
Extractocol: Automatic Extraction of Application-level
Protocol Behaviors for Android Applications

Hyunwoo Choi†∗, Jeongmin Kim†∗, Hyunwook Hong†, Yongdae Kim†
Jonghyup Lee‡, and Dongsu Han†

KAIST†, Gachon University‡

CCS Concepts
•Networks → Application layer protocols; •Security
and privacy → Software reverse engineering;

Keywords
Android; protocol behaviors; static analysis

1. INTRODUCTION
Android app is an important class of today’s Internet ap-

plications that generate roughly 40-50% of mobile Web and
app traffic. More than 1.4 million Android apps are offered
through Google’s open market, and tens of thousands of
new apps are added every month. However, very little infor-
mation is known about their application protocol behaviors
because they predominantly use proprietary protocols on top
of HTTP [3, 6]. The problem is further exacerbated by the
popular use of common data representation, such as JSON
and XML, due to the popularity of REST-ful web services [5].
As a result, application protocols appear similar to each
other, and analyzing them requires an in-depth characteriza-
tion of each individual application. Despite this, the state of
the art remains that even the problem of finger-printing the
traffic they generate is extremely challenging [3, 6], let alone
a full protocol analysis.

Our vision is to be able to automatically reconstruct the
client’s protocol state machine and the message format from
the program binary. Being able to analyze network protocols
provides not only intrinsic values, but also enables many new
applications, such as protocol testing [4], flow classification,
protocol normalization, and automatic proxying. To this
end, we design a system, called Extractocol, that takes only
the application binary as input and uses static program
analysis. We specifically focus on automatically extracting
the request-response formats and signatures for apps that
use the popular HTTP protocol as transport. It extracts
parts of application code (i.e., program slices) that either
generate HTTP(S) requests or parse response messages and

*These authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2790003

Android
.apk Identify

demarcation
points

Backward
slicing

Forward
slicing

Object-aware
slice

augmentation

Semantics
model

Android
API model

Request
signature

Response
signature

HTTP
Transaction
Reconstruction

URI

Resp.
sig

Req.
sig

URI Resp.
sig

Req.
sig

URI Resp.
sig

Req.
sig

URI Resp.
sig

Req.
sig

URI

Program Slicing

Signature Extraction

Inter-slice
Dependency Analysis

Reconstructed
HTTP transaction

Inter-transaction
Dependency
Analysis

Request
slices

Response
slices

Signature
Building

Figure 1: Design overview of Extractocol

applies a careful semantic analysis to extract message formats
and signatures from the target program. In particular, it
output regular expression (regex) signatures for each request
(including URI, query string, request method, header, and
body) and the corresponding response. It also partially
reconstructs client state by tracking dependancies between
messages.

In summary, this paper makes two key contributions:

• Novel approach to Android application proto-
col analysis: We present the first comprehensive pro-
tocol analysis framework for Android applications that
is capable of extracting protocol behaviors, formats,
and signatures, given an APK.

• Working system prototype and its evaluation:
Our evaluation on 12 open-source demonstrates that
Extractocol provides a rich and comprehensive charac-
terization.

2. DESIGN
Figure 1 illustrates three main components of Extracto-

col: program slicing, signature extraction, and inter-slice
dependency analysis.
Program slicing: We extend FlowDroid [2], a static taint
analysis tool, to reconstruct the data dependencies arising
from network I/O. We use this information to create request
and response slices. A typical program contains many in-
structions other than protocol processing. Thus, Extractocol
pre-processes the APK to extract code slices only related
to protocol processing. The goal of this step is to output
program slices that generate HTTP requests and process
responses.

593

Request URI Request Body Dependency graph

1 GET (http://www.reddit.com/api/info.json?) -

1 2

6

3

4 5

modhash : <hash value>
cookie : <cookie value>
need_https : boolean

JSON Response

Transaction #1

POST cookie : <cookie value>

id = fullname
uh = <hash value>

POST cookie : <cookie value>

id = fullname
uh = <hash value>
dir = vote direction

Transaction #3

Transaction #4
Transaction #5

Transaction #2

relay : <URI>
listeners : numeric value
playlist : string value
(see figure 4)

JSON Response

GET <URI>

GETPOST

Transaction #6

2
GET

(http://www.radioreddit.com/)(status.json) -

3 POST (https://ssl.reddit.com/api/login)
(user=).*(&passwd=)
(&api type=json)

4
POST

(http://www.reddit.com/api/)(unsave|save)
(id=).*(&uh=)(.*)

5 POST (http://www.reddit.com/api/vote) (id=).*(&dir=).*(&uh=)(.*)

6 GET (.*) (.*)

Figure 2: Reconstructed HTTP transactions and their dependency graph for Radio reddit

Signature extraction: The second phase takes the re-
quest/response slices as input and generates formats and
signatures for each. To extract signatures, Extractocol per-
forms analysis using semantic models for a set of commonly
used Android and Java APIs for protocol processing, such
as java.lang.String and java.net. It then outputs signa-
tures for request URIs and request/response bodies as well
as the request method and additional HTTP headers used.

Inter-slice dependency analysis: Finally, Extractocol
reconstructs a complete transaction by pairing a request URI
with its corresponding response. It also infers the relationship
between HTTP transactions. In particular, it infers which
part of request URI or body is potentially derived from prior
responses. The key idea is to identify inter-slice relationships
between the request and response slices. For this, Extractocol
performs novel inter-slice data flow analysis and addresses a
number of issues in handling subtle, but complex inter-slice
dependencies that arise due to code reuse.

3. EVALUATION
We use 12 apps with network permissions from an open

source app repository (F-Droid) [1]. We obtain the ground
truth by carefully inspecting the source code. We also col-
lect traffic traces of all HTTP(S) transactions using manual
UI-fuzzing, which often requires manual interventions, such
as signing up and logging in for services. Extractocol took
14.2 minutes to analyze all 12 apps with the optional features.
Table 1 shows the ground truth number of HTTP messages
by their request method and message type (e.g., request or
response body) and the fraction of signatures identified by
Extractocol. To demonstrate Extractocol’s effectiveness in
characterizing app’s protocol behavior, we perform a case
study on radio reddit. Radio reddit is an online music stream-
ing client that allows users to choose radio stations and vote
on or save songs using their reddit accounts. Figure 2 shows
a complete analysis result with six transactions; five of them
use HTTP, while login request uses HTTPS. It also shows
a dependency graph identified by Extractocol. Extractocol
identifies that login request (#3) includes three fields, and its
response is a JSON object including “modhash” and “cookie”
as keys. They use the “modhash” value in the “uh” field, and
add the “cookie” value to their request headers.

4. CONCLUSION AND FUTURE WORK
This work presents Extractocol, a framework for analyz-

ing HTTP(S)-based application protocol behaviors for An-
droid applications. Unlike previous approaches, Extractocol
only uses the application binary as input to reconstruct
application-specific HTTP-based interactions using static

App
Request Response #Pair

GET POST Body Body

ADP 2 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
AXV 2 (100%) - - 2 (100%) 2 (100%)
BLP 1 (100%) - - 1 (100%) 1 (100%)
DIW 1 (100%) - - 1 (100%) 1 (100%)
LNT 2 (100%) - - 1 (100%) 1 (100%)
QBT 3 (100%) 13 (100%) 13 (100%) 3 (100%) 3 (100%)
RRD 3 (100%) 3 (100%) 3 (100%) 4 (100%) 4 (100%)
RDN 3 (100%) 3 (100%) - 6 (100%) 6 (100%)
TWT - 11 (100%) 11 (100%) 8 (100%) 8 (100%)
TZM 2 (100%) - - 1 (100%) 1 (100%)
WLB 1 (100%) - - 1 (100%) 1 (100%)
WTN 2 (100%) - - 2 (100%) 2 (100%)

Table 1: Coverage: Ground truth # of request/response and %
of identified signatures

program analysis. It combines static taint analysis and se-
mantic analysis to provide a comprehensive characterization
of application protocol behaviors. We believe Extractocol
and its approach can serve as a basis for generic protocol
analysis (other than HTTP) for Android applications. Fi-
nally, we plan to evaluate it on a large set of commercial
applications.

5. ACKNOWLEDGMENTS
This research was supported in part by an Institute for

Information communications Technology Promotion (IITP)
grant funded by the Korean government (MSIP) (No. B0126-
15-1078), and by Next-Generation Information Computing
Development Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (No. NRF-2014M3C4A7030648).

6. REFERENCES
[1] Free & open source app repository, https://f-droid.org.
[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,

J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proc. ACM SIGPLAN PLDI, June 2014.

[3] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song.
Networkprofiler: Towards automatic fingerprinting of
android apps. In Proc. IEEE INFOCOM, 2013.

[4] N. K. R. M. T. M. R. G. Luis Pedrosa, Ari Fogel. Spa:
A general framework for systematic protocol analysis. In
Proc. USENIX NSDI, 2015.

[5] L. Richardson and S. Ruby. Restful Web Services.
O’Reilly, first edition, 2007.

[6] A. Tongaonkar, R. Keralapura, and A. Nucci. Challenges
in network application identification. In Proc. USENIX
LEET, 2012.

594

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150624095804
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move right by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150624095804
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Right
 7.2000
 0.0000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryList_V1
 qi2base

