
Bittersweet ADB: Attacks and Defenses

Sungjae Hwang
KAIST

sjhwang87@kaist.ac.kr

Sungho Lee
KAIST

eshaj@kaist.ac.kr
Yongdae Kim

KAIST
yongdaek@kaist.ac.kr

Sukyoung Ryu
KAIST

sryu.cs@kaist.ac.kr

ABSTRACT
Android devices and applications become prevalent and ask for
unanticipated capabilities thanks to the increased interests in smart-
phones and web applications. As a way to use the capabilities not
directly available to ordinary users, applications have used An-
droid Debug Bridge (ADB), a command line tool to communicate
with Android devices for debugging purposes. While ADB pro-
vides powerful features that require permissions to use critical sys-
tem resources, it opens a gate to adversaries.

To understand the ADB capabilities and their possible risks, we
present various types of attacks that are not easily identifiable us-
ing ADB capabilities and device-specific functions. We show that
applications using ADB capabilities can modify installed applica-
tions, leak private user data, and track phone calls, among other
things only with the INTERNET permission on the same device.
To protect Android devices from such attacks, we present several
mitigation mechanisms including a static analysis tool that analyzes
Android applications to detect possible attacks using ADB capabil-
ities. Such a tool can aid application markets such as Google Play
to check third-party applications for possible attacks.

Categories and Subject Descriptors
K.6.5 [Software]: Security and Protection

General Terms
Security

Keywords
Mobile application; Android; security; ADB

1. INTRODUCTION
The advent of explosive interests in smartphones and web ap-

plications [25] have dramatically increased the number of Android
applications with unanticipated capabilities [2]. Because Android
mobile devices can provide powerful features once provided only
by computers, Android developers are extending the application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’15, April 14–17, 2015, Singapore
Copyright © 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714638.

categories to areas limited only by their imagination. At the same
time, Android applications access private user data stored in de-
vices to perform security sensitive services such as mobile banking
and emails, which makes the security of mobile devices tremen-
dously important. Indeed, attackers become much interested in An-
droid applications leading to a huge number of malicious Android
applications [24].

Among various malicious Android applications, a recent Win-
dows malware that attempted to infect Android devices to steal
private data uses Android Debug Bridge (ADB) [8] as its main
tool [19]. ADB is a command line tool to communicate with An-
droid devices for application developers to debug their programs
under development. Even though ADB is originally only for de-
bugging purposes, the powerful features of ADB have attracted ap-
plication developers to build applications with ADB-level capabil-
ities. ADB provides sweet capabilities to draw users’ attention but,
at the same time, it opens a gate to adversaries.

To understand possible security risks by exposing ADB capabil-
ities to adversaries, we analyzed ADB capabilities and found that
they are very much powerful enough to enable various critical at-
tacks. As a proof of concept, we developed malicious applications
that leverage ADB using only the INTERNET permission on the
same device. The malicious applications can steal private user data
and lauch Dos and overbilling attacks as well. Because the mal-
ware requires only the INTERNET permission, it is highly likely
that ordinary users cannot identify them as malware.

To defend the Android system from such attacks using ADB ca-
pabilities, we present several mitigation mechanisms. We first pro-
pose a static analysis tool that analyzes Android applications before
executing or even before uploading to detect possible attacks using
ADB capabilities. Such a tool can aid application markets such as
Google Play to check third-party applications for possible attacks.
We also describe ways to control uses of ADB capabilities to only
authorized parties or debugging purposes.

This paper makes the following contributions:

● We analyze the ADB capabilities to understand possible se-
curity risks of exposing them to adversaries. To our surprise,
using ADB completely bypasses Android access control poli-
cies with just the INTERNET permission.

● As a proof of concept, we develop malicious applications to
concretely show possible attacks on Android applications by
leveraging ADB and Android utilities.

● We present mitigation mechanisms to protect the Android
system against attacks using ADB capabilities. We develop
a static analysis tool that detects such attacks automatically
and discuss feasible ways to guide the Android system from
such attacks.

579

2. ANDROID DEBUG BRIDGE
ADB is a command-line tool that enables Android application

developers to communicate with connected Android devices. The
comprehensive description of ADB and its features is available
from the Android developers’ site [8]. ADB consists of three com-
ponents: a client running on a development machine, a server run-
ning as a background process on the development machine, and
a daemon running as a background process on a device. When
an ADB client starts, it starts an ADB server process if it does
not already exist, and it binds to a local TCP port and listens for
commands from ADB clients. Thus, arbitrary third-party Android
applications can establish local connections to devices and access
ADB capabilities via the ADB server. Indeed, various kinds of An-
droid applications in Google Play utilize the ADB server. Screen-
shot [16, 26], USB tethering [5], and Remote shell [11] are such
applications. Since Android 4.4 that introduced the screenrecord
command to record the display of devices, more screen recording
applications have been developed [14, 12].

Even though ADB is useful for developers to debug their appli-
cations under development, it may introduce critical security vul-
nerabilities. Because the connections between clients and the ADB
server are not using any authentication, malware can access the
ADB sever like other ordinary applications. Lin et al. [18] demon-
strated that an Android malware can access ADB utilities by using
the local-socket channel. They also showed that a malware can steal
users’ private data by using the screenshot capability in ADB.

To lessen possible security risks by abusing ADB, Android 4.2.2
or higher protects user devices by displaying a dialog that asks to
allow debugging via a computer when a user connects an Android
device to the computer. While this security mechanism guarantees
that USB debugging and ADB capabilities can execute only when
users approve their uses, it is not a firm solution because it delegates
security decisions to ordinary users. Moreover, since such a dialog
merely asks whether to accept an RSA key without any security
warnings, it is very difficult for ordinary users to understand what
the RSA key is for and how risky ADB capabilities are.

We have carefully analyzed the capabilities of ADB, and we
found that they are surprisingly powerful. While they provide sweet
features for Android developers to support advanced functionali-
ties, they make the security of Android applications bitterly vul-
nerable. Before describing and showing what kinds of attacks are
possible using the ADB capabilities and proposing defense mecha-
nisms to such attacks, we briefly explain the ADB capabilities.

The Android system provides various functionalities such as view-
ing system logs and modifying installed applications to authorized
users as binary files stored in the /system/bin directory. In this
paper, we call such functions utilities. While the Linux system also
contains utilities in the /bin directory, the Android system con-
tains powerful utilities which do not exist in the Ubuntu system.
For example, unlike Android, Ubuntu 12.04.01 does not provide
any screenrecord utility in the directory. Note that Ubuntu also has
a screen recording utility, but it does not provide it by default; a
user should explicitly download and install it to the system. There-
fore, we believe that Android provides unnecessary powerful utili-
ties that increases security risks.

Because utilities are powerful functions, the system protects them
by requiring that only users with the UID or GID of ROOT and
SHELL can access them. However, since ADB has the SHELL
UID, it can access most of such utilities and by leveraging ADB
many resources with permissions which applications do not have
are accessible to arbitrary third-party applications. Thus, malicious
applications can also access the utilities via the exposed ADB ca-
pabilities.

3. ATTACKS USING ADB
We describe malicious applications that can perform various crit-

ical attacks using the ADB capabilities.

3.1 Threat Model
We assume that our malware is installed on a victim’s mobile de-

vice. Because our malware requires only the INTERNET permis-
sion, it is difficult for ordinary users to identify it as malware. In-
deed, even though Google Play uses the service named Bouncer [20],
which analyzes submitted Android applications to detect poten-
tially malicious applications, it could not detect our submitted mal-
ware that use ADB capabilities and successfully uploaded it. Note
that our fake malware does not send private user data to our server;
it merely sends bogus values to our server. Thus, it did not leak any
private user data from anyone happened to download it. We also
assume that our malware can access the ADB server. While the
ADB server is disabled by default, many legitimate Android ap-
plications require enabling the ADB server to access unauthorized
resources. Various screen capture applications via ADB have been
downloaded millions times already [18]. Other applications also
use unauthorized resources via the ADB server, which implies that
our assumptions are realistic. If any such applications are installed
on a mobile device, the ADB server should be already running.

3.2 Enabling the ADB Server
We assume that our malware can access the ADB server, which

is reasonable because many legitimate Android applications require
enabling the ADB server to access unauthorized resources.

In order to enable the ADB server, an Android device should
enable the “USB debugging” option which requires several steps.
However, we can simulate these steps to enable the option just
with two taps using a UI redressing attack [21]. First, by execut-
ing a “Development Setting” activity with an intent set to the op-
tion ACTION_APPLICATION_DEVELOPMENT_SETTINGS, our mal-
ware can navigate to “Developer options”. Then, the malware dis-
plays a toast [9] in full screen to hide the “Development Setting”
activity. Because toasts pass touch events to lower layers unlike
other dialogs, we can trick users to touch screen on the toast lead-
ing to touch events on the hidden “Development Setting” activity.
Our malware asks users to touch two buttons on the toast to enable
the “USB debugging” option. To understand whether this attack is
effective, we evaluated the UI redressing attacks on several smart-
phones including Samsung Galaxy S5, LG G2, and LG G Pro, and
we found that all the devices are vulnerable to the UI redressing
attacks allowing us to enable the “USB debugging” option.

3.3 Representative Attacks Using ADB
In this section, we present three kinds of attacks we created to

show the powerful features of the ADB server. The first kind is the
private data leakage attacks that expose personal data to outside
devices, the second kind is the usage monitoring attacks that track
various usage information, and the third one is the behavior inter-
ference attacks that prevent intended operations. Because all attacks
require only the INTERNET permission to communicate with the
ADB server, most of them are background attacks that run silently
on devices, and even foreground attacks are not easily discoverable
because the attacks can take place very shortly when users do not
see the screen, it is difficult for ordinary users to notice them.

3.3.1 Private Data Leakage
Even though the Android system protects private user data in

devices by checking application permissions, it is not enough to
prohibit private data leakage as we illustrate in this section.

580

Message Tracking.
While Android requires applications have the RECEIVE_SMS or

READ_SMS permissions to access messages like SMS, MMS, and
internal messages from the Android system, applications with only
the INTERNET permission can access such messages via ADB.
Note that most messenger applications, mail clients, and SNS ap-
plications like Facebook notify incoming messages to users through
notification bars. Because the dumpsys utility provides system data
including notification information, the malware can read all the
messages from notification bars.

Call Tracking.
In the Android system, in order for an application to get no-

tified of phone-call actions, it should register as a broadcast re-
ceiver for the actions. For example, if an application registers as
a broadcast receiver with the NEW_OUTGOING_CALL action, when
an outgoing call event occurs, the Android system broadcasts the
event, which notifies the event to the receivers registered with the
NEW_OUTGOING_CALL action. However, our malware can catch call
actions without registering as a receiver. Using the dumpstate util-
ity via ADB, it can log all the call information by periodically col-
lecting broadcast intents and by choosing only the intents with the
call-related actions. Note that because not only making calls but
also sending messages, sending emails, pressing the camera but-
ton, and more actions can trigger broadcasting intents, similar ap-
proaches would be applicable to track such actions.

Private Database Access.
While Android allows applications to use private databases with-

out sharing them with other applications, our malware can access
private databases of other applications using ADB and the run-as
utility. The run-as utility changes the current UID and GID to
those of a specified application. As the UID and GID are changed to
the specified application, malware can have the same permissions
as the specified application, and thus it is able to access the pri-
vate database of the specified application. Even though the run-as
utility works for debuggable applications only, debuggable appli-
cations are not insignificant. We have collected 8,870 applications
from Google Play from February 2013 to August 2013, and we
found that 269 applications are debuggable. Due to these security
issues, Google Play rejects debuggable applications from Novem-
ber 2013, but debuggable applications already uploaded to Google
Play are still available to users unless they have been updated. More-
over, other Android markets than Google Play still accept debug-
gable applications for uploading.

SIM Information Leakage.
Most smartphones require the SIM card information to connect

to and communicate with networks, and SIM card contains a va-
riety of private data such as a phone number, IMSI (International
Mobile Subscriber Identity), ICCID (Integrated Circuit Card Iden-
tifier), IMEI (International Mobile Equipment Identity), and SPN
(Service Provider Name). Because adversaries can utilize phone
numbers to infer user identities, the Android system requires ap-
plications have the android.permission.READ_PHONE_STATE

permission to obtain phone numbers. Also, adversaries have shown
various attacks that impersonate users by using the IMSI informa-
tion [17]. However, our malware can obtain the SIM information by
using the dumpstate utility via ADB even when it does not have
the READ_PHONE_STATE permission. Because the dumpstate util-
ity provides the SIM information without asking for a user’s con-
firmation, adversaries can perform the attacks silently.

3.3.2 Usage Monitoring
The Android system and applications keep several logs for de-

bugging or other purposes. A kernel driver called “logger” [1] in
the Android system records the main application logs, system event
information, phone-related information, and low-level system mes-
sages, which contains most usage information. Even though the
logs are inaccessible by user applications in general, our malware
can access them via ADB. We show only two attacks that moni-
tor network packets and users’ key events in this section but other
usage information is also accessible via ADB.

Packet Dump.
Because data exchanges of mobile devices over network contain

users’ usage information and they may also contain sensitive infor-
mation, dumping 3G/4G data packets is not possible unless phones
are rooted. If adversaries can dump data packets, they can steal cre-
dential data and they can also track users’ private activities such as
webpage visits. To our surprise, we found that some smartphones
provide powerful capabilities including network packet dumps in
a hidden menu. Using the ADB server with the input utility, our
malware can access the hidden menu and leverage hidden func-
tions there even without rooting devices. The “Packet log” function
in the hidden menu is disabled by default but once it is enabled,
it captures all the exchanging packets. Such captured packets are
stored in SD Card and adversaries can retrieve them even without
the required READ_EXTERNAL_STORAGE permission.

Keystroke Logging.
When a user touches the screen of a mobile device, a key event

occurs including the key action and the location of the touched
point. If an application running in background silently monitors all
the key events occurring on a device, it can steal credential infor-
mation without being noticed by users. Zhou et al. [29] developed
a touch screen keylogger by reading the Linux input driver files
such as /dev/input/event3. This attack is no longer possible
as this vulnerability has been patched. However, by leveraging the
getevent utility via ADB, our malware can read input driver files.

3.3.3 Behavior Interference
We presented attacks that do not interfere with the functionali-

ties of applications so far, and now we describe attacks that abuse
devices like modifying applications and locking screens.

Overbilling.
While applications must have the SEND_SMS and CALL_PHONE

permissions to make phone calls and SMS, respectively, our mal-
ware can perform an overbilling attack by using the am and input

utilities via ADB. First, the malware launches a system application
to send an SMS by issuing the following command:

am start -a android.intent.action.SENDTO
-d sms:<Phone Number>
--es sms_body "<SMS Text>"
--ez exit_on_sent true

which starts an SMS activity with a receiver’s phone number and
an SMS content. Then, it issues the following commands in order:

input keyevent 22; input keyevent 66;
input keyevent 3

where the first moves the current focus to a Send button, the second
presses the button, and the third changes the current screen to the
home screen. Similarly for MMS, the malware can also make extra
billing by making many phone calls .

581

Figure 1: Static analyzer that detects malicious applications using ADB

Application Modification.
The Android system protects applications by requiring develop-

ers sign the applications with their private keys. Therefore, only
the developers of the applications should be able to modify them
for updates, and updates should be the only way to modify in-
stalled applications. Of course, the Android system should reject
any modification to applications without the corresponding private
keys. However, by using the pm utility via ADB, our malware can
replace installed applications with fake applications without notify-
ing users. For example, the malware can first uninstall the original
Facebook application and re-installs a fake Facebook application
that contains malicious functionalities. Once the fake Facebook ap-
plication is installed on a mobile devices, various private data such
as a list of friends and messages exchanged via the Facebook mes-
senger can be leaked via the fake application.

DoS Attack.
We can make a variety of DoS attacks on Android using ADB,

and here we present two such attacks: target application killing
and screen resizing. By using the wm utility via ADB, our malware
can repeatedly kill target applications. First, the malware checks
whether a target application is installed on a mobile device by using
the PackageManager class. If the target application is installed on
the device, it keeps killing the application every 5 seconds to pre-
vent users from using it. Also, our malware can modify the screen
size of a device using the wm utility via ADB as follows:

wm size <Width> X <Height>

By setting screen sizes too small or big, the malware can prohibit
users from using their devices. Note that no methods can restore
screen sizes and even rebooting devices cannot restore the sizes.

4. DEFENSES AGAINST ATTACKS USING
ADB

In this section, we present mitigation mechanisms to protect the
Android system against attacks using ADB capabilities.

4.1 Defense without Changes to Android
As a mitigation mechanism that does not require any changes

to Android, we propose a static analysis to detect possible attacks
using ADB capabilities. Based on our analysis of Android appli-
cations, we identified representative attack patterns using ADB as
illustrated in the attacks described in the previous section. To auto-
matically identify such attacks, we designed and developed a static
analyzer that performs a string analysis and a taint analysis as pre-
sented in Figure 1. After describing the high-level architecture of
the static analyzer, we present each of its components in detail.

Static Analyzer Overview.
The main purpose of the static analyzer is to extract a set of com-

mands sent to the ADB server by a string analysis, and to check

whether the private data resulted from performing such ADB com-
mands are delivered to outside of Android devices via socket APIs.
We built the analyzer on top of the state-of-the-art analysis frame-
works, WALA [13] and SCanDroid [7]. Our analyzer uses the front-
end of SCanDroid to take an APK file consisting of Dalvik byte-
code as its input and to translate it to WALA Intermediate Repre-
sentation (IR). Then, it performs base analyses like a “class hier-
archy analysis” and a “pointer analysis” using the WALA analysis
capabilities to aid our main malware detection analysis.

Backward Slicing.
Before the main string analysis, our analyzer first performs back-

ward slicing to reduce the size of its analysis target. If we can
extract a subset of an input program that contributes to some tar-
get variables at a program point under consideration, analyzing the
subset would be more efficient and precise than the entire program.

While a traditional backward slicing technique works quite well
for tracking primitive values, tracking the values of string objects
as in our analysis is not trivial. Because a string object has a char-
acter array, backward slicing of string objects requires backward
slicing of array objects, which tracks the construction sites of array
themselves instead of their elements. To perform a backward slic-
ing of array elements as well, we extended the traditional backward
slicing with modeling of methods in String and StringBuilder

classes. When the backward slicing encounters methods that cre-
ate values for character array elements, it keeps track the flows for
array elements by using the modeling behavior.

Furthermore, for Android 3.0 and higher, network operations
should execute in different threads from the main thread [10]. While
the backward slicing works well for single threaded programs as
being extensively used for Java program analyses [27], it may not
be suitable for multi-threaded code like Android applications [25].

When a backward slicing for single threads cannot track data
flows in a given thread, we extend the backward slicing to consider
data flows in other multiple threads. Using the pointer analysis re-
sult from WALA, it first collects all the possible objects that target
variables may have and collect the instructions that assign values to
the target variables in any threads. Performing such an inter-thread
slicing repeatedly until it reaches a fixed point achieves a backward
slicing considering communications between multiple threads.

String Analysis.
The string analysis takes an ICFG built by the backward slicing

as its input and estimates a set of possible string values for the pa-
rameters of write. To address the asynchronous communications
between multiple threads, it performs two string analyses: a flow-
insensitive analysis for threads not using network operations and a
flow-sensitive analysis for threads using network operations. In or-
der to over-approximate string values on a shared memory between
multiple threads, it first performs a flow-insensitive string analysis
to estimate possible values of the variables on the shared memory.

582

Then, using the analysis results as the initial state of the shared
memory, it performs a flow-sensitive string analysis to estimate
possible string values of the parameters of write. Our string anal-
ysis provides sound results for asynchronous execution of multiple
threads. Because the flow-insensitive string analysis result contains
all the possible values of the variables on the shared memory, it
soundly estimates concrete values constructed at run time. Also,
because the flow-sensitive string analysis builds on top of the flow-
insensitive string analysis, and it tracks data flows between multiple
threads, the final string analysis results are also sound.

Taint Analysis.
In addition to detecting string values leaked through the write

function, our tool also tracks value flows from the results of the
read function to the parameters of the write function via taint
analysis. Because private user data received from the ADB server
via read may be leaked through write, we perform a taint analysis
with the read calls as sources and the write calls as sinks. Simi-
larly for the string analysis, we extend the traditional taint analysis
to track data flows between asynchronous multiple threads. Unlike
static analysis which requires precise string values that particular
variables may have, taint analysis simply tracks value flows be-
tween sources and sinks. Thus, the taint analysis performs only a
flow-insensitive analysis which provides sound analysis results. If
we want to improve the taint analysis results, we can apply the same
approach as the string analysis and use two kinds of taint analyses.

Evaluation.
Because we proposed new attacks in this paper, we evaluated

the efficiency of our static analyzer using all 7 applications that
leak string values to the write function, and we evaluated the
taint analysis using 2 malicious applications described in Section 3
that leak information to outside of devices. For the former, we
tested such cases where string values flow intra-procedurally, inter-
procedurally, via fields of classes, and via static fields of classes.
For the latter, we tested malicious applications for application mod-
ification, SIM information leakage, and message tracking. Our static
analyzer correctly detected command strings that are sent to the
ADB server. The analyzer could detect data flows from the ADB
server to the outside from the malicious applications.

4.2 Defenses with Changes to Android
We propose mitigation methods that require changes to Android.

Informative Message for Using ADB.
Starting from Android 4.2.2, the Android system protects ADB

by asking a user’s confirmation to use the USB debugging capa-
bility. When trying to enable USB debugging, the Android system
show a dialog including a RSA key to a user to approve USB de-
bugging. However, RSA keys may not be useful information to
ordinary users who are not familiar with security vulnerabilities.
To help ordinary users understand possible security issues result-
ing from allowing USB debugging, more informative message than
RSA keys should be provided.

Automatic Disable of USB Debugging.
While still allowing the ADB capabilities to ordinary applica-

tions, the Android system may turn them off automatically. Even
though USB debugging is disabled by default, once it is enabled, it
remains to be enabled even after the system reboots. Instead, dis-
abling USB debugging by the system periodically is much more
secure. The BlackBerry system indeed turns off the USB debug-
ging option after a certain amount of time [3].

Restricted ADB Functionalities.
Because ADB capabilities are vulnerable to many attacks as we

showed in the previous section, restricting ADB functionalities may
be a plausible option. One way to restrict their uses is to prohibit
combined uses of multiple ADB commands. While this restriction
does not preclude all the attacks we described in this paper, it can
rule out many attacks like contact collection using screenrecord

with input and overbilling using am with input. More rigid ap-
proach is to disallow ADB capabilities from production applica-
tions. This restriction goes back to the original intention of ADB,
which is only for debugging purposes. We have compared the de-
bugging utilities of the Android system and Ubuntu 12.04.01, and
we found that Android provides more debugging utilities by de-
fault than Ubuntu. Restricting ADB capabilities in production ap-
plications will surely limit the application functionalities but it will
guide them more securely.

Secured ADB Channels.
Even though the Android system displays a dialog with an RSA

key for allowing USB debugging, the system does not authenti-
cate the server and the client. Once the ADB server is running, any
applications can connect to the server via a TCP connection. We
propose several approaches to guide the communication with the
ADB server securely. The most straightforward approach is to add
an authentication mechanism to the ADB server. For example, the
ADB server may allow connections only from the shell by checking
clients whether their UID are 2000. Another possible solution is to
create a new ADB permission and to modify the system so that only
the applications with the ADB permission can communicate with
the ADB server. Also, if the ADB permission is protected with the
level of the signature permission, ordinary applications including
malicious ones cannot leverage the ADB server any more.

5. RELATED WORK
Recently, various attacks in Android applications have been re-

ported. These attacks leverage vulnerabilities in intents [4], dy-
namic code loading [23], content providers [30], permission esca-
lation [6], and advertisement libraries [22]. In this paper, we re-
ported a variety of attacks that leverage one of the Android system
component, ADB. Because ADB is originally for debugging pur-
poses, the Android system assigns higher privileges to ADB than to
third-party Android applications. Thus, we could present powerful
attacks of various kinds by leveraging ADB and its utility functions
only with the INTERNET permission.

Even though protecting system components is critical due to their
high privileges, only a few work have focused on the Android ker-
nel layer security. Zhou et al. [29] pointed out that vulnerable An-
droid device drivers can leak users’ private data. Moreover, Jana
and Shmatikov [15] demonstrated that examining shared memory
can leak private information. Similarly, investigating public infor-
mation can lead to private data leakage [28]. Compare to these
work, our research focused on understanding security risks of ADB
and the Android system utilities. The most closest work to ours is
Lin et al.’s work [18], which studied security risks of the screen-
shot function using ADB. While Lin et al. focused on the screen-
shot function to build a malware using ADB, we presented how
powerful ADB capabilities are and showed their security risks by
presenting various kinds of attacks. Given that a malware leverag-
ing ADB to launch attacks has appeared [19], we believe our study
on ADB capabilities would be useful to understand their security
vulnerabilities.

583

6. CONCLUSION
In this paper, we demonstrated that by leveraging ADB capabil-

ities, malicious applications can leak private data, monitor device
usages, and even interfere with device behavior. For private data
leakage, we showed that malicious applications can track messages
exchanges, call history, and geographic locations, record screen
snapshots, access private database of other applications, and leak
SIM information. To demonstrate usage monitoring attacks, we pre-
sented packet dump and keystroke logging attacks. Finally, we showed
that malware can disturb users by overbilling and modification of
applications, and they can even prohibit users from using their de-
vices by DoS attacks and locking device screens. To our surprise,
all these attacks are possible only with the INTERNET permission.

To protect Android users from such attacks, we presented mul-
tiple mitigation mechanisms. We developed a static analysis tool
that detects potential malware leveraging the ADB server. Instead
of simply displaying a dialog with an RSA key to protect the ADB
server as the current Android system does, a more informative mes-
sage would be helpful for ordinary users to be aware of security
vulnerabilities. We strongly believe that ADB capabilities should
be restricted or they should use secure channels; if possible, ADB
should be used only for debugging purposes.

Acknowledgment
This work is supported in part by Korea Ministry of Education, Science
and Technology(MEST) / National Research Foundation of Korea(NRF)
(Grants NRF-2014R1A2A2A01003235 and NRF-2008-0062609).

7. REFERENCES
[1] Android logging system.

http://elinux.org/Android_Logging_System, 2012.
[2] AppTornado GmbH. AppBrain: Number of Android applications.

http://www.appbrain.com/stats/number-of-
android-apps, 2014.

[3] BlackBerry. Blackberry developer.
http://developer.blackberry.com.

[4] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing
inter-application communication in Android. In Proceedings of the
9th International Conference on Mobile Systems, Applications, and
Services, 2011.

[5] ClockworkMod. ClockworkMod tether (no root).
https://play.google.com/store/apps/details?id=
com.koushikdutta.tether, 2013.

[6] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege
escalation attacks on Android. In Proceedings of the 13th
International Conference on Information Security, 2010.

[7] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. Scandroid: Automated
security certification of Android applications. Technical Report
CS-TR-4991, University of Maryland, 2009.

[8] Google. Android debug bridge. http:
//developer.android.com/tools/help/adb.html.

[9] Google. Toasts. http://developer.android.com/guide/
topics/ui/notifiers/toasts.html.

[10] Google. NetworkOnMainThreadException.
http://developer.android.com/reference/
android/os/NetworkOnMainThreadException.html,
2014.

[11] C. Gutman. Remote ADB shell.
https://play.google.com/store/apps/details?id=
com.cgutman.androidremotedebugger&hl=en, 2013.

[12] Hiandroidstudio. No root screen recorder-trial.
https://play.google.com/store/apps/details?id=
com.screenrecnoroot&hl=en, 2014.

[13] IBM. T.J. Watson Libraries for Analysis (WALA).
http://wala.sourceforge.net.

[14] Invisibility. Free screen recorder no root.
https://play.google.com/store/apps/details?id=
uk.org.invisibility.recordablefree&hl=en, 2014.

[15] S. Jana and V. Shmatikov. Memento: Learning secrets from process
footprints. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, 2012.

[16] E. Kim. No root screenshot it.
https://play.google.com/store/apps/details?id=
com.edwardkim.android.screenshotitfullnoroot,
2013.

[17] D. F. Kune, J. Koelndorfer, N. Hopper, and Y. Kim. Location leaks
on the GSM air interface. In Proceedings of the 19th Network and
Distributed System Security Symposium, 2012.

[18] C.-C. Lin, H. Li, X. Zhou, and X. Wang. Screenmilker: How to milk
your Android screen for secrets. In Proceedings of the 21st Network
and Distributed System Security Symposium, 2014.

[19] F. Liu. Windows malware attempts to infect Android devices.
http://www.symantec.com/connect/blogs/windows-
malware-attempts-infect-android-devices, 2014.

[20] H. Lockheimer. Android and security. http://googlemobile.
blogspot.kr/2012/02/android-and-security.html,
2012.

[21] M. Niemietz and J. Schwenk. UI redressing attacks on Android
devices. In Black Hat Abu Dhabi, 2012.

[22] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. AdDroid: Privilege
separation for applications and advertisers in Android. In
Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, 2012.

[23] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna.
Execute this! Analyzing unsafe and malicious dynamic code loading
in Android applications. In Proceedings of the 21st Network and
Distributed System Security Symposium, 2014.

[24] E. Protalinski. Android malware numbers exploded to 25,000 in June
2012.
http://www.zdnet.com/android-malware-numbers-
explode-to-25000-in-june-2012-7000001046, 2012.

[25] J. Rivera and R. van der Meulen. Gartner says annual smartphone
sales surpassed sales of feature phones for the first time in 2013.
http://www.gartner.com/newsroom/id/2665715,
2014.

[26] SmartUX. Screenshot UX. https://play.google.com/
store/apps/details?id=com.liveov.shotux, 2012.

[27] X. Zhang, R. Gupta, and Y. Zhang. Cost and precision tradeoffs of
dynamic data slicing algorithms. ACM Transactions on Programming
Languages and Systems, 27:631–661, 2005.

[28] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt. Identity, location, disease and more:
Inferring your secrets from Android public resources. In Proceedings
of the 20th ACM Conference on Computer and Communications
Security, 2013.

[29] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The peril of
fragmentation: Security hazards in Android device driver
customizations. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, 2014.

[30] Y. Zhou and X. Jiang. Detecting passive content leaks and pollution
in Android applications. In Proceedings of the 20th Network and
Distributed System Security Symposium, 2013.

584

http://elinux.org/Android_Logging_System
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://developer.blackberry.com
https://play.google.com/store/apps/details?id=com.koushikdutta.tether
https://play.google.com/store/apps/details?id=com.koushikdutta.tether
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/guide/topics/ui/notifiers/toasts.html
http://developer.android.com/guide/topics/ui/notifiers/toasts.html
http://developer.android.com/reference/android/os/NetworkOnMainThreadException.html
http://developer.android.com/reference/android/os/NetworkOnMainThreadException.html
https://play.google.com/store/apps/details?id=com.cgutman.androidremotedebugger&hl=en
https://play.google.com/store/apps/details?id=com.cgutman.androidremotedebugger&hl=en
https://play.google.com/store/apps/details?id=com.screenrecnoroot&hl=en
https://play.google.com/store/apps/details?id=com.screenrecnoroot&hl=en
http://wala.sourceforge.net
https://play.google.com/store/apps/details?id=uk.org.invisibility.recordablefree&hl=en
https://play.google.com/store/apps/details?id=uk.org.invisibility.recordablefree&hl=en
https://play.google.com/store/apps/details?id=com.edwardkim.android.screenshotitfullnoroot
https://play.google.com/store/apps/details?id=com.edwardkim.android.screenshotitfullnoroot
http://www.symantec.com/connect/blogs/windows-malware-attempts-infect-android-devices
http://www.symantec.com/connect/blogs/windows-malware-attempts-infect-android-devices
http://googlemobile.blogspot.kr/2012/02/android-and-security.html
http://googlemobile.blogspot.kr/2012/02/android-and-security.html
http://www.zdnet.com/android-malware-numbers-explode-to-25000-in-june-2012-7000001046
http://www.zdnet.com/android-malware-numbers-explode-to-25000-in-june-2012-7000001046
http://www.gartner.com/newsroom/id/2665715
https://play.google.com/store/apps/details?id=com.liveov.shotux
https://play.google.com/store/apps/details?id=com.liveov.shotux

	Introduction
	Android Debug Bridge
	Attacks Using ADB
	Threat Model
	Enabling the ADB Server
	Representative Attacks Using ADB
	Private Data Leakage
	Usage Monitoring
	Behavior Interference

	Defenses against Attacks Using ADB
	Defense without Changes to Android
	Defenses with Changes to Android

	Related Work
	Conclusion
	References

