Dissecting Customized Protocols: Automatic Analysis for
Customized Protocols based on IEEE 802.15.4

Kibum Choi
Korean Advanced Institute of
Science and Technology

kibumchoi@kaist.ac.kr

Hocheol Shin
Korean Advanced Institute of
Science and Technology

h.c.shin@kaist.ac.kr

ABSTRACT

IEEE 802.15.4 is widely used as lower layers for not only well-
known wireless communication standards such as ZigBee, 6LoW-
PAN, and WirelessHART, but also customized protocols developed
by manufacturers, particularly for various Internet of Things (IoT)
devices. Customized protocols are not usually publicly disclosed nor
standardized. Moreover, unlike textual protocols (e.g., HTTP, SMTP,
POP3.), customized protocols for IoT devices provide no clues such
as strings or keywords that are useful for analysis. Instead, they use
bits or bytes to represent header and body information in order to
save power and bandwidth. On the other hand, they often do not
employ encryption, fragmentation, or authentication to save cost
and effort in implementations. In other words, their security relies
only on the confidentiality of the protocol itself.

In this paper, we introduce a novel methodology to analyze and
reconstruct unknown wireless customized protocols over IEEE
802.15.4. Based on this methodology, we develop an automatic
analysis and spoofing tool called WPAN automatic spoofer (WASp)
that can be used to understand and reconstruct customized protocols
to byte-level accuracy, and to generate packets that can be used for
verification of analysis results or spoofing attacks. The methodology
consists of four phases: packet collection, packet grouping, protocol
analysis, and packet generation. Except for the packet collection
step, all steps are fully automated.

Although the use of customized protocols is also unknown before
the collecting phase, we choose two real-world target systems for
evaluation: the smart plug system and platform screen door (PSD)
to evaluate our methodology and WASp. In the evaluation, 7,299
and 217 packets are used as datasets for both target systems, respec-
tively. As a result, on average, WASp is found to reduce entropy of
legitimate message space by 93.77 % and 88.11 % for customized
protocols used in smart plug and PSD systems, respectively. In ad-
dition, on average, 48.19 % of automatically generated packets are
successfully spoofed for the first target systems.
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1. INTRODUCTION

In an Internet of Things (IoT) environment, many devices com-
municate with one another using various wireless communication
protocols. Because most applications operate in a personal area
such as a home, office, or hospital, wireless personal area network
(WPAN) technologies, such as ZigBee, Bluetooth, and Z-Wave, are
essential for implementing IoT systems.

In particular, among various WPAN protocols, IEEE 802.15.4 has
been widely used for lower layer protocol for several standards such
as ZigBee, 6LoWPAN, WirelessHART, and MiWi. IEEE 802.15.4
is a standard that specifies the physical (PHY) layer and medium
access control (MAC) layer for low-rate wireless personal area
networks (LR-WPAN) [15]. It operates on one of three frequency
bands: 868-868.6 MHz, 902-928 MHz, or 2,400-2,483.5 MHz. It
can provide up to 250 kbps at 10 m distance with low power and
low cost. Because of the requirements of power and cost efficiency,
IEEE 802.15.4 has a simple structure.

Notably, for many IoT systems and some safety-critical control
systems, proprietary protocols (i.e., customized protocols) are used
on top of IEEE 802.15.4. These include smart metering systems
and platform screen door (PSD) systems. Although details of these
customized protocols are unknown, they can be vulnerable to sniff-
ing and spoofing attacks, because of the low power characteristics
(i.e., simplicity and short message length) of IEEE 802.15.4 and
the shared medium in wireless communication without message
encryption and authentication. Through these attacks, private infor-
mation such as electricity usage, life patterns, or medical records
can be stolen, and overcharge of electricity bills, failure of power
supply-and-demand control, wrong medical treatment or undesir-
able control of systems can occur. Furthermore, they can control
target devices for their own purpose: for example, switching on and
off, injecting malicious data into, and incapacitating the devices.

IEEE 802.15.4’s MAC layer supports encryption that is one of
big challenges for analyzing protocols. However, in this study, cus-
tomized protocols using encryption are not considered because cus-
tomized protocols do not usually use it for the low power characteris-
tics. Even when no messages are encrypted, some challenges remain
in analyzing and reconstructing customized protocols. First, obtain-
ing and reverse engineering binary files that implement customized
protocols are difficult. Unless the firmware of a target device is



opened on the Internet, to obtain firmware, physical access to the
device, and even in such a case, desoldering a memory or processor
chip may be required. Even after obtaining the firmware, manual pro-
tocol reverse engineering is inefficient and time-consuming. While
automatic reverse engineering has garnered considerable attention
these days, it only supports popular architectures such as x86 or
ARM. Second, wireless custom protocols use binary formats be-
cause of low-power consumption requirements, instead of using text
data such as keywords. Because packet length is directly associated
with power consumption, these protocols use fields that are as short
as possible to represent various fields and commands. Finally, even
after reverse engineering the protocol, evaluating analysis results is
difficult due to the absence of ground truth.

The goal of this study is to analyze and reconstruct packet formats
for customized protocols built on top of IEEE 802.15.4 standard. In
addition, we aim to generate spoofing packets for the protocol. For
these goals, we designed a novel methodology and developed an
automatic analysis tool named WPAN automatic spoofer (WASp)
based on the methodology. Our analysis and reconstruction method-
ology consists of four phases: packet collection, packet grouping,
protocol analysis, and packet generation. Packet collection refers
to the manual wireless channel sniffing process that must be con-
ducted in carefully controlled conditions. This directly affects the
effectiveness of analysis because critical factors such as the num-
ber of collected packets, the number of transceivers, and expected
operations are bounded in this phase. The other three phases are
fully automated. Initially, WASp groups packets according to cru-
cial information from packet headers. For each packet group, the
tool analyzes MAC layer data reuse (e.g., address field), byte-level
entropy, the range of each byte column, and the existence of a cyclic
redundancy check (CRC). In the second step, the tool combines
results of all tests and generates scored analysis reports for every
packet group using our scoring algorithm. Finally, for reports with a
high score, it generates feasible packet lists for spoofing.

Our system is closely related to that of Netzob [4], which aims
to analyze and cluster the protocol by considering semantic infor-
mation embedded in TCP/IP layer. While both Netzob and WASp
target customized protocols, the main difference between them is
the layer they are targeting. Netzob targets protocols on top of the
TCP/IP layer, whereas WASp targets protocols built on top of the
MAC layer of IEEE 802.15.4 which contains much less informa-
tion then the TCP/IP layer. In other words, Netzob mainly relies
on semantic information existing in TCP/IP. Therefore, we believe
critical changes for Netzob are required to achieve the same goal as
that of WASp.

To evaluate WASp, we used two commercial target systems, in-
cluding a smart plug system for home use and a PSD system in
a subway system. WASp automatically analyzes collected packets
based on characteristics of customized protocols by deriving various
parameters including n-gram and entropy. The results of our evalua-
tion show that, for a smart plug system, the tool reduces an average
of 93.77 % of the entropy for a customized protocol and provides
possible rules to construct spoofing payload at a 48.19 % average
success rate. In other words, we can control the power supply of
devices connected to a smart plug using automatically generated
spoofing packets. We could not perform our attack on a PSD sys-
tem, because of legal and safety concerns. However, an average of
88.11 % of the entropy is reduced for PSD’s customized protocol.
Note that all vulnerabilities are responsibly disclosed to the agencies
in advance. Our study contributes the following:

e We derive a general analysis methodology for customized
protocols on top of IEEE 802.15.4, which is far different from
that of typical network packet analysis.

e We build an automatic protocol analyzer and prove the pos-
sibility of automated protocol reverse engineering against
wireless customized protocols.

e We show that taking control of applications using automati-
cally generated spoofing packets by our tool is possible.

The remainder of the paper is organized as follows. Section 2
summarizes existing research related to automatic protocol analysis
and compares these studies to our own. Section 3 provides informa-
tion about customized protocols on top of IEEE 802.15.4. Section 4
explains the concept of our design to analyze target protocols and
the basic concept of our automatic analysis. The detailed implemen-
tation and algorithms of our methodology are described in Section 5.
In Section 6, we present the results of automatic analysis and spoof-
ing on two commercial systems. We discuss limitations of this study
in Section 7. We conclude the study in Section 8.

2. RELATED WORK

Because of the massive increase in the number of network pro-
tocols, including that of malware and botnets, security researchers
have tried to automate protocol reverse engineering. Automated pro-
tocol reverse engineering has been used for deep packet inspection,
intrusion detection or prevention, and automatic packet generation
for fuzzing and replay attacks. We can classify it into two major
categories: program-based and trace-based analyses. In addition to
these two, protocol fuzzing is somewhat related to our automatic
spoofing packet generation.

Studies on program-based analysis have attempted to analyze
target protocols on a binary program and some of its input traces.
For example, studies have analyzed processes that occur as a result
of input messages to a server or client programs. By contrast, studies
on trace-based analysis reverse engineer only with network traces
of target protocols. Finally, studies on protocol fuzzing tests a target
system by injecting many packets that resemble legitimate ones.

2.1 Program-Based Analysis

First, program-based research analyzes customized protocols
based on program implementation. RolePlayer [9] and AutoFor-
mat [17] attempt protocol parsing using a context-aware monitored
execution. Polyglot [6], Tupni [10], Reformat [23], Dispatcher [5],
and Prospex [7] can be classified as a taint analysis using seman-
tic program information. Because these programs use keywords or
separators to identify fields, analysis is much simpler. In addition,
they can monitor program flow according to specific message inputs.
These cause the relation between parsed fields and their real meaning
to be clearer than when employing network trace only approaches.
This paper focuses on trace-based analysis, and program-based anal-
ysis is out-of-scope for this paper. Nonetheless, as we discussed
in the introduction, program-based analysis is difficult and time-
consuming.

2.2 Trace-based Analysis

Trace-based research analyzes network packet traces without any
prior knowledge about the program that generates the packets, which
can be divided into two types. The first type is reverse engineering
against textual protocols such as HTTP or SMTP. Discoverer [£8],
Reverx [1], ProDecorder [22], SANTaClass [20], and ProWord [25]
fall into this type. These programs try to extract fields by pars-
ing keywords. For example, keywords such as “GET” and “POST”
in HTTP have specific delimiters or a similar interval. However,
wireless customized protocols mostly use binary data for energy
efficiency. Therefore, keyword parsing methods from these kind of



Table 1: Comparison studies closely related to WASp

Target Purpose Characteristics
PROVEX [19] Botnet C&C Botnf:t . Byle value dlSt]:lbullOn
traffic detection * Signature creation
General Analysis and . .
ProGraph  Graph signature extractiol
roGraph [14] traffic classification ph Signature ex o
Netzob [4] Genef al Anal'ysls a}nd « Need semantic information
traffic classification
FieldHunter [2] | ~ General | Analysisand | b, ) 14 extraction
traffic classification

textual protocol analysis are difficult to be used for reverse engineer-
ing wireless customized protocol.

The second type studies against binary protocols. PROVEX [19]
extracts botnet C&C traffic signature based on byte distribution, and
ProGraph [14] tries to infer protocol message formats by exploit-
ing intra-packet dependency derived from constructing a graphical
model. However, both of these programs passively analyze given
network traces, and limit their application to either classification of
network traces or generation of network signature for protocol de-
tection. FieldHunter [2] and Netzob [4], can be used for both binary
and textual formatted protocols by utilizing semantic information.
However, FieldHunter extracts only partial fields such as message
type and length, which can be distinguished by means of statistical
characteristics, and skips unidentified fields.

As previously discussed, Netzob is closely related to our system,
WASp. First, it uses not only syntactic information (e.g., encoding,
checksums, and IP addresses), but also semantic information (e.g.,
file read/write and listing directories) to extract a message structure
with high accuracy. Second, during analysis, it filters out samples
considered to be noisy in order to improve clustering output. Fi-
nally, it clusters acquired target samples with available syntactic
and semantic information, and infers important characteristics of
sub-message fields such as value, offset, and size. However, Netzob
is considerably different from WASp regarding the base informa-
tion it uses and its output. First, Netzob depends on higher layer
information (i.e., network and transport layers) compared to WASp.
Specifically, it refers to well-known field values (e.g., [Pv4 addresses,
TCP port numbers) of specific implementations of such layers (i.e.,
IP and TCP) to infer the structure of the target protocol. Therefore,
Netzob would require an overhaul to analyze IEEE 802.15.4 cus-
tomized protocols that WASp targets. Second, Netzob infers only
the structure of the target protocol and does not generate packets
that can be directly spoofed to targets. It lacks the packet generation
engine present in WASp, which automatically assembles spoofing
packets based on analyzed field information. Table 1 summarizes
comparison between these four systems.

2.3 Protocol Fuzzing

Protocol fuzzing is a type of fuzz testing that generates invalid
or unexpected packets and injects them into a target system. An
effective fuzzer for security testing must be designed with deep
understanding of the target protocol as well as require automatic
packet generation for security attacks.

For example, by collecting transmitted packets from a target sys-
tem, SECFUZZ [21] tests known security protocols such as internet
key exchange (IKE). It generates packets based on the assumption
that the fuzzer has necessary information related to decryption such
as encryption keys and nonces. In particular, it finds vulnerabilities
automatically by attaching a dynamic memory analytical tool. Asp-
Fuzz [16] and regression finite state machine (RFSM) fuzzer [26]
test state-aware complex protocols, and they establish their respec-
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Figure 1: IEEE 802.15.4 data frame format (PHY and MAC layers) with
customized protocol as an upper layer

tive state machine models to represent the states and transitions of a
target protocol. Thus, they can generate packets using anomalous
data as well as the order of those packets. However, these fuzzers
are not adequate to analyze customized protocols based on IEEE
802.15.4. They cannot analyze customized protocols because they
require prior knowledge of target protocols. AutoFuzz [13] con-
structs a generic message sequence (GMS), an array list of static
and variable data fields. It then generates packets by fixing data
in static data fields and changing data in variable data fields. Al-
though AutoFuzz does not require prior knowledge, its targets are
textual protocols. Therefore, applying it to wireless binary-based
customized protocols is difficult.

3. BACKGROUND

In this section, we explain the basic information of the IEEE
802.15.4 architecture and data frame format. We also define a cus-
tomized protocol based on IEEE 802.15.4 as our target protocol.

3.1 IEEE 802.15.4

IEEE 802.15.4 is a standard that defines lower layer protocols
for WPAN communications that use frequency bands of 868-868.6,
902-928, or 2,400-2,483.5 MHz. It mainly focuses on low-speed
and low-power communication between wireless devices. Although
WiFi offers high-speed solutions, IEEE 802.15.4 requires much less
power and focuses on home-range devices. Essentially, it supports a
communication range of 10 m, and a transfer rate of 250 kbps. Even
if low power consumption is one of its main features, extremely
low manufacturing and operation costs are also the chief features of
IEEE 802.15.4. Furthermore, technological simplicity and flexibility
make it adaptable to various wireless communication protocols.
For example, well-known protocols, such as ZigBee, 6LoWPAN,
WirelessHART, have been developed based on the IEEE 802.15.4
standard.

3.1.1 Architecture

The IEEE 802.15.4 architecture consists of only two layers: PHY
and MAC. The PHY layer defines the physical specifications to
transmit and receive radio frequency (RF) signals through a physi-
cal transmission medium. The MAC layer provides a reliable link
between two nodes and is responsible for the following: encoding
digital bits into packet frames for transmission, decoding them in
order to receive frames, and controlling access to data in a network.
This architecture is used not only for the lower layer of well-known
wireless communication standards, but also for publicly unknown
customized protocols designed by device manufacturers.

3.1.2 Data Frame Format

The data frame format of PHY and MAC layers of IEEE 802.15.4
is depicted in Figure 1. A PHY layer frame includes a PHY payload,



which is a MAC layer frame that contains a MAC header, MAC pay-
load, and frame check sequence (FCS). The MAC contains a frame
control field (FCF), data sequence number, and address information.
The MAC payload is the actual payload to be transmitted, and FCS
is usually implemented as a CRC to detect common errors caused
by noise in wireless communication channels.

As depicted in Figure 1, MAC payload is the real target field
that contains a protocol customized by various manufacturers for
their systems. To analyze this customized protocol, information in a
MAC header and FCS is used. First, FCF in a MAC header contains
important bitmap information such as packet type, security enabled
status, acknowledgment (ACK) request status, and addressing mode.
If the security enabled bit is not set, no encryption is applied to the
upper layer, which means the protocol can be analyzed by an attacker.
Address fields and FCS are utilized for address reuse detection and
noise filtering, respectively.

3.2 Customized Protocol

The main target in this study is customized protocols designed by
manufacturers themselves. Customized protocols can be identified
by simply using deep packet inspection (DPI) tools such as Wire-
shark [12]. For example, if Wireshark indicates that an unknown
protocol is a member of the IEEE 802.15.4 family of protocols (e.g.,
ZigBee and 6LowPAN) and payloads of their packets are abnor-
mally parsed, then this unknown protocol can be considered as a
customized protocol.

These customized protocols are widely used for various [oT de-
vices. In this study, a customized protocol is defined as an upper
layer protocol over well-defined PHY and MAC layers (i.e., IEEE
802.15.4). Because many wireless communication applications for
IoT have several functionalities, complex protocols are not required.
Thus, some manufacturers often use customized protocols instead
of following existing standard protocols such as ZigBee and Wire-
lessHART. In some cases, certain [oT devices seem to use ZigBee
or some other standard WPAN protocols, but we found that they
actually use customized protocols on top of IEEE 802.15.4. How-
ever, before capturing packets, recognizing whether a customized
protocol is used in a wireless communication system is impossible.
Therefore, finding proper target system for evaluation of WASp in
Section 6 was difficult.

Customized protocols are not known publicly and vary according
to devices or manufacturers. Therefore, analyzing customized proto-
cols and generalizing them for automation are challenging. However,
in many cases, customized protocols have several characteristics
that enable unknown protocol analysis and spoofing attacks. These
characteristics are as follows:

e MAC layer data such as source and destination addresses can
be reused, because producing their own address system is
burdensome.

e Common patterns such as ASCII bytes, periodically increas-
ing or decreasing bytes, and sequential bytes are embedded.

o No authentication and poor packet integrity check are imple-
mented. (e.g., using well-known CRC algorithms, checking
only the increment of sequence numbers)

e Some bytes can be used without any alteration for spoofing
attacks, because they are filled with fixed data regardless of
the operation a target system.

Based on these characteristics, manually analyzing unknown cus-
tomized protocols is possible. However, manual protocol reverse

engineering is time-consuming and requiring new analysis for new
targets.

Assumptions. To clarify the scope of our analysis, we assumed
the following. First, the main purpose of protocol customization is
neither flexibility nor convenience, but rather efficiency and low-
power consumption. For example, a command field having textual
data such as a keyword usually requires more than one byte, but a
binary data field that corresponds to predefined commands can be
represented in one byte. Second, packets are not encrypted. While
some of the standards support encryption, customized protocols
we have seen have not been using encryption. Third, packets are
not fragmented, as fragmentation increases cost and the amount of
power consumption. Finally, an attacker has no access privileges
to the target system. From packet sniffing to spoofing attack, all
processes are performed remotely.

4. ANALYSIS DESIGN

The final goal of this study is to analyze and reconstruct unknown
wireless customized protocols over IEEE 802.15.4 for spoofing
attacks at a high success rate. As a building block, we develop
an analytical procedure for wireless spoofing attacks consisting of
three phases inspired by the inductive approach. In this section, we
provide an overview of our analytical procedure in three phases.

4.1 Overview

Figure 2 represents an overview of our analytical procedure to
spoof wireless communication systems using the customized proto-
cols mentioned in Section 3. Target devices employ IEEE 802.15.4
as PHY and MAC layers and an unknown customized protocol as
an upper layer. Physical signals containing packets of a customized
protocol are transmitted through a wireless channel (i.e., the air) that
is publicly open. Because the target protocol is unknown, the starting
point of analysis involves sniffing (i.e., collecting packets) by listen-
ing to RF signals in the proper wireless channel. For sniffing, we
require an appropriate tool with an RF signal receiving and digital
processing capability that can handle PHY and MAC layers such as
KillerBee [24] and universal software radio peripheral (USRP) [11]
with “gr-ieee-802-15-4” GNU radio module [3] that fully support
the IEEE 802.15.4 standard.

After collecting enough packets, attackers can reverse-engineer
the customized protocol. Protocol reverse engineering is the most
important and challenging part. An attacker needs to distinguish
each field and determine their meanings in raw byte sequences with
logical evidence or intuition. This process is extremely tedious,
time-consuming, and even prone to errors. The more that fields are
revealed, the more efficient the spoofing attack is, because employ-
ing brute-force at every field is practically impossible.

Attacker Reports
—> @ Grouping
GNU Radio Module ﬁ @® Spoofing
(PHY and MAC layers) . packet
j|‘ @® Collecting

Software Defined generation
Radio Device

Customized Protocol Sniffing Spoofing Customized Protocol

MAC Layer Wireless MAC Layer
Channel \
PHY Layer Ay 7 PHY Layer
Device Physical signal Device

Figure 2: Overview of our analytical procedure for wireless communication
sniffing and spoofing attacks against devices using customized protocols



In this study, we mainly focus on this protocol reverse engineering
to generate possible spoofing packets efficiently. Therefore, our
analytical procedure is built upon PHY and MAC layers as an lower
layer. Generated spoofing packets can then be transmitted by the
signal processing tool such as KillerBee and USRP.

4.2 Analytical Procedure

An inductive approach consists of observation, pattern, and theory.
Similarly, protocol reverse engineering can be divided into three
phases to make a spoofing attack possible for an IEEE 802.15.4-
based customized protocol: collecting, grouping, and analysis as
shown in Figure 2. To understand the meaning of each field in a
customized protocol, controlling the variance of packets in pre-
dictable conditions in the first two phases is necessary. We strongly
believe that this three-step procedure is a generic approach for IEEE
802.15.4-based customized protocol reverse engineering.

4.2.1 Collecting Phase

The first step in the collecting phase is to identify a communi-
cation channel. Because IEEE 802.15.4 has only 26 channels, by
brute-forcing, we can identify the active channel that the target sys-
tem uses. The collecting phase is usually considered as a simple
process, as hardware supports this operation effectively. However,
challenges in the subsequent phases totally depend on this packet
collecting phase because any kind of contextual noises in this phase
are hardly removed in the subsequent phases. Some variable fac-
tors or environments affect the variance of the packet data such as
functionality, date, timing, and location. Note that all customized
protocols utilize some of these data and their implementations can
be somewhat different.

The functionality of a device is the most important factor to
reverse engineer command related fields, and date and time are
related to timestamps. The collecting phase has to run for sufficiently
long time to clearly distinguish temporal information such as packet
sequence number and time. The location is also highly related to
the number of communication nodes. The number of nodes may
complicate protocol reverse engineering. In other words, when the
number of nodes is relatively small, the analysis become easier.
By limiting the number of communication nodes, the entropy of
address fields can be decreased. Therefore, if we can control these
conditions, analysis becomes easier.

4.2.2  Grouping Phase

The second phase is a grouping process for the collected packets.
Many types of packets exist in a typical digital communication
protocol, such as request, response, command, and acknowledgment
(ACK). The formats of these different types usually have different
fields, and this difference causes the protocol analysis to be more
complicated. By classifying the collected packets according to the
source or destination addresses, we can obtain information about the
request-response and command-ACK relationships. The length of
the packet can provide useful information as well because different
fields tend to have different packet lengths. For example, ACK
packets are usually shorter than any other packets. Categorizing the
collected packets according to the factors mentioned in the previous
phase is also helpful.

4.2.3 Analysis Phase

The last step is the actual analysis of hex or ASCII-valued byte
data in the grouped packets. The important data in the sequence of
grouped packets are those that are repeated, periodic, monotonically
increasing or decreasing, and otherwise meaningful. Repeated data
can be related to the control features of the two previous phases

Table 2: Inferable information according to attributes of each byte

Data Attributes Deducible Information
Repeatability Source/destination addresses
Periodicity Time stamp (data or time),

Functional commands

Monotonic increment or decrement | Sequence number

Use the values of corresponding
byte positions as fixed for
spoofing attacks

Constant Field

including source or destination addresses, functional commands,
and others. Periodic data can also be interpreted as having various
meanings based on their timing characteristics such as time interval.
Sequence numbers and timestamps of packets usually appear as
monotonically increasing data, and they can be decoded according
to their cycles. For example, the cycles of date or time data can
be 12, 24, or 60 in decimal or hex, whereas those of a sequence
number can be a full byte size. In particular, repeated data in every
packet without any change are important because an attacker can use
them as fixed values for a spoofing attack without knowing detailed
information. Table 2 summarizes inferable information based on
attributes of each byte previously mentioned.

Because one byte of data can have several of these attributes, mul-
tiple analysis results are possible. With some criteria or algorithms
used for scoring different analysis results, we can choose one or
some results to generate possible spoofing packets. According to the
analysis results, the uncertainty of each field can be reduced. There-
fore, we can generate possible spoofing packets more efficiently.

S. IMPLEMENTATION

Based on the design in Section 4, we implemented an automatic
wireless customized protocol reverse engineering tool named WASp.
As its final output, this tool generates scored analysis reports and
possible spoofing packets by automatically analyzing input files
containing captured packets.

In this section, we present details of the implementation of each
module and byte-level analysis in WASp. The entire program flow
of WASp is shown in Figure 3. WASp consists of four modules:
parsing and grouping, byte-level analysis, report construction, and
packet generation, which are marked &), B), ©, and D) in Figure 3,
respectively. Essentially, packet capture (pcap) files containing cap-
tured packets in specific conditions (mentioned in Section 4.2.1)
and context files describing those conditions for each pcap file are
used as inputs for our tool. Captured packets in pcap files are parsed
and then divided into several groups (). After the grouping, the
analysis module performs byte-level tests in each byte position for
every group. We designed five byte-level tests: CRC, n-gram, en-
tropy, feature, and range (B)). The results of each test are merged
and scored as a report that includes basic protocol format informa-
tion (©). Finally, based on scored results in the reports, our tool
automatically generates possible spoofing packets (D). Because
a report is generated for each group, a user can select a report to
generate spoofing packets or refer all reports according to one’s

purpose.
5.1 Parsing and Grouping

Our tool requires two kinds of inputs: pcap files and context
files for each pcap file. Pcap files contain raw data of captured
packets, and context files contain information concerning capturing
conditions in (keyword, value) tuples designated by a user or attacker.
Because those conditions can be combined with a byte or field in
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captured packets, context files can add information necessary for
subsequent analyses.

For analyses, parsing and extracting MAC layer information from
MAC headers of packets in pcap files are necessary. In this process,
packets with wrong MAC layer CRCs are filtered out because they
can be considered as broken packets in wireless transmission. After
parsing, packets in pcap files are grouped into several groups ac-
cording to packet length, and each group can be divided again into
several subgroups according to (source address, destination address)
tuples derived from MAC layer information. Because WPAN pack-
ets need to have minimal length to ensure low transmission power,
customized protocols use a packet length that is as short as possible
considering the purpose of each type of packet. In other words, the
packet length is the easiest and most effective criterion to cluster
packets according to type. By grouping and sub-grouping, we can
reduce entropy related to address fields and even identify possible
address byte positions and the values of given network nodes in a
customized protocol.

Groups and subgroups classified in this module can also be used to
produce a network diagram of a target system. Figure 4, which was
automatically generated by WASp, shows an example of a network
diagram for captured packets. Circles denote network nodes and
their 2-byte hex values refer to MAC layer information in each node
(i.e. addresses). Arrows refer to the direction of packet transmission,
and next to each arrow, the byte length and number of corresponding
packets are given. In addition, in Figure 4, packets contained in
each arrow represent a subgroup and packets with the same byte
length represent a group. This is helpful in understanding network
structures or sender-receiver relationships of customized protocols,
which have many communication nodes.

5.2 Byte-Level Analysis

Figure 4: Example of network diagram for part of captured packets from
PSD system as explained in Section 6

As previously mentioned, we essentially assumed that most data
in the target protocols use a single-byte data format to reduce power
consumption for each packet transmission. Because we do not know
the target protocols at all, this is our best assumption at this point.

In the byte-level analysis module (B) in Figure 3), which is the
main analysis process, we implemented five byte-level investigations.
These investigations are based on characteristics of customized
protocols explained in Section 3.2 for use in analyzing the formats
of customized protocols.

CRC Test. CRC is one of the simplest methods for checking packet
integrity. Thus, in customized protocols, well-known CRC algo-
rithms are usually adopted. This test determines CRC existence
using an n-gram method in customized payloads for each group or
subgroup. For the CRC calculation, we adopted PyCRC module [ 18],
which supports nine common CRC methods including CRC-16,
CRC-32, and CRC-CCITT. Because we consider packets that have
the same length as a group, this test detects the CRC method for
each group and identifies the most frequent CRC method and its
byte positions. We considered captured packets with unmatched
CRC:s not only in MAC layer but also in customized protocol layer
as noise data, and we filtered them out for subsequent analysis.

N-gram Test. The purpose of the n-gram test is to locate reused
MAC header data such as source addresses, destination addresses,
and network IDs in customized layer data. We built databases for
every possible contiguous n-byte sequence (n-gram data) from both
MAC header and customized layer data. By comparing both n-gram
databases with the same length for all packets in a group or subgroup,
this test detects byte positions and lengths of reused MAC header
data fully or partially.

In cases in which a group contains multiple subgroups, MAC
header data of packets in the subgroups may be more consistent
than those in the group. Therefore, results of an n-gram test for each
subgroup are merged to conduct an n-gram test for the group.

Entropy Test. To measure the variance of each byte, we applied
entropy (i.e., Shannon entropy), which means the average of infor-
mation contained in each set of data in our analysis. In this test,
we calculated each byte position’s entropy in packets of a group or
subgroup and the entropy of each context in context files related to
that group or subgroup.

If the entropy value of a byte position is zero, it means that the
byte position is fixed, and thus, we can simply use the fixed value
as it is for spoofing packet generation. Non-zero entropy values are
used in the subsequent steps.

Feature Test. For each pcap file, (context, condition) paired context
information is manually written in a context file. The context infor-
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Figure 5: Example of feature test in byte-level analysis module

mation describes conditions such as communication channel num-
bers among 26 physical communication channels in IEEE 802.15.4,
specific operations that can be observed by an attacker (e.g., turn-
ing on/off or moving directions), capturing locations (for multiple
sender-receiver pairs) when packets are captured in a pcap file. In
the feature test, entropies for each byte position and each context cal-
culated in the previous test are compared to identify context-related
byte positions that have the same entropy value as that of context
entropy. If the entropy of the n-th byte position is equal to that of
the channel information, then we consider the n-th byte position
related to the channel.

An example is given in Figure 5. Three pcap files are recorded in
different conditions, and each pcap file contains three packets with
a byte length of seven shown in the left side of the figure. In this
case, the entities of corresponding context files are (channel, 11) and
(direction, up) for the first pcap file, (channel, 12) and (direction,
down) for the second, and (channel, 13) and (direction, up) for the
last. Entropies of each byte position for nine captured packets and
context information (i.e., channel and direction) are shown in the
right side of Figure 5. Because the values of entropies are the same
as those of channel and direction (0.92 and 1.58 in the fifth and
fourth byte positions, respectively), our feature test contemplates
that the fifth and fourth byte positions are meaningfully related to
channel and direction, regardless of their byte values.

Range Test. To identify another useful piece of information in a
group of unknown byte sequences, we classify each byte position by
the range of changes of byte values into raw decimal, raw hexadec-
imal, ASCII decimal, ASCII hexadecimal, sexagesimal, printable,
upper-case and lower-case-letter ranges. For example, if the changes
in value of one byte position are bounded between 0x30 (character
“0”) and 0x39 (character “9”) in a group or subgroup, then this byte
position is classified as both ASCII decimal and printable ranges.
In general, sequence number bytes use only decimal or hexadec-
imal values (both raw and ASCII formats), time stamp bytes are
bounded in sexagesimal range, and the value of command bytes is
in letters range. In this test, byte positions identified by CRC and
n-gram tests as well as zero-entropy byte positions are excluded. As
a result, a bitmap that contains ones at the same bit positions as the
corresponding byte positions as well as zeros at other bit positions
is generated for each range.

Because one range can be either a subset of or overlapped with
other ranges, this test can generate multiple results. Therefore, to
generate possible spoofing packets efficiently, scoring the multiple
results with reasonable criteria is necessary. This scoring process is
included in the next module.

5.3 Report Construction

The purpose of the report construction module (©) in Figure 3) is
to combine results of five tests in the byte-level analysis module to

Data: Results of range and entropy tests

Result: Score list for multiple results of range test

L < the byte length of packets

By [n]  k-th result (bitmap) of range test (0 < n < L)

H [n] < aresult of entropy test (0 < n < L)

scoreList < an empty list

foreach B, do

score < 0

entropyrange < the entropy of corresponding range

for i < Oto L do

By[i] x HJi

score <— score + ———

entropyYrange

end

scoreList.append (score)

end
return scorelList
Algorithm 1: Scoring algorithm for results of range test

reduce entropy, and score overlapped results for some byte positions.
In the last stage of this module, reports summarizing all results of
automatic analyses are generated for every group and subgroup.

Range Scoring. As explained in the previous subsection, the range
test derives multiple results. To determine the results to be used
for generating possible spoofing packets, we developed a scoring
algorithm that couples the results of range and entropy tests. This
algorithm is briefly summarized in Algorithm 1.

In the algorithm, entropies of each byte position bounded in
a specific range are reflected in the score of a range test result,
with the exception of byte positions identified by CRC and n-gram
tests, as well as zero-entropy byte positions. In addition, scores
are normalized with the maximum entropy of the specific range.
Calculated scores are used to generate possible spoofing packets in
the packet generation module.

Entropy Reduction. First, we mark fixed-value byte positions
through whole packets in a group or subgroup (i.e., zero entropy).
Second, even though actual values of byte positions are not fixed,
we can regard them as fixed or limited-valued byte positions based
on results of CRC, n-gram, and entropy tests. Therefore we can
reduce entropies for some dynamic-value byte positions.

Our rules to reduce entropy are the following. Note that all thresh-
old values in the rules are heuristically chosen.

e In a group or subgroup, if the number of packets that use
the same CRC algorithm at the same byte positions in the
CRC test is over 90 % of total number of packets, those byte
positions are fixed as CRC bytes.

e In a group or subgroup, if the number of packets that reuse
the same MAC layer information at the same byte positions
in the n-gram test is over 80 % of total number of packets,
those byte positions are fixed as the reused values.

o If the range of a byte position is specified by the range test,
the values of the byte position are bounded in the specific
range.

e If the actual entropy of one byte position is less than half the
full entropy of a byte, the values of those byte positions are
limited by their existing values in a group and subgroup.

Report Generation. Before spoofing packet generation, every re-
sult of previous analyses for each group and subgroup are integrated



into a report. Because all tests except the entropy test can have
multiple results, we merged results of those tests in order of priority
based on the certainty and importance of each test. Byte positions
identified in the CRC test are first locked, and then the results of
n-gram and feature tests are applied in order. Finally, zero-entropy
byte positions are fixed. The results of the range test are not merged
exclusively. Instead, they are listed as scores in a report, and the
results of the range test with the highest score is used for packet
generation. In summary, for each byte position of customized proto-
col payloads in a group or subgroup, a single merged analysis result
and the listed results of the range test are included in a report.

5.4 Packet Generation

Based on reports for each group and subgroup, the packet gen-
eration module (D) in Figure 3) automatically generates pcap files
containing possible spoofing packets. Because reports show results
based on byte position, we have to assign appropriate values to each
byte position for spoofing attacks. Byte positions can be separated
into two types: fixed and variable byte positions. From an attacker’s
point of view, he or she can simply duplicate fixed byte positions for
spoofing attacks. By contrast, variable byte positions should be han-
dled analytically based on analysis results rather than brute-forcing
for efficient spoofing attacks. WASp generates spoofing packets
based on the following three steps.

Selection. According to the number of groups and subgroups,
dozens of reports are generated in the report construction module.
WASD can generate possible spoofing packets for all reports, but it
is considerably time-consuming and inefficient to verify the success
or failure of spoofing attacks for every generated packet from all
reports. However, because packets in subgroups are also contained
in groups, generating possible spoofing packets for groups only is
sufficient. In addition, a user can select specific reports for spoofing
packet generation by considering contexts or spoofing conditions
such as communication direction and target address.

Mutation. Our analysis approach is optimized to reduce entropy by
finding meanings and bounding possible values of each byte or field.
Naturally, the more we reduce entropy, the fewer the number of
possible spoofing packets that are generated. This means excessive
entropy reduction can reduce the chances of success in spoofing
attacks. Therefore, we can trade entropy reduction for the chance of
success. To increase the success rate, we can also mutate a report.
For example, if adjacent byte positions with different entropies are
in the same range, the maximum value among different entropies
can be used for all of them, although one of them can be applied to
entropy reduction rules mentioned in Section 5.3. This mutation can
be enforced even for fixed byte positions.

Generation. After every process, all possible packets are generated
according to the remaining entropies of each byte. These packets
are used for spoofing attacks and in our evaluation.

6. EVALUATION

In this section, the performance of WASp is evaluated against
two real-world targets: smart plug and PSD systems. Because of
the unknown nature of customized protocols, we have no ground
truth for our analysis results. Therefore, we use the amount of
entropy reduction in our analyses and spoofing success rate in our
experiments as evaluation metrics.

6.1 Target Systems

A smart plug system is an intelligent power metering system
that basically consists of plug and controller units. The plug unit is

controlled wirelessly by the controller unit and can turn the power
of connected electrical devices on or off. In addition, it transmits
the power usage information of the devices to the controller unit.
For these functions, a customized protocol is used as wireless com-
munication between the plug and controller units. We captured
217 packets in two contexts according to the functions of turning
on/off and transmitting power usage information, to generate spoof-
ing packets. The other target, a PSD system, prevents tripping and
falling accidents at a platform, and it also reduces wind and dust
caused by a train. Because the doors of both PSD and a train must be
synchronized, PSD communicates with incoming trains wirelessly
using a customized protocol. In our experiments, we captured 7,299
packets in 30 contexts which are combinations of five platforms,
three trains, and both up and down directions.

We note that choosing target systems to evaluate WASp is limited
because identifying whether a WPAN system uses a customized
protocol before capturing packets is impossible.

6.2 Evaluation Metrics

For our evaluation, we used two evaluation metrics: the amount
of entropy reduction and spoofing success rate. First, the amount
of entropy reduction was used to demonstrate the efficiency of the
automatic protocol analysis. Entropy is directly related to the number
of generated spoofing packets, and too many spoofing packets cannot
be transmitted in a reasonable time because of the limited speed of
transceivers. For example, KillerBee, which in a SDR transceiver
supporting IEEE 802.15.4, can ideally transmit as many as 500
packets per second, which means that nearly nine hours are required
to transmit 3-byte brute-forced packets at least. Therefore, entropy
must be reduced to a level sufficient to send in a limited time,
especially for real-time spoofing attacks. In addition, the successful
spoofing rate, which is the second metric, represents the accuracy
of WASp. The high success rate proves that the formats and their
values of spoofing packets generated by WASp (i.e., the report in
Figure 3) are correctly constructed to approximate those of the actual
customized protocol.

Therefore, both the amount of entropy reduction and the spoof-
ing success rate must be considered to evaluate the performance
of spoofing attacks. We note that although the main goal of this
study is not to reveal the target protocol completely, WASp provides
meaningful analysis results against the protocol. In addition, the
results of WASp can be used to identify the most proper format of
target protocols by analyzing successful and failed spoofing packets.

6.3 Evaluation Results

For our evaluation, we placed attacks on smart plug and PSD
systems using automatically generated packets by means of WASp.
Before actual analyses for generating spoofing packets, improper
packets that contain wrong CRCs in MAC and custom layers were
filtered out as noise packets through the process described in Sec-
tion 5.1 and Section 5.2. The change in the number of packets by
filtering is shown in Table 3. The numbers of packets that are used
for actual analyses are given in the last row of Table 3.

6.3.1 Smart Plug System

For our evaluation, we performed spoofing experiments against
a smart plug system because it is a commercial product and under
our control. Therefore, for this target system, both metrics were
measured by experiments.

Grouping. From the analysis results of packets collected from the
smart plug system, we identified three packet formats (i.e., three
groups) whose byte lengths were 23, 24, and 35, respectively, and the
number of corresponding packets were 22, 135, and 43, respectively.



Table 3: Results of noise packet filtering with CRC in MAC layer and
custom layer for both target systems (No custom layer CRC is implemented
for the smart plug system.)

# of Packets # of Packets

(Smart Plug) (PSD)
withou Bierng 217 7299
Wrong MaC Laer R o1 200 6,986
R

These groups had no subgroups. This means that packets in each
group are transmitted in only one direction.

Results. The plug unit is targeted for spoofing attack experiments
because it is an actuator controlled by the controller unit. Accord-
ingly, possible spoofing packets are generated based on the report
of the group with 135 packets and a 24 byte length. From spoofing
experiments, we determined that spoofing was successful if any
response packet was detected for each spoofing packet.

By WASp (without mutation as described in Section 5.4), a series
of possible spoofing packets (Type 1) that has maximally reduced
entropy were generated. To enlarge the coverage of spoofing packets,
Type 1 was mutated as Type 2 and 3. The last entropy reduction
rule in Section 5.3 was not applied for Type 2, and the entropy was
increased for Type 3 as the mutation example in Section 5.4. In other
words, Type 1 is a subset of Type 2 and 3 for exclusively different
byte positions. For each type, entropy reduction rates, the numbers
of generated packets, and time duration to transmit all generated
packets with a 0.2 seconds delay are shown in Table 4.

Type 1, which is the main type, showed 95.50 % reduced entropy
compared to the original entropy. When each packet is transmitted
every 0.2 seconds, 1.3 minutes are required to transmit all generated
packets theoretically. By mutating Type 1, which increases entropy,
the greater the number of spoofing packets that are generated and
the more time is required proportionally. To test all packets for Type
3, over two hours are required.

In spoofing experiments, sending packets continuously for approx-
imately two hours is nearly impossible, especially for a real-time
spoofing attack. To avoid this practical limitation and for a fair
comparison of the three types, we transmitted 100 spoofing packets
that were randomly chosen for each type. In addition, we tested
for different speeds to transmit packets from 0.002 to 0.9 seconds
per packet. All experiments were repeated 100 times. The spoofing
success rates were averaged for 100 times of identical experiments
as shown in Figure 6.

The results show that the spoofing success rate increased from
0.002 to 0.1 seconds of the time interval according to the increased
time interval per packet transmission and then stabilized after 0.2
seconds of the time interval. After stabilization, spoofing success
rates for Type 1, 2, and 3 averaged 48.19 %, 5.52 %, and 47.09 %,

Table 4: Automatically generated spoofing packet types against a smart plug
system (success rates are averaged over 10 identical experiments.)

oy | | Ll
Reduction Rate packets P d el;Jy)
Type 1 95.50 % 400 1.3 minutes
Type 2 93.57 % 5,200 17.3 minutes
Type 3 92.04 % 40,000 133.3 minutes
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Figure 6: Spoofing success rate according to spoofing time interval from
0.002 to 0.9 seconds per packet (for 100 packets randomly chosen in possible
spoofing packets generated by WASp)

respectively. Note that spoofing success rate of Type 1 and Type 3 are
impressive results given the circumstances. Spoofing is performed
without any internal system information such as current sequence
number. Moreover, input datasets only contain limited number of
packets during limited time span, making it impossible to guess the
exact packet format.

When the time interval is too short, success rate is quite small,
maybe because the device cannot handle packets in such a short
time interval. Therefore, the graph shows the sharp increments of
the spoofing success rate as the interval increases from O to 0.1 or
0.2 seconds. This means that for the spoofing test using spoofing
packets generated by WASp, we cannot transmit spoofing packets
and receive responses too quickly. Moreover, the total time for the
spoofing test can be limited in some conditions, especially when a
target system is not in our control. Hence, those packets should be
generated efficiently. In other words, we have to lower the entropy
of customized protocols during the analysis stage.

In the case of Type 2, the success rate significantly dropped
compared to that of Type 1. Because the ratio of success rate drop
between Type 1 and 2 (48.19 % and 5.52 %, respectively) is inversely
proportional to the ratio of their packet numbers (400 and 5,200 in
Table 4, respectively), this drop means that most of those additionally
generated packets failed to spoof. Based on this comparison, we can
remove useless values for a particular byte, which is also helpful in
further protocol analysis. While it utilizes two orders of magnitude
more spoofing packets, average success rates for Type 3 is lower
than Type 1. This is due to the sampling effect. For each type, we
choose 100 samples randomly as discussed above.

6.3.2 PSD System

In contrast to our evaluation of the smart plug system, we could
use only the amount of entropy reduction as an evaluation metric
in that of the PSD system. Because of legal and safety concerns,
we could not perform spoofing attacks and were unable to obtain a
spoofing success rate in this evaluation. However, the entropy reduc-
tion results suggest that our analysis is effective and that a spoofing
attack in real-world situation is possible. Moreover, we strongly
believe that packets generated by WASp can spoof a PSD system
in a real-world situation because the entropy of PSD’s customized
protocol is reduced sufficiently.

Grouping. We clustered 7,299 packets into 15 groups according
to packet length before noise packet filtering. After filtering, we



excluded 336 packets, which represent only 4.6 % of the originally
captured packets. However, among 15 groups, nine groups and two
subgroups were filtered out. The removed groups consisted of a
few packets and the number of these packets was not enough to
automatically analyze. Therefore, those removed packets could be
considered as noise for analysis. In addition, this means that the
number of reports to which an attacker should refer was effectively
reduced by filtering.

Results. Table 5 represents the results of entropy reduction by
means of byte-level analysis (B) in Figure 3) and report analysis
(© in Figure 3). However, three of them contained less than 0.2 %
of the total packets, and two groups only contained a single packet.
After filtering, three of the six groups contained more than 99.8 %
of captured packets. Their entropy reduction results are listed in
Table 5.

Using WASp, the entropies of byte positions are decreased by
anchoring those byte positions as CRC, reused MAC data, and
context information, and then applying our entropy reduction rules
(Section 5.3) to collected packets of the customized protocol. The
amount of entropy reduction for each group is summarized in the
last row of Table 5. The average entropy reduction rate is 88.11 %
for three dominant groups.

7. DISCUSSION

Ground Truth. Customized protocols are proprietary protocols
that have no accessible documentation related to protocol specifi-
cation. We cannot know the exact protocol format. In other words,
no ground truth exists to check whether packets are generated in
the correct format. In addition, the target systems are a black box
when an attacker has generally no privilege against program source
code or firmware. Therefore, we evaluated our tool by performing
spoofing attacks against the target system and measuring the attack
success rate. As we mentioned in Section 1, the initial purpose
of this research is to improve the security of wireless customized
systems by automating spoofing attacks. Therefore, we infer the
correctness of our analysis results through the success rate of spoof-
ing attacks. In other words, if the spoofing attack with generated
packets is effective, then we can explicitly evaluate the accuracy of
our automatic analysis without the original packet format.

Selection Bias. Our tool requires sufficiently many packets to de-
rive exact analytical results for a high success rate of spoofing
attacks. For example, if we assume that our tool collects packets for
only a single day and one field in the collected packets indicates the
date, this date field will be considered as a fixed field. Therefore,
packets that are generated based on this analysis result can counter
a spoofing attack on another day if the target checks the packet
generation date. Not only as in this case, but also entropy, range,
and feature tests may be incorrect because of the selection bias of
collected packets, and this will adversely affect the quality of reports
and packets. Therefore, users must consider possible field cases and
collect packets that can cover all cases with sufficient randomness
to remove selection bias.

Table 5: Results of entropy reduction for the customized protocol used in a
PSD system

Group 1 Group 2 Group 3
Number of Packets 418 2,615 3916
Custom Layer Packet Size 7 bytes 11 bytes 15 bytes
Enrtopy Reduction Rate 96.26 % 90.04 % 78.01 %

Incorrect Implementation of IEEE 802.15.4 CRC. Some ven-
dors have implemented IEEE 802.15.4 CRC inaccurately on their
10T devices. For example, we collected IEEE 802.15.4 packets from
a wireless parking space detection (WPSD) system in a hypermar-
ket, and we found that they had wrong CRC values. Systems that
possessed an extremely simple function and short wireless packet
structure such as a WPSD system may work with CRC error. How-
ever, we could not analyze the protocol because we cannot guarantee
that there is no error in the packets, as such errors will impair accu-
rate analysis. Thus, this kind of system is out of scope for this study,
and our tool filters packets that have a wrong MAC layer CRC or
application layer CRC.

IEEE 802.15.4 Family Protocols. IEEE 802.15.4 defines only the
PHY and MAC layers, and IEEE 802.15.4 family protocols such as
ZigBee, Z-Wave, and WirelessHART have their own network layer
on the MAC layer of IEEE 802.15.4. Although these protocols are
based on IEEE 802.15.4, they are not within the scope of our tool.
We assume that reusing the source and destination addresses and
poor integrity checks are the characteristics of customized protocols.
However, the family protocols do not have these characteristics.
In particular, they support strong integrity checks such as keyed-
hash message authentication code (HMAC), so generating spoofing
packets is impossible.

8. CONCLUSION

The main purpose of this study is to analyze and reconstruct
unknown wireless customized protocols over IEEE 802.15.4 auto-
matically. For this purpose, we classify the characteristics of these
protocols and develop a novel methodology to analyze and recon-
struct these protocols based on those characteristics. In addition,
applying the methodology, we implement an automated wireless
customized protocol spoofer called WASp for analysis and spoofing
packet generation. Compared to manual analysis, WASp is proved
to be much faster and to generate efficient analysis reports with five
kinds of byte-level investigation. In particular, results of byte-level
statistical analyses including entropy and range tests revealed that
WASPp identifies meaningful byte positions, bounds their values,
and narrows the coverage down for spoofing packet generation ef-
ficiently. For evaluation, possible spoofing packets are generated
based on the analyses by WASp, and we apply those packets to real-
world commercial applications such as smart plug and PSD systems.
Results reveal that, on average, our tool could reduce approximately
90 % of entropies for both target systems, and approximately 48 %
of generated packets could spoof one of them.

Although several previous works have studied automatic reverse
engineering of network protocols for intrusion prevention and de-
tection, they focused on application-level protocols as their targets.
Thus, they are not fully applicable to our target protocols, which
possess little context information because of low-power require-
ments. Consequently, to the best of our knowledge, this study is the
first to implement an automated protocol reverse-engineering tool
specialized for unknown customized protocols over IEEE 802.15.4.
We believe that WASp is a useful tool to understand customized
protocols with unknown structures that do not include textual data.
In addition, WASp can be used to secure those protocols and prevent
potential spoofing attacks for IoT networks that use WPAN.
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