computation
according to her scheduling algorithm and returns results to
the outsourcer. The implemented components of SocialCloud
are described in the previous section.

5.1 Timing
In SocialCloud, we use virtual time to simulate computations
and resources sharing. We scale down the simulated time
by 3 orders of magnitude of that in reality. This is, for every
second worth of computations in real-world, we use one
millisecond in the simulation environment. Thus, units of
times in the rest of this paper are in virtual seconds.

6 RESULTS AND ANALYSIS

In this section, and to derive insight on the potential of
SocialCloud, we experiment with the simulator described
above. Before getting into the details of the experiments,
we describe the data and evaluation metric used in this
section.

6.1 Evaluation Metric
To demonstrate the potential of operating SocialCloud, we
use the ‘‘normalized finishing time’’ of a task outsourced
by a user to other nodes in the SocialCloud as the performance
metric. We consider the same metric over the different
graphs used in the simulation. To demonstrate the perfor-
mance of all nodes that have tasks to be computed in the
system, we use the empirical CDF (commutative distribution
function) as an aggregate measure.

For a random variable X, the CDF is defined as
FXðxÞ ¼ PrðX � xÞ. In our experiments, the CDF measures
the fraction (or percent) of nodes that finish their tasks
before a point in time x, as part of the overall number of
tasks. We define x as the factors of time of normal operation
per dedicated machines, if they were to be used instead of
outsourcing computations. This is, suppose that the overall
time of a task is Ttot and the time it takes to compute the
subtask by the slowest worker is Tlast, then x for that node is
defined as Tlast=Ttot.

6.2 Tasks Generation
To demonestrate the operation of our simulator and the
trade-off our system provides, we consider two different
approaches for the tasks generated by each user. The size of
each generated task is measured by virtual units of time,
and for our demonstration we use two different scenarios.
1) Constant task weight each outsourcer generates tasks
with an equal size. These tasks are divided into equal
shares and distributed among different workers in the
computing system. The size of each task is �T . 2) Variable
task weight each outsourcer has a different task size. We
model the size of tasks as a uniformly distributed random
variable in the range of ½ �T � ‘; �T þ ‘� for some �T 9 ‘. Each
worker receives an equal share of the task from the
outsourcer. The generation of a variable task weight would
result in non-uniform load among neighbors for tasks to

compute, and would be an enabler for policies like shortest
(or longest) first and their relative performance.

6.3 Deciding Tasks Outsourcers
Not all nodes in the system are likely to have tasks to
outsource for computation at the same time. Accordingly,
we denote the fraction of nodes that have tasks to compute
by p, where 0 G p G 1. In our experiments we use p from 0.1
to 0.5 with increments of 0.1. We further consider that each
node in the network has a task to compute with probability
p, and has no task with probability 1� pVthus, whether a
node has a task to distribute among its neighbors and
compute or not follows a binomial distribution with a
parameter p. Once a node is determined to be among nodes
with tasks at the current round of run of the simulator, we
fix the task length. For tasks length, we use both scenarios
mentioned in Section 6.2; with fixed or constant and
variable tasks weights.

6.4 Social Graphs
To derive insight on the potential of SocialCloud, we run our
simulator on several social graphs with different size and
density, as shown in Table 2. The graphs used in these
experiments represent three co-authorship social struc-
tures (DBLP, Physics 1, and Physics 2), one voting network
(of Wiki-vote for wikipedia administrators election), and
one friendship network (of the consumer review website,
Epinion). Notice the varying density of these graphs, which
also reflects on varying topological characteristics. Also,
notice the nature of these social graphs, where they are built
in different social contexts and possess varying qualities of
trust that fits to the application scenario mentioned earlier.
The proposed architectural design of SocialClould, however,
minimally depends on these graphs, and other networks
can brought instead of them. As these graphs are widely
used for verifying other applications on social networks, we
believe they enjoy a set of representative characteristics to
other networks as well.

6.5 Main Results
In this section we demonstrate the performance of
SocialCloud and discuss the main results of this work under
various circumstances. Due to the lack of space, we delegate
additional results to the technical report in [39]. For all
measurements, our metric of performance and comparison is
the normalized time to finish metric, as explained in Section 6.1.
We note that all of the experiments, unless otherwise is
mentioned, do not consider an adversary in place. We
consider the adversarial model described in Section 3.4 we
describing the results of trust-based scheduling.

6.5.1 Number of Outsourcers
In the first experiment, we run our SocialCloud simulator on
the different social graphs discussed earlier to measure the
evaluation metric when the number of the outsourcers of
tasks increases. We consider p ¼ 0:1 to 0.5 with increments
of 0.1 at each time. The results of this experiment are in
Fig. 4. On the results of this experiment we make several
observations.

First, we observe the potential of SocialCloud, even when
the number of outsourcers of computations in the social
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network is as high as 50 percent of the total number of nodes,
which translates into a small normalized time to finish even
in the worst performing social graphs (about 60 percent of all
nodes with tasks would finish in 2 normalized time units).
However, this advantage varies for different graphs: we
observe that sparse graphs, like co-authorship graphs,
generally outperform other graphs used in the experiments
(by observing the tendency in the performance in Figs. 4a
and 4b versus Figs. 4c and 4d). In the aforementioned graphs,
for example, we see that when 10 percent of nodes in each
case is used, and by fixing x, the normalized time, to 1, the
difference of performance is about 30 percent. This difference
of performance can be observed by comparing the Physics
co-authorship graphsVwhere 95 percent of nodes finish their
computationsVand the Epinion graphVwhere only about
65 percent of nodes finish their computations at the same time.

Second, we observe that the impact of p, the fraction of
nodes with tasks in the system, would depend greatly on
the underlying graph rather than p alone. For example, in
Fig. 4a, we observe that moving from p ¼ 0:1 to p ¼ 0:5 (when
x ¼ 1) leads to a decrease in the fraction of nodes that finish
their computations from 95 percent to about 75 percent. On
the other hand, for the same settings, this would lead to a
decrease from about 80 percent to 40 percent, a decrease from
about 65 percent to 30 percent, and a decrease from 70 percent
to 30 percent in DBLP, Epinion, and Wiki-vote, respectively.
This suggests that the decreases in the performance are due to
an inherit property of each graph. The inherit property of
each graph and how it affects the performance of SocialCloud
is further illustrated in Fig. 5. We find that even when DBLP’s
size is two orders of magnitude the size of Wiki-vote, it
outperforms Wiki-vote when not using outlier handling,
and gives almost the same performance when using it.

6.5.2 Scheduling Policy
Now, we turn our attention to understanding the impact
of the different scheduling policies discussed in Section 4.2
on the performance of SocialCloud. We consider the different
datasets, and use p ¼ 0:1 to 0.5 with 0.2 increments (the
results are shown in Fig. 6). The observed consistent pattern
in almost all figures in this experiment tells that shortest
first policy always outperforms the round robin scheduling
policy, whereas the round robin scheduling policy outperforms
the longest first. This pattern is consistent regardless of
p and the outlier handling policy. The difference in the
performance when using different policies can be as low as
2 percent (when p ¼ 0:1 in physics co-authorship; shown in
Fig. 6l) and as high as 70 percent (when usingp ¼ 0:5 and outlier

handling as in wiki-vote (Fig. 6o)). The patterns are clearer in
Fig. 6 by observing combinations of parameters and policies.

One possible intuitive explanation of this behavior is
understood by the fairness aspects the various policies
provide. While the shortest-first policy finishes shorter
tasks first, thus it is more likely to yield a set of accumulated
tasks that count toward the CDF as the time progresses, the
longest-first policy does the contrary by having less numbers
of finished tasks when dedicating resources for those that
take the longest. On the other hand, the round-robin policy
establishes a middle point, by mixing longer and shorter
tasks in its processing, and yielding a mix of them in the
ones finished.

6.5.3 Evaluation of Trust-Based Scheduling
Now we turn our attention to the trust-based scheduling
described in Section 4.3, and how they affect the performance
of SocialCloud. We use the settings described in Section 4.3.2
for evaluating the two scheduling policies described in
Section 4.3.1. In particular, for the similarity-based sched-
uling, we assume a fixed number of nodes under the control
of the adversary.

To simulate the adversary model described in Section 4.3.2,
we assume each node has a variable degree: we quantize
the degree distribution of the original graph into a set of
brackets (fixed to 10) and randomly select the degree of a

Fig. 4. Normalized time it takes to perform outsourced computations in SocialCloud. Different graphs with different social characteristics have
different performance results, where those with well-defined social structures have self-load-balancing features, in general. These measurements are
taken with round-robin scheduling algorithm that uses the outlier handling policy in Section 4.4 for a fixed task size (of 1000 simulation time units). (a)
Physics 1. (b) DBLP. (c) Epinion. (d) Wiki-vote.

Fig. 5. Performance of SocialCloud on the different social graphs. These
plots demonstrate the inherent differences in these social graphs.
Both figures use p ¼ 0:3 and the round robin scheduling algorithm.
(a) Handled outliers. (b) Unhandled outliers.
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portion of the adversary nodes to fall within that bracket.
This portion of malicious nodes is proportional to the
number of honest nodes falling in that bracket. Assuming a
budget of interactions, we then uniformly distribute that
budget on all edges controlled by the adversary. We note
that this scenario is optimal for the adversary and worst
for our system. For the similarity-based model, and to limit
the similarity score, we connect each of those nodes to a
random node in the graph, using one of its edges that
contribute to its degree.

We assign the number of interactions the adversary is
capable of generating as ten times the maximum number of
interactions associated with an honest user in the graph.
We note that meaningful interactions are hard to forge, and
such simulated settings are pessimistic and correspond to a
powerful adversary.

For the evaluation of these policies, we use the
interaction social graph of Facebook from [40]. The final
graph consists of 35,665 nodes, with 86,525 weighted
edges. The weights on the edges correspond to the inter-
actions. When using the graph for similarity, weights are
omitted. The adversary is capable of plugging 1000 malicious
nodes (roughly 2.8 percent of the total nodes) in the graph
in both of the similarity and interaction-based models. The
budget of interactions associated with the attacker is 20,000.
The average node degree for the adversary is calculated and

found to be 3.2, slightly more than the average degree of an
honest node. The average weight on an edge controlled by
the adversary is found to be 6.25, roughly a quarter of the
average weight on an edge between two honest nodes. The
similarity is computed as the Jaccard index [26], which is
also described in Section 4.3.1.

The proportion of outsourced computations depends on
the perceived trust by a node towards other nodes based on
weights attributed to interaction and similarity. We assume
that the adversary does not return any computation results
to the outsourcer, and the outsourcer uses the outlier
handling policies to perform the computations upon
not hearing back, thus treating the outcomes as a failure
of performing computations. The same technique is used
to recover from failure due to malicious activities when not
using trust models. We compare the outcomes of the trust-
based policies to the unweighted graph scenario where the
adversary and honest neighbors are treated equally. We
use the same metric described in Section 6.1.

Fig. 7 shows the outcomes of this experiment. We notice
that in both cases where the trust-based scheduling is used,
SocialCloud operates well by outperforming the plain
scenario where no trust is used. For example, we notice that
while only 75 percent of the compute tasks are finished for a
normalized time of 1.5 when not deploying any trust model,
about 92 percent and 95 percent of tasks are finished with the

Fig. 6. Normalized time it takes to perform outsourced computations in SocialCloud for different scheduling policies. Naming convention: U stands for
unhandled outlier and B stands for handled outliers (Balanced). RRS, SFS, and LFS stand for round-robin, shortest first, and longest first scheduling.
(a) Physics 1 ðp ¼ 0:1Þ. (b) Physics 2 ðp ¼ 0:1Þ. (c) DBLP ðp ¼ 0:1Þ. (d) Epinion ðp ¼ 0:1Þ. (e) Wiki-vote ðp ¼ 0:1Þ. (f) Physics 1 ðp ¼ 0:3Þ. (g) Physics 2
ðp ¼ 0:3Þ. (h) DBLP ðp ¼ 0:3Þ. (i) Epinion ðp ¼ 0:3Þ. (j) Wiki-vote ðp ¼ 0:3Þ. (k) Physics 1 ðp ¼ 0:5Þ. (l) Physics 2 ðp ¼ 0:5Þ. (m) DBLP ðp ¼ 0:5Þ.
(n) Epinion ðp ¼ 0:5Þ. (o) Wiki-vote ðp ¼ 0:5Þ.
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similarity- and interaction-based models, respectively. The
intuition behind this boost in the performance is simple:
whereas the plain setting (where no trust is applied) treats
neighboring nodes equally, and tasks of equal size are likely
to be outsourced to a malicious neighborVthus worsening
the overall time for finishing tasks, the trust-based models
described above punishes nodes with less trust. Given that
both interaction and similarity are not easy to manipulate,
according to the settings described earlier, the weight of the
tasks outsourced to the adversary are generally small, and
once the outsourcer realizes they are not completed it will
take shorter to finish them using the outlier handling policy.

6.5.4 Performance with Outliers Handling
Outliers, as defined in Section 4.4, drag the performance of
the entire system down. However, as pointed out earlier,
handling outliers is quite simple in SocialCloud if accurate
timing is used in the system. Providing such timing is
important in understanding the time-to-finish portion and
establish whether rescheduling a task is needed or not.
Here we consider the impact of the outlier handling policy
explained in Section 4.4. The impact of using the outlier
handling policy can be also seen on Fig. 6, which is used for
demonstrating the impact of using different scheduling
policies as well. In this figure, we see that the simple
handling policy we proposed improves the performance
of the system greatly in all cases. The improvement
differs depending on other parameters, such as p, and
the scheduling policy. As with the scheduling policy, the
improvement can be as low as 2 percent and as high as
more than 60 percent. When p is large, the potential
for improvement is highVsee, for example, p ¼ 5 in
Physics 2 with the round robin scheduling policy where

almost 65 percent improvement is due to outlier handling
when x ¼ 1.

6.5.5 Variable Task Size
In all of the above experiments, we considered computational
tasks of fixed size; 1000 of virtual time units in each of them.
Whether the same pattern would be observed in tasks with
variable size is unclear. Here we experimentally address this
concern by using variable duty size that is uniformly
distributed in the interval of [500, 1500] time units. The results
are shown in Fig. 8. Comparing these results to the middle
row of Fig. 6 (for the fixed size tasks), we make two
observations. 1) While the average task size in both scenarios
is same, we observe that the performance with variable task
size is worse. This performance is anticipated as our measure
of performance is the time to finish that would be definitely
increased as some tasks with longer time to finish are added.
2) The same patterns advantaging a given scheduling policy
on another are maintained as in earlier with fixed task length.

6.5.6 Structure and Performance
We note that the performance of SocialCloud is quite related
to the underlying structure of the social graph. We see that
sparse graphs, like co-authorship graphsVwhich are
pointed out in [26] to be slow mixing graphsVhave
performance advantage in SocialCloud. These graphs, in
particular, are shown to possess a nice trust value that can
be further utilized for SocialCloud. Furthermore, this trust
value is unlikely to be found in online social networks
which are prone to infiltration, making the case for trust-
possessing graphs even stronger, as they achieve perfor-
mance guarantees as well. This, indeed, is an interesting
finding by itself, since it shows contradicting outcomes to
what is known in the literature on the usefulness of these
graphsVsee Section 3 for more details and the work in [26]
for prior literature that agrees with our findings.

6.6 Additional Features and Limitations
Our simulator of SocialCloud omits a few details concerning
the way a distributed system behaves in reality. In
particular, our measurements do not report on or exper-
iment with failure. However, our simulator is equipped
with functionality for handling failure in the same way
used for handling outliers (c.f. Section 4.4). Furthermore,
our simulator considers a simplistic scenario of study by
abstracting the hardware infrastructure, and does not
consider additional resources consumed, such as memory
and I/O resources. In the future, we will consider equipping
our simulator with such functionalities and see how this
affects the behavior and benefits of SocialCloud.

Fig. 8. Normalized time to perform outsourced computations in SocialCloud, for variable task size. (a) Physics 1 ðp ¼ 0:3Þ. (b) DBLP ðp ¼ 0:3Þ.
(c) Epinion ðp ¼ 0:3Þ. (d) Wiki-vote ðp ¼ 0:3Þ.

Fig. 7. Trust affects the performance of SocialCloud. Both of the
similarity- and interaction-based models outperforms the plain model,
where no trust is used (parameters: round-robin scheduling at workers,
p ¼ 0:2, and variable task length of mean equal 1000 units.)
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For simplicity, we do not consider the heterogeneity of
resources, such as bandwidth and resources, in nodes
acting as workers in the system. Furthermore, we did not
consider how this affects the usability of our system and
what decision choices this particular aspect of distributed
computing systems would have on the utility of our
paradigm. While this would be mainly a future work to
consider (c.f. Section 8), we expect that nodes would select
workers among their social neighbors that have resources
and link capacities exceeding a threshold, thus meeting an
expected performance outcome.

7 RELATED WORK

There have been many papers on using social networks for
building communication and security systems. Below we
highlight a few examples of these efforts and works.

Systems built on top of social networks include file
sharing [32], [7], [41], [26], anonymous communication [42],
[33], Sybil defenses [11], [23], [43], [44], [10], [26], routing
[24], [25], [45], referral and filtering [46], content distribu-
tion [47], [48], and live streaming systems [49], among many
others [50]. Most of these systems use social networks’ trust
and connectivity for their operation.

Concurrent to our work, and following their work in
[51], Chard et al. [13] suggested the use of social networks
to build a resource sharing system. Whereas their main
realization was still a social storage system as in [51], they
also suggested that the same vision can be used to build a
distributed computing service as we advocate in this work.
Recent realizations of this vision have been reported in [52]
and [53]. In [52], Thaufeeg et al. devised an architecture
where ‘‘individuals or institutions contribute the capacity
of their computing resources by means of virtual machines
leased through the social network’’. In [53] Koshy et al.
further explored the motivations of users to enable social
cloud systems for scientific computing. Caton et al. explored
foundations of trust in social cloud computing environ-
ments [54]. Engineering incentives for social cloud have
been studied in [55] and additional scientific applications
based on a social network governed computing nodes are
explored in [56].

With a similar flavor of distributed computing services
design, there has been prior works in literature on using
volunteers’ resources for computations exploiting locality
of data [16], [15], examination of programing paradigms,
like MapReduce [57] on such paradigm [28]. Finally, our
work shares several commonalities with grid and volunteer
computing systems [27], [28], [16], [15], [29], [58], of
which many aspects are explored in the literature. Trust
of grid computing and volunteer-based systems is explored
in [35], [36]. Applications built on top of these systems,
that would fit to our use model, are reported in [15], [31],
among others.

8 SUMMARY AND FUTURE WORK

In this section we summarize our work and conclude
with directions that we would like to investigate as a
future work.

8.1 Summary
In this paper we have introduced the design of SocialCloud,
a distributed computing service that recruits computing
workers from friends in social networks and use such social
networks that characterize trust relationships to bootstrap
trust in the proposed computing service. We further
advocated the case of such computing paradigm for the
several advantages it provides. To demonstrate the poten-
tial of our proposed design, we used several real-world
social graphs to bootstrap the proposed service and
demonstrated that majority of nodes in most cases would
benefit computationally from outsourcing their computa-
tions to such service. We considered several basic distrib-
uted system characteristics and features, such as outlier
handling, scheduling decisions, and scheduler design, and
show advantages in each of these features and options
when used in our system. To the best of our knowledge,
this is the first and only work in literature that bases such
design of computing paradigm on volunteers recruited
from social networks and tries to bring the trust factor from
these networks and use it in such systems. This character-
istic distances our work from the prior work in literature
that uses volunteers’ resources for computations [16], [15].

Most important outcome of this study, along with the
proposed design, is two findings: the relationship exposed
between the social graphs and the behavior of the built
computing service on top of them, and the way trust
models impact the performance of SocialCloud. In particu-
lar, we have shown that social graphs that possess strong
trust characteristics as evidenced by face-to-face inter-
action [26], which are known in the literature for their poor
characteristics prohibiting their use in applications
(such as Sybil defenses [11], [23]), have a self-load-balancing
characteristics when the number of outsourcers are relatively
small (say 10 to 20 percent of the overall population on nodes
in the computing services). That is, the time it takes to finish
tasks originated by a given fraction of nodes in such graph,
and for the majority of these nodes, ends in a relatively short
time. On the other hand, such characteristics and advantages
are maintained even when the number of outsourcers of
computations is as high as 50 percent of the nodes, contrary
to the case of other graphs with dense structure and high
connectivity known to be proper for the aforementioned
applications. This last observation encourages us to inves-
tigate further scenarios of deployment of our design. We
anticipate interesting findings based on the inherit structure
of such deployment contextsVsince such contexts may
have different social structures that would affect the utility
of the built computing overlay.

8.2 Future Work
This paper opens several future directions and call for further
investigation at several fronts. To this end, in the future we
will look to extend this work in directions: completing the
missing design components in a simulation fashion and
realizing a working real-world deployment and application.

In the first direction, we aim to complete the missing
ingredient of the simulator and enrich it by further
scenarios of deployment of our design, under failure,
with various scheduling algorithms at both sides of the
outsourcer and workers (in addition to those discussed in
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this work). We also would like to consider other overhead
characteristics that might not be in line with topological
characteristics in the social graph. These characteristics
may include the uptime, downtime, communication over-
head, and I/O overhead consumption, among others.

In the second direction, we will turn our attention from the
simulation settings to real-world deployment settings, thus
addressing options discussed in Section 6.6. We will also
implement a proof-of-concept application, among those dis-
cussed in Section 3.3, by utilizing design options discussed in
this paper. We anticipate hidden complexities in the design to
arise, and significant findings to come out of the deployment.
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