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ABSTRACT
Understanding app-specific behavior is important for network
operation and management. However, it is often difficult be-
cause it requires an in-depth application-layer protocol anal-
ysis due to the common use of HTTP(S) and standard data
representations (e.g., JSON). This paper presents Extracto-
col, the first system to offer an automatic and comprehen-
sive analysis of application protocol behaviors for Android
applications. Extractocol only uses Android application bi-
nary as input and accurately reconstructs HTTP transactions
(request-response pairs) and identifies their message formats
and relationships using binary analysis. Our evaluation and
in-depth case studies on closed-source and open-source apps
demonstrate that Extractocol accurately reconstructs network
message formats and characterizes network-related applica-
tion behaviors.

1 Introduction
Android app is an important class of today’s Internet applica-
tions that generate roughly 40-50% of mobile Web and app
traffic [21]. More than 1.4 million Android apps are offered
through Google’s open market [18], and tens of thousands
of new apps are added every month. However, very little
information is known about Android application protocol be-
haviors because they predominantly use proprietary protocols
on top of HTTP(S) [41, 48, 64, 77]. The problem is further ex-
acerbated by the popular use of common data representation,
such as JSON and XML. As a result, analyzing application
protocol behaviors for Android applications requires an in-
depth characterization of application-level payload for each
individual application.

Understanding the application behavior within the network
is invaluable in providing value-added services, such as ap-
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plication acceleration [4, 35] and dynamic caching [11]. It
has been a significant interest for a number of applications,
including testing protocol implementations [70], analyzing
malware [75], and replaying application dialogs [31, 39, 68].

However, protocol behavior analysis is painstakingly man-
ual, requiring tremendous amount of human effort [32, 38]
in reverse engineering. On Android, the popular use of and
default support for code obfuscation tools, such as ProGuard,
make this even more difficult [24, 47].

This paper presents the first comprehensive protocol anal-
ysis framework that automatically extracts protocol behav-
iors, formats, and message signatures. Providing automatic
analysis for Android apps, however, introduces two unique
challenges. First, while application binary is readily available
through the open market, only the client program is avail-
able. Typically the server binary, protocol documentation,
and the source code are unavailable. Therefore, we must
solely rely on the client program, unlike other approaches
that use both the server and client binary [32, 68] or even the
source code [70]. Second, it must provide high coverage and
accurately infer the message format and track dependency
relationships between messages—e.g., an authentication to-
ken to be used for subsequent requests may be embedded in a
prior login response, or a URI of an object may be embedded
in a prior response.

To ensure high coverage and accuracy, we apply static bi-
nary analysis, using the Android application binary as input.
Our insight is to track the code that generates or processes net-
work messages. Our system, Extractocol, infers dependency
relationships of objects that flow in from and flow out to the
network buffer using static binary analysis. In particular, it
extracts parts of application code (i.e., program slices) that
either generate requests or parse response messages. It then
internally reconstructs the dependencies between these ob-
jects. Finally, it applies a careful semantic analysis to extract
message formats and signatures from the target program.

Extractocol outputs signatures for each request/response
(including URI, query string, request method, header, and
body). By pairing a request with its corresponding response,
it accurately reconstructs HTTP transactions. We primarily
use regular expression to represent the signatures. How-
ever, Extractocol internally maintains a tree representation
of a signature, allowing us to represent signature in other
forms, such as Document Type Definition (DTD) for XML
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Figure 1: Application acceleration example

and JSON schema for JSON bodies. Extractocol also infers
dependencies between transactions by tracking which fields
in a request message (e.g., an authentication token) come
from an earlier response. Finally, it is able to track how the
network originated data is consumed within the Android app
(e.g., network data is fed into a video player).

In summary, this paper makes three key contributions:
• Automatic protocol analysis: We present the first com-

prehensive protocol analysis framework for Android
applications that is capable of extracting protocol be-
haviors, formats, and signatures.
• Novel application of static taint analysis for infer-

ring protocol messages and their relationships: Ex-
tractocol reconstructs request/response pairs, infers fine-
grained dependencies between protocol messages, and
obtains accurate protocol message formats.
• System prototype and evaluation: Our in-depth anal-

ysis on open-source and closed-source apps shows that
it provides a rich and comprehensive characterization.

2 Motivation and Approach
Applications of protocol analysis: Understanding the app
behavior has significant implications in networking. Apart
from its intrinsic value, it enables the network to provide new
application-aware services, often in conjunction with other
networking technologies. We provide a few examples of how
our protocol analysis can potentially be applied to enable new
services.

First, it enables application-aware treatment in the net-
work. Using the request signatures and fine-gained message
dependencies, one can intelligently prefetch content, which
is one of the key building blocks for application accelera-
tion [4, 7, 11]. Figure 1 shows part of the analysis result
of Extractocol for TED Android app. When a talk is re-
quested (request 1), its response contains the URL of an
advertisement video. The URL is then requested and the
response goes to the video player. Because Extractocol au-
tomatically identifies this, one can generate a prefetcher that
prefetches advertisements. Also, with the identification of
protocol fields and message formats, app-specific dynamic
caching can also be automated to accelerate particular appli-
cations [11, 16]. Today, the development of dynamic caching
proxies is done manually on a per-app basis [16] because it
requires the knowledge of application semantics (e.g., which
request parameter is dynamically generated) to determine

which content is cacheable [11]. A preliminary study has
demonstrated the effectiveness of this approach [35] by using
the information from tool, Extractocol. The practice is re-
ferred to as dynamic site acceleration. For example, Akamai
offers a dynamic site acceleration solution [5] where Web
applications are accelerated using proxies near the end user,
obtains TLS certificate and private key for the service, and
serve prefetched dynamic content from the proxy. We believe
developing application proxies [35] can be automated and
Extractocol is the first step towards this.

In addition, our framework tracks how network data is
consumed (e.g., media player) and where the network bound
data is originated from (e.g., microphone). This information
can be valuable to the network in enhancing the quality of
user experience. For example, if the network knows that
the response message is streamed into a media player, rather
than to a file, it can treat the traffic as such. Similarly, if the
app streams data from the microphone or camera, we might
infer that the traffic is of high priority or latency-sensitive.
Currently, QoS configuration (e.g., preferential traffic treat-
ment) is largely done manually and coarse grained (e.g., on
a per-port or per-flow basis). We believe that the under-
standing of application behavior combined with advances in
software-defined networking [44, 71, 88] and visibility of
encrypted traffic [6, 13, 14, 67] can enable new dimensions
of application-aware networking.

Second, the knowledge on protocol behavior can be used
to automate protocol testing. Testing the protocol behavior is
often cumbersome and tedious because it requires generating
protocol messages exhaustively and also protocol messages
often have orderings due to their dependencies. Application
protocol analysis can potentially automate this process by
generating messages exhaustively while following the depen-
dency between message exchanges.

Third, it can provide useful information for detecting secu-
rity and privacy issues. For example, taint analysis has long
been used for detecting sensitive information leakage [46,
52, 86]. In addition, our tool can be used to finger-print the
protocol behaivor of apps, which may be helpful in detecting
malicious app behaviors or app repackaging. For example,
one approach to malware detection is to match signatures
represented as binary patterns or plain strings. However, mal-
wares can easily evade the mechanism by reordering their
instructions or functions [10]. In contrast, Extractocol ex-
tracts network behavior including network signatures and
dependencies between HTTP transactions. This can help
detect malware variants in a more robust fashion (unless mal-
wares change their network behaviors significantly).
Goal: Our goal is to provide a comprehensive analysis of
each individual application, rather than a large-scale analy-
sis. Note, for the applications above, providing accurate and
in-depth analysis with wide coverage is critical. Our system
primarily focuses on extracting the application layer interac-
tion that happens over HTTP(S) because most Android apps
use HTTP as their primary protocol. Extractocol strives to
provide a comprehensive characterization in many regards: it
1) captures all HTTP interactions and reconstructs each trans-
action; 2) infers relationships and fine-grained dependencies
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Figure 2: Design overview of Extractocol

between messages; and 3) enables analysis even when apps
use HTTPS, which is especially useful for enterprise secu-
rity applications that decrypt SSL/TLS traffic for enhanced
visibility [13, 14, 67].

An HTTP transaction consists of URI, request data (header,
mime-type and body), request method, and response data.
Our system outputs URI, text, and body signatures using
regular expressions.
Approach: Our key insight in protocol analysis is to track all
objects that eventually go out to or flow in from the network
buffers. To this end, Extractocol identifies and analyzes the
program slices that generate/process protocol messages using
data dependency analysis. In the process, we solve a number
of core challenges for reconstructing program semantics and
protocol-related data flows.

The primary contribution is that it is the first system that
comprehensively extracts protocol messages and behaviors
from Android applications. Our secondary contribution is
its novel application of static taint analysis. In particular,
we apply taint analysis in three different ways to obtain data
dependencies that result from protocol processing. 1 For
tracking protocol-related data flow, we extend FlowDroid [27]
that provides flow-, context-sensitive, and inter-procedural
data flow analysis on Android apps.

3 Extractocol Design
To achieve the end goal, Extractocol performs three tasks: it
1) creates program slices that capture network interaction; 2)
incorporates semantics analysis with data dependency analy-
sis to reconstruct message formats and signatures; and 3) iden-
tifies fine-grained dependencies between protocol messages
by discovering inter-slice dependencies. Figure 2 illustrates
the three components.
Network-aware program slicing: A typical program con-
tains many instructions other than protocol processing. Thus,
Extractocol pre-processes the APK to extract program slices
only related to protocol processing. The goal of this step is to
output program slices that generate HTTP requests and pro-
cess responses. Extractocol extracts all program slices that
encompass the objects that either go out to or flow in from
the network. We name the out-bound data flow as request
slice because it captures the code and objects for constructing
a request, and the in-bound flow as response slice because
it captures the code and objects used for processing a re-

1Taint analysis is used for bi-directional slicing, inter-slice
dependency analysis, and handling asynchronous events as
we describe in §3.

sponse. To obtain these slices, Extractocol employs novel
bidirectional taint analysis (§3.1).
Signature extraction: The second phase takes the request/re-
sponse slices as input and generates message signatures.
Since the program slice captures all objects and operations
that generate a request or process a response, it encodes all
necessary information to extract their signatures. For sig-
nature extraction, Extractocol utilizes semantic models for
commonly used Android and Java APIs for HTTP processing.
It then outputs the request method and signatures for request
URIs and request/response headers and bodies (§3.2).
Message dependency analysis: Finally, Extractocol recon-
structs a complete transaction by pairing a request URI with
its corresponding response. It also infers the relationship
between HTTP transactions. In particular, it infers which
part of request URI or body is potentially derived from prior
responses. The key idea is to identify inter-slice relationships
between the request and response slices. For this, Extractocol
performs novel inter-slice data flow analysis and addresses a
number of issues in handling subtle, but complex inter-slice
dependencies that arise due to code reuse (§3.3).

3.1 Network-aware Program Slicing
Extracting program slices that process protocol messages re-
quires keeping track of all operations on data objects that are
network I/O bound.2 Extractocol applies static taint analysis
to track network-bound information flow. Unlike static taint
analysis whose primary goal is to determine the existence of
data flow from taint sources to sinks, Extractocol must track
all operations on network-bound objects for reconstructing
message signatures. Omitting even a single statement that op-
erates on these objects would result in an inaccurate signature.
We explain how Extractocol achieves this efficiency.
Demarcation points and bi-directional slicing: Because
any object can turn out to be network I/O bound, a naive
use of taint analysis would require keeping track of every
object and its data flow, which is computationally too expen-
sive. Another strawman approach is to carefully select the
taint source and sink objects. For example, taint sink can
be network access objects (e.g., org.apache.http), and
source can be JSON, XML, and URI objects. However, this
approach is not general enough because generic objects (e.g.,
array) can turn out to be network bound.

Instead, our main idea is to start from network access
methods and taint network buffers. For example, if we taint

2We refer to objects as network I/O bound if they either
originate from network messages or eventually go out to the
network.
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Figure 3: Reddit Client (Diode)’s Request & Response slice example

socket buffers, such as socket.getOutputStream()
and socket.getInputStream(), and perform taint prop-
agation, we would be able to track all objects that read from
input or write to output socket buffers. Extractocol applies
this idea to HTTP processing. We taint HTTP request/re-
sponse objects used for HTTP interactions, such as HttpRe-
quest and HttpResponse, as input and output buffers.

Figure 3 shows a code snippet from a reddit client. HTTP
access functions, such as HttpClient.execute(), take
in a HttpRequest object and return a HttpResponse
object. From these statements, Extractocol performs bi-
directional (backward and forward) taint propagation, using
method’s host object, parameters, and return object as the
initial tainted objects. The intuition is that forward taint propa-
gation from these functions would track objects that originate
from the network (e.g., derived from HttpResponse) and
backward tainting would track objects that write to the out-
put buffer, such as HttpRequest. We refer to such HTTP
access functions as demarcation points (DPs) because they
separate the forward and backward program slices.

As shown in Figure 3, forward taint propagation reveals
the data dependency for objects related to response message
processing, and backward tainting relates objects that make
up the URI, request method, and body. Note, the problem is
now reduced to selecting DPs from well-defined Android and
Java APIs, which is much more tractable than tracking all
objects and much more accurate than heuristically selecting

network-bound objects. For this, our semantic model contains
information on commonly used HTTP libraries. To help
program analysis, the semantic model encodes the semantics
of commonly used Android libraries for HTTP processing.

Bi-directional propagation: For high accuracy, the program
slices must contain all operations related to network-bound
objects. To construct such a slice, Extractocol performs
open-ended taint propagation to add all statements that in-
clude tainted objects into the program slice. Forward taint
propagation is handled by FlowDroid’s default tainting rules.
For backward propagation, however, we flip the edge direc-
tion of the control flow graph to inspect the statements in
the reverse order. We then apply inverted taint propagation
rules—we swap the premise and conclusion of the rules for
intra-procedural flows and reverse the taint rules for call and
return flows to follow the inter-procedure graph in a reverse
order. Namely, a tainted LHS (left-hand side) taints RHS
(right-hand side) in an assignment statement, and the taint
information of callee’s arguments is propagated to caller’s
arguments. We trace the tainted objects until it has no more
objects to propagate. In backward taint propagation, an object
is untainted at its definition. In forward taint propagation,
objects destructed at the end of procedures are untainted.

Object-aware augmentation: Although, the resulting for-
ward slice reveals data flow for response processing, one
limitation is that it may not be self-contained. For exam-
ple, if an object used in a forward slice is initialized before



the demarcation point (DP), the slice does not contain the
initialization parameters.

Extractocol augments forward slices with the complete
context of objects contained within. It identifies all objects
within each forward (response) slice and inspects all back-
ward slices that share the same DP. For each statement in
the backward (request) slice, Extractocol checks whether it
has direct dependency with objects in the forward slice. If
so, we include the statement. We repeat the process until no
statements are added. Also, we handle references to resource
objects, such as Android.R, whose values are stored user-
defined files in the APK (e.g., res/values/strings
.xml).

3.2 Signature Extraction
This phase takes each request/response slice as input and
extracts their formats and signatures and compiles them into
regular expressions. It is logically divided into two steps:
1) Extractocol identifies the objects corresponding to URI,
request body, and response body through a semantic analysis;
for each of the three main objects, it obtains a sub-slice that
encompasses statements from the initialization of objects that
influence the main object up to their final use. 2) Extractocol
actually builds a signature for the sub-slice using semantic
models of commonly used Android and Java APIs.
Semantic model: Both steps require program semantic anal-
ysis. For this, Extractocol uses semantic models for a set of
Android and Java APIs that are commonly used for HTTP
protocol processing. The model captures the semantics of
each API’s operations and its parameters. We model meth-
ods and interfaces commonly used for network/HTTP mes-
sage processing. In particular, we model high-level Java and
Android APIs, such as org.apache.http, android.n
et.http, com.android.volley, google-http-j
ava-client, and java.net, and popular third-party HTTP
libraries [17, 65], such as OkHttp, Retrofit, Beefr
amework and rx.android, for identifying HTTP-related
objects, eight commonly used JSON and XML libraries [1],
basic containers, such as Array and List, basic Java/Android
methods often used for protocol processing, and string/byte
manipulation APIs. We also support reflection-based JSON
libraries such as Jackson, gson, and retrofit. We find that our
model is sufficient for modeling many real-world applications
(see §5). To be extensible, we also provide an easy plugin for
adding new API semantics. While we currently employ man-
ually derived API models, we believe that Extractocol can be
extended to automatically infer the semantics of high-level
APIs, as their implementations commonly rely on low-level
string manipulations or socket API calls.
1) Semantics-aware object identification: Using the se-
mantic models, Extractocol identifies the URI object, request
and response body, and the request method. Extractocol then
logically separates the slices by creating a dependency graph
for each of the three objects (URI, request, and response
body), using the information obtained from program slicing.
This process refines the slices for signature building and logi-
cally separates the request slice into two sub-slices: one for
request body and the other for URI generation. Note the URI

sig_pat ::= term | concat(term, term)
| rep{term} | term ∨ term

term ::= constant | struct_str | unknown
struct_str ::= json ( obj ) | xml ( obj )
obj ::= key_value∗

key_value ::= ( key, value )
key ::= constant
value ::= constant | obj | array
constant ::= num integer | str string
array ::= value∗

Figure 4: An intermediate language for signature

slice contains not only the URI, but also the request method
and additional HTTP headers that application uses.
2) Signature building: Extractocol inspects the three sub-
slices to construct their signatures, using the same semantic
model. It processes each statement in order and maintains
data structures to reconstruct data operations encoded in the
slice. For string objects, such as request URIs, query strings,
and text bodies, Extractocol maintains a simple data structure
that keeps track of the string literals and objects being written
to the string object and their relative offsets. For JSON and
XML objects, Extractocol maintains a tree data structure.

For each tainted object, it maintains a signature in the sig-
nature database. When it encounters a statement that updates
tainted objects, it keeps track of the string literals and objects
being written to the tainted object and updates their signa-
tures according to the semantics (e.g., string append or JSON
put). To aid this process, we use an intermediate language to
represent the signature whose simplified form is summarized
in Figure 4. The language encodes objects and operations,
such as string literals, structured strings, concatenation, repe-
tition, disjunctions, and array. Next, we describe the signature
building algorithm in more detail.

Given the program slices, Extractocol inspects each proce-
dure following the inter-procedural data flow encoded in the
program slice. Within a procedure, it performs flow-sensitive
analysis to accurately capture the signatures from all program
flows as it may contain branches. For this, we design a new
algorithm that efficiently traverses the intra-procedural con-
trol flow. Traditional data-flow analysis, such as the worklist
algorithm, uses iterative methods to obtain a fixed-point solu-
tion. For every change, it revisits the statements in the basic
blocks that may be influenced by the change. However, it
is known to be very slow and has scalability issues. To be
more scalable, we leverage the fact that our objective is to
extract signatures for protocol messages and the signatures
can be conservatively expressed in our language. We process
the statements in basic blocks in topological order of the
intra-procedural control flow graph and build the signature
database that maps a variable to its signature for each basic
block. At confluence points, we merge the signature database
from each flow, in the following way. If all the instances of
a variable are well-defined (not unknown) and the conflu-
ence point is not a loop header or latch, Extractocol merges
signatures for the variable with logical disjunction (∨). If
the confluence point is a loop header or latch, Extractocol



identifies the loop variant part of string objects and denotes it
uses rep to mark the part can be repeated in the signature.

Finally, Extractocol converts the signature for URI, request,
and response objects into regular expressions. The regex
format of a variable object is derived from its type (e.g., [0-9]+
for integer variables and .* for string variables). Repetitions
(rep) and disjunctions (∨) are respectively converted into
the Kleene star (*) and | in regular expressions. For JSON
and XML objects, the result are of tree structure whose leaves
are string literals or numbers.
Example: Figure 3 shows an example code for Diode, a
popular open-source browser for Reddit, on Google Play3.
Extractocol’s network-aware program slicing effectively iden-
tifies the request/response slices. The resulting slices only
contain 6.3% of all code, making the signature building pro-
cess very efficient.

Extractocol then builds signatures on the slices. From
HttpClient.execute() (demarcation point in Figure 3),
it identifies a request object, ‘request.’ It also recognizes the
request method, GET, from the object’s initialization (i.e., re-
quest is an HttpGet object). Traversing basic blocks, Extrac-
tocol inspects each statement of the request slice and extracts
nine URIs. It employs API semantic model for String
Builder, org.apache.http.message, and List to
generate signatures for the URIs. Finally, our flow-sensitive
signature building process outputs a regular expression that
combines all nine request URI patterns in Figure 3, one of
which is http://www.reddit.com/search/.json
?q=(.*)&sort=(.*).

3.3 Message Dependency Analysis
Extractocol infers the relationships between messages by
identifying inter-slice dependencies.
Request-response pairing: We now pair the HTTP request
and response messages derived from Extractocol. We use
information flow analysis to identify the response that de-
pends on a given request. For this, Extractocol uses URI
slices as taint source and response slice as sink and performs
taint propagation described in §3.1. However, it is not trivial
because of code reuse. When multiple requests and responses
share a common demarcation point, standard information flow
analysis results in a failure; it identifies multiple responses for
a single request URI. Figure 5 illustrates such an example.

Two requests and two response slices exist for transactions
A and B. Starting from a common method, their paths diverge
into requestA() and requestB(), but soon reconverge
to share a common demarcation point in common2(). Each
box represents a method, and notable code segments are la-
beled with numbers from 1 to 6. Code segments

�� ��1 and
�� ��6

respectively mark the beginning of a request and end of re-
sponse processing for both A and B. As shown in the figure,
using request slices (which includes

�� ��1 ) as the taint source
and response slices (which includes

�� ��6 ) as sink does not
identify a one-to-one relationship. Information flow analysis

3Although Extractocol analyzes Dalvik bytecode in an inter-
mediate language, we show its source code for illustration
purpose.
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Figure 5: Extractocol locates disjoint code segments, be-
tween which only a single path exists.

would discover paths to both A’s and B’s responses from
A’s request (i.e., two paths exist from

�� ��1 to
�� ��6 ). Extracto-

col addresses this problem using a simple intuition: If all
request/response slices are disjoint, one-to-one relationship
would hold between them. Motivated by this, Extractocol
uses disjoint sub-slices (e.g., segments

�� ��2 ,
�� ��3 ,

�� ��4 , and
�� ��5 ) as

input by preprocessing the slices. The information flow anal-
ysis then discovers a path from

�� ��2 to
�� ��3 and another from

�� ��4
to

�� ��5 . Thus, we can pair A’s request with A’s response slice
and not with B’s response slice. However, pairing may not
always be one-to-one in general as there might be a common
response handler for multiple requests.
Inter-transactional dependency: Extractocol also identi-
fies fine-grained dependencies by inferring whether objects
that are derived from a response is used to construct another
request. For this, we identify all objects modified/set as a
result of response processing (i.e., response-originated ob-
jects) during signature extraction. We also track all objects
that make up a request (i.e., request-originating objects). Ex-
tractocol infers potential dependency by checking whether
the set of response-originated objects overlap with the set
of request-originating objects. If they do, we conclude the
two transactions have potential dependencies. To ensure ob-
ject and field sensitivity, we perform object alias analysis
by locating common initialization points between the two
objects that might overlap. We also track dependencies in
field granularity. Extractocol finally outputs which request
fields originate from which response fields, which is useful
for inferring the protocol common usage and future requests.

3.4 Handling Practical Issues and Challenges
To ensure accurate analysis for real-world apps, Extractocol
solves practical challenges in Android program analysis.
Asynchronous events: Asynchronous event handling is very
common in Android programming. For example, in our
dataset, a weather notification app sets its location inside a
callback invoked by a location service. It constructs a part of



query string that contains city names and GPS locations into
a heap object. Later, another event, such as a user click, actu-
ally reads the object to generate an HTTP request. In another
example, a server message sets a sub-URI and a timer event
triggers a request to that URI. Although, this creates an im-
plicit data flow, it is difficult to infer the ordering between two
asynchronous events using static analysis [27]. FlowDroid,
in particular, assumes an arbitrarily ordering of these events.
This results in a failure to identify the dependencies across
these events. In the example above, the dependency between
the first (location service) and second event (user click) is
lost. Thus, the part of query string created by the location
service cannot be identified. Note, dynamic analysis does not
solve the problem either because it is difficult to generate all
asynchronous events (e.g., server push and timers).

To address the problem, Extractocol tracks all objects that
make up a request. For each such object, we identify state-
ments and methods that modify the object (e.g., setter for
the object). We then perform backward taint propagation
(§3.1) from these statements. This identifies the callers of
these functions and the statements that are used to construct
the objects in the first place; e.g., it identifies the callback
function for location service that constructs part of the URI
in the weather app example. In this fashion, we effectively
identify implicit data flows that potentially impact the request.
Our experience shows that, for closed-source apps with rich
UI, this dramatically improves the signature accuracy.
Implicit call flow: Network programming in Android of-
ten involves using thread libraries such as AsyncTask [3],
which introduce implicit call flows. However, existing static
taint analysis tools often do not cover them. A recent study,
EDGEMINER [33], identified 19,647 callbacks, many of
which FlowDroid does not handle. In fact, discovering all
implicit callbacks in Android is an active area of research,
and a number of studies [33, 69] are devoted to addressing
the issue. To enhance the coverage of Extractocol, we add
support for many popular implicit callbacks commonly ob-
served in network operation and HTTP libraries [3, 17, 65],
such as AsyncTask, volley, and retrofit.
Handling obfuscated libraries: Obfuscation is commonly
observed in popular real-world apps. A recent study has
shown that 15% of apps are obfuscated [79]. Many tools,
including Proguard, rename identifiers with semantically ob-
scure names to make reverse engineering more difficult. Ex-
tractocol handles obfuscated application code without any
modifications because identifier renaming does not affect its
operation. However, when library code included in our se-
mantic model is obfuscated, it becomes more challenging
because it requires de-obfuscation. To handle this case, we
pre-process the code to generate a map between the obfus-
cated identifier and the original one. For this, we compare the
signatures of the method contained in our semantic model to
identify the class and method that has the most similar signa-
ture patterns. When there are multiple methods with the same
signature, we look at the decompiled code and look for sim-
ilarity. We find that many real-world apps do not obfuscate
library codes, even when their own code is obfuscated. Note,
similar techniques have been used in other studies for identi-

fying obfuscated ad libraries in Android apps [62]. Alterna-
tively, one can also use advanced de-obfuscation tools [9, 12]
that also handle encrypted strings.

4 Implementation
Our implementation consists of two modules: the data flow
analysis module and the signature generation module. The
data flow analysis module consists of 2,953 lines of Java code
for program slicing and identifying inter-slice dependencies.
For this, we extend FlowDroid, a static taint analysis frame-
work, that identifies whether a path exists from a source of
sensitive information to a taint sink. It builds upon many ex-
isting frameworks such as: Soot, a static analysis framework
that provides the Jimple intermediate representation for Java
and a call graph analysis framework [60]; Dexpler [28] that
converts Dalvik bytecode to Jimple; and IFDS [73] that pro-
vides inter-procedural data flow analysis. We modify Flow-
Droid to find demarcation points and perform bi-directional
tainting when necessary. The current implementation of Ex-
tractocol uses 39 demarcation points from 16 classes and pop-
ular http libraries [17, 65], including org.apache.http,
android.net.http, android.volley, java.net,
android.media, retrofit, BeeFramework, and ok
http. We also support dependencies that occur between
implicit call flows of thread libraries, such as AsyncTask,
Volley, rx.android, Fu tureTask, and Beeframew
ork.

The semantic analysis module consists of 8935 lines of
Java code. It takes as input an abstract syntax tree of program
slices, represented by modified Soot classes. Extractocol
operates at Jimple/Shimple code level, instead of the Dalvik
bytecode.4 For the API semantic model, we build-in a num-
ber of low-level string APIs and generic data types, including
List, Array, and HashMap. Our model also supports the
HTTP(S)-related libraries and eight XML and JSON APIs, in-
cluding org.json, com.google.gson, org.xml, and
com.fasterxml.jackson, and supports reflection-based
nested json serialization.
Discussions and limitations: Extractocol addresses many
first-order issues in analyzing HTTP-based application proto-
cols on Android. However, it currently does not handle direct
use of java.net.socket, automatic modeling of high-
level API semantics, binary protocols over HTTP, Android
intents, and native binary. Some of them are implemention
issues, and Extractocol can be extended to support most of
them. Direct use of socket can be handled by modeling socket
APIs because Extractocol already parses text-based protocols.
API semantics can be automatically inferred by inspecting its
code, similar to how we reconstruct signatures from a model
of low-level string APIs. Parsing binary protocol requires
modeling byte operations. Intents can be also handled by
modeling the implicit control flow it introduces, similar to
how we handle threads. Supporting native code and JNI is
out-of-scope, but more challenging because static analysis

4Jimple is a popular intermediate language based on three
address code (3AC) often used for bytecode optimization.
Shimple only uses the static single assignment (SSA) form.



App Protocol Request URI Request Body/ Response #Pair

GET POST PUT DELETE Query string JSON XML

( Extractocol / Man. UI fuzzing / Source Code)

Adblock Plus HTTPS 2 / 2 / 2 1 / 1 / 1 - - 1 / 1 / 1 - 1 / 1 / 1 1
AnarXiv HTTP 2 / 2 / 2 - - - - - 2 / 2 / 2 2
blippex HTTPS 1 / 1 / 1 - - - - 1 / 1 / 1 - 1
Diaspora WebClient HTTP 1 / 1 / 1 - - - - 1 / 1 / 1 - 1
Diode HTTP(S) 24 / 24 / 24 - - - - 2 / 2 / 2 - 5
iFixIt HTTP 15 / 15 / 15 7 / 7 / 7 - - 3 / 3 / 3 14 / 14 / 14 - 14
Lightning HTTP(S) 2 / 2 / 2 - - - - - 1 / 1 / 1 1
qBittorrent HTTP 3 / 3 / 2 13 / 13 / 2 - - 13 / 13 / 13 3 / 3 / 3 - 3
radio reddit HTTP(S) 3 / 3 / 3 3 / 3 / 3 - - 3 / 3 / 3 4 / 4 / 4 - 4
Reddinator HTTP(S) 3 / 3 / 3 3 / 3 / 3 - - - 6 / 6 / 6 - 6
Twister HTTP - 11 / 11 / 11 - - 11 / 11 / 11 8 / 8 / 8 - 8
TZM HTTPS 2 / 2 / 2 - - - - 1 / 1 / 1 - 1
Wallabag HTTP 1 / 1 / 1 - - - - - 1 / 1 / 1 1
Weather Notification HTTP 2 / 2 / 2 - - - - - 2 / 2 / 2 2

( Extractocol / Man. UI fuzzing / Auto UI fuzzing )

5miles HTTPS 24 / 25 / 0 51 / 12 / 0 - - 16 / 6 / 0 16 / 8 / 0 - 71
AC App for Android HTTP(S) 9 / 9 / 7 15 / 15 / 5 - - 15 / 15 / 15 23 / 23 / 23 - 23
AOL: Mail, News & Video HTTP 9 / 9 / 6 - - - - 9 / 9 / 9 - 9
AccuWeather HTTP 15 / 15 / 0 3 / 3 / 0 - - 3 / 3 / 3 16 /16 / 16 - 16
Buzzfeed HTTP(S) 16 / 5 / 5 12 / 5 / 1 - - 28 / 5 / 5 6 / 5 / 5 - 27
Flipboard HTTPS 23 / 24 / 0 41 / 13 / 0 - - 28 / 13 / 0 8 / 7 / 0 - 63
GEEK HTTPS 0 / 1 / 0 97 / 48 / 18 - - 41 / 48 / 18 11 / 27 / 18 - 97
KAYAK HTTPS 39 / 39 / 15 7 / 7 / 5 - - 7 / 7 / 7 6 / 6 / 6 - 6
Letgo HTTPS 38 / 32 / 10 10 / 14 / 2 2 / 2 / 0 3 / 0 / 0 20 / 14 / 3 18 / 13 / 6 - 40
LinkedIn HTTPS 38 / 42 / 16 49 / 17 / 8 0 / 3 / 0 - 46 / 17 / 14 47 / 21 / 14 - 85
Lucktastic HTTPS 16 / 2 / 0 9 / 15 / 0 2 / 0 / 0 4 / 0 / 0 5 / 15 / 0 19 / 14 / 0 - 31
MusicDownloader HTTPS 3 / 10 / 0 0 / 1 / 0 - - 0 / 1 / 0 4 / 7 / 0 - 2
Offerup HTTPS 33 / 20 / 0 23 / 21 / 0 8 / 1 / 0 3 / 0 / 0 12 / 21 / 0 25 / 16 / 0 - 63
Pandora Radio HTTP(S) 7 / 0 / 0 53 / 20 / 2 - - 53 / 20 / 2 26 / 16 / 2 - 60
Pinterest HTTPS 60 / 62 / 26 36 / 19 / 16 32 / 8 / 3 20 / 10 / 2 88 / 19 /36 236 / 58 / 46 - 148
TED HTTP(S) 16 / 16 / 10 2 / 2 / 1 - - 2 / 2 / 2 10 / 10 / 10 - 10
Tophatter HTTPS 33 / 24 / 0 32 / 14 / 0 1 / 0 / 0 4 / 1 / 0 18 / 14 / 0 32 / 11 / 0 - 62
Tumblr HTTPS 12 / 13 / 15 8 / 5 / 5 - 1 / 1 / 0 5 / 5 / 15 14 / 2 / 14 - 20
WatchESPN HTTP 33 / 33 / 17 - - - - 32 / 32 / 32 - 32
Wish Local HTTPS 0 / 1 / 0 106 / 48 / 21 - - 15 / 15 / 21 28 / 13 / 21 - 106

Table 1: Signatures identified for open-source and closed-source apps (gray box)

on native code is not mature enough for extracting protocols
from realistic native binary [82]. One approach is to use
dynamic analysis on native code [2, 72] to reconstruct the
semantics of JNI.

Finally, our current implementation does not track depen-
dencies across multiple chains of asynchronous events, but
only detects dependencies across on hop. One can perform
multiple iterations until it does not discover new dependen-
cies for better accuracy and wider coverage.

5 Evaluation
Our goal is to provide a comprehensive analysis of individual
applications, rather than a large-scale analysis. Using in-
depth case studies of 14 open-source and 20 closed-source
apps, we demonstrate that the direct output of Extractocol
offers an in-depth analysis of Android applications.

The open source apps were obtained from the open source
app repository (F-Droid) [8] (twelve of them are also avail-
able on Google Play). We select very popular closed-source
apps with 1 million+ downloads that primarily use HTTP
and JSON/XML. We exclude apps that primarily use binary

protocol or use intent based communication to generate proto-
col messages because Extractocol currently does not support
them (§5.3). Most of them are within top 100 in the Google
Play applications category [15].

Our evaluation answers three key questions:
1. Does it provide accurate signatures with wide coverage

for each application? (§5.1)

2. Does it effectively characterize app behaviors? (§5.2)

3. Can it reverse-engineer (private) REST APIs? (§5.3)

5.1 Validation of Protocol Analysis
For open source apps, we disable the heuristics for handling
asynchronous events, but enable it for closed-source apps.
Note, many closed-source apps are obfuscated. For open
source apps, we obfuscate their APKs using ProGuard [24]
and verify that the same results hold as non-obfuscated APKs.
Extractocol takes 4 minutes to analyze an open source app on
average. For closed-source apps, the time varies widely from
11 minutes (for a small app) up to 3 hours (for a large app).
Criteria: A protocol analysis must provide high coverage
by identifying as many HTTP request/response messages as
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Figure 6: Open source (left) / closed-source (right) apps
# signatures

possible. At the same time, its signatures must be logically
equivalent to the operations encoded in the target program
and generate a valid match on actual network traces. We
verify these criteria as well as signature quality.
Coverage: We compare the result of Extractocol with that of
manual fuzzing and automatic fuzzing for closed-source apps.
For open source apps, instead of automatic fuzzing, we obtain
the ground truth by carefully inspecting the source code. For
all apps, we collect traffic traces of all HTTP(S) transactions
using manual UI-fuzzing. Note this often requires manual
interventions, such as signing up and logging in for services.
For automatic fuzzing, we use PUMA, a UI-automation tool
developed for efficient fuzzing.5 We use man-in-the-middle
proxies [19, 23] to capture and decrypt HTTPS messages.
We then match the traffic traces with our regex signatures.

Table 1 shows the number of unique HTTP request/re-
sponse for all apps (e.g., Adblock Plus has two GET and
one POST request, out of which one generates an XML re-
sponse body). For open source apps, the three numbers in
each cell respectively show the results for Extractocol, man-
ual UI fuzzing, source code analysis. For closed-source apps
(gray), they show results for Extractocol, manual UI fuzzing,
automatic UI fuzzing, respectively. Figure 6 shows the to-
tal number of unique URIs, request body/query strings, and
response bodies identified by each methods.

Extractocol generates much more unique message signa-
tures than manual and automatic fuzzing with PUMA. PUMA
fails to recognize custom UI for a number of apps (Table 1)
and stops to explore further. One can add PUMA scripts
to handle custom UIs for each app. However, UI-fuzzing,
including manual fuzzing, fundamentally falls short in provid-
ing wide coverage for two reasons. First, some messages are
not triggered by human-generated events. For example, we
find that some apps trigger APK update requests using timers.
Second, some messages are only triggered by actual “actions”
with side-effects, such as purchasing products or applying
jobs to a company (e.g., LinkedIn). This makes it difficult to
explore all cases without a fake server that acts just like the
original. In fact, many of the top apps (e.g., 5miles, Letgo,
Tophatter, Offerup, Wish Local) are e-commerce/shopping

5Currently, PUMA is the most advanced UI automation tools
for Android apps that are publicly available.
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# keywords

apps where actions, such as payment, delivery, selling and
purchasing products, generate HTTP interactions. Upon in-
specting the signatures that we did not have traffic traces for,
we find that they are related to processing payments, regis-
tering new products for sale, viewing products the user has
sold/purchased, rating products one purchased, and tracking
deliveries.

However, for some apps, Extractocol misses some mes-
sages. This is due to two limitations discussed in §4: 1) some
messages are triggered by intents; and 2) some apps have mul-
tiple chains of dependencies across asynchronous events. We
identified that some ad and analytics libraries extensively use
multiple asynchronous events and intent. Most of the missed
messages stem from the libraries. For example, Luctastic
uses various ad and analytics libraries such as chartboost,
tapjoy, tap-nexus.appspot, vungle, amplitude and adjust.

Finally, Extractocol pairs responses that have bodies pro-
cessed by the apps, and it identified 971 HTTP (request URI-
response body) pairs. We successfully verified that the signa-
tures and the request-response pairs successfully match with
the traffic traces obtained from fuzzing (if present).
Signature validity: For all signatures that have correspond-
ing traffic traces from manual fuzzing, we match them using
a regex matcher. All such signatures generated a valid match
with the actual traffic trace. In sum, Extractocol provides
wide coverage and generates correct signatures.
Logical equivalence: For open-source apps, we verify whether
our regex signature and pairings are logically equivalent to
the source code. We manually inspect the source code of
all 14 open source apps and identify the slices that generate
URI, request query and body and that parse the response. We
then carefully inspect if the signature and pairing is logically
equivalent to the program slice. For example, for request URI,
we manually verify if our URI signature accurately represents
the URI created by the program slice without unneccessary
strings. For a JSON response, we inspect if our signature
accurately represents the JSON tree that the response slice
is trying to parse. We found all signatures were logically
equivalent to the source code.
Signature quality: Note, all regexes that have a correspond-
ing traffic trace generates valid a match with the traffic trace.
Here, we attempt to quantify how many constant keywords
are present in our regex signature of request/response bod-



Request Body/
Query String

Response Body
(Rk, Rv , Rn)

Open-source apps 47/52/1% 7/48/45%

closed-source apps 48/31/21% 16/35/49%

Table 2: Matched byte count % on actual traffic

ies. For this, we compare the number of constant keywords
found in our signature with that in the packet trace obtained
by manual fuzzing. We count the keys in key-value pairs of
query string, JSON bodies, the tags, and attributes in XML
bodies that appear in the traffic trace. For open source apps,
we also obtain the ground truth by counting the number of
constant keywords appeared in the source code.

Figure 7 shows the number of constant keywords identi-
fied. In the request bodies of open-source apps, a total of 145
keywords are identified through manual source code analysis
and manual UI-fuzzing. Extractocol identifies all but one. In
RRD, a JSON key-value pair string is generated from an user
input and stored in a heap object. At a later time, another
event triggers an HTTP request. Because we did not use the
heuristics for open source apps in §3.4, Extractocol cannot
identify implicit dependencies by tracking across multiple
asynchronous events. However, Extractocol successfully cov-
ers this case when the option enabled. For closed-source apps,
the traffic traces from manual fuzzing only contained 3,507
keywords while Extractocol identified 7,793.

We verify the response body signatures in the same way.
For closed-source apps, Extractocol identifies 14K JSON
keys, while traffic contains 13K. But the gap has decreased
from the signature count in Figure 6. This is because re-
sponse bodies contain JSON keys that are often dynamically
generated. For example, a JSON object can contain a list
of products as JSON arrays with key being the product ID
and value being the product name. For open source apps,
responses from the packet traces contain 616 keywords. Ex-
tractocol and manual source code analysis identify 60% of
them. Upon inspecting the source code, we find that some
apps do not inspect all keywords contained in JSON (§3).
Despite this, for open source apps with ground truth, all re-
sponse body signatures were equivalent to the source code.

To further quantify the signature quality, we count the num-
ber of bytes that matches with the constant and wildcard of
our regex in request body/query string a nd response bod-
ies. Rk and Rv respectively denote the fraction of matched
byte count on the constant keywords and the corresponding
value parts of our signature (often wildcards). Rn is the frac-
tion of byte count that whose key and values are both wild
cards. Table 2 shows the overall fraction of byte count. For
open-source apps, 70% bytes of request URIs match with the
constant part of our signature (indicated by Rk), and 65%
bytes match in closed-source apps. For query strings and
request bodies, 100% (Rk + Rv) of all bytes for open-source
apps and 91% for closed-source apps match with key-value
pairs identified by Extractocol. The rest of 9% (Rn) is cov-
ered by the wildcard part of our regex signature. For response
body in open-source and closed-source apps, 55% and 51%

of bytes match with them respectively, and the rest is covered
by wildcards in our regex.

5.2 Characterization of App Behavior
To demonstrate Extractocol’s effectiveness in characteriz-
ing app’s protocol behavior, we present analysis result in
greater detail for TED and radio reddit [20] that perform
media streaming.
TED is one of the “Best Apps of 2014” on Google Play.
We choose this app because it provides rich UI, contains
dynamically generated pages including advertisements, and
uses third-party libraries, such as the Facebook API.

Extractocol identifies 18 HTTP(S) request and 10 response
body signatures (8 responses have no bodies that are pro-
cessed by the app). Table 4 summarizes notable transac-
tions and their relationships with dependency graph iden-
tified by Extractocol. Requests for transaction #1, #3 and
#6 use constant string with an api-key, which is stored in
android.content.res.Resourcesclass. It pro-
cesses their JSON responses and then inserts (or updates if
exists) them into a database (android.database.sqli
te.SQLiteDatabase).
Transaction #1 and #6 show their update operations, and these
updated values are later processed in transaction #7 and #8 for
their requests, respectively (Thumbnail URI and Audio/video
URI columns of the database). Meanwhile, after parsing
JSON responses from transaction #3, transaction #4 retrieves
an advertisement URI string, which is then processed for
transaction #4’s request without database updates. In the
same manner, transaction #5 obtains advertisement video
URLs for requesting advertisement video streams. Since Ex-
tractocol provides Android resource and database semantics,
if a data dependency exists between transactions and seman-
tic models such as resources and databases, we are able to
identify these transactional relationships. To verify the result
with real network traces, we execute TED using PUMA [54],
a state-of-the-art automated UI testing tool. Note our sys-
tem and PUMA have different goals. PUMA merely iterates
through all “clickable” elements in the UI to generate all
protocol messages, but does not identify the relationship be-
tween protocol messages unlike ours. PUMA generated a
total of 158 HTTP(S) requests. PUMA took 10.3 minutes
and Extractocol took 132.5 minutes to complete.

For easy comparison, first we manually group the request
URIs into unique patterns. We identify 65 unique URI pat-
terns; URIs in each pattern shared either prefix or postfix.
Next, since multiple dynamic traces can map to a single sig-
nature, we manually classify each trace into static or dynamic.
If all of the URI string are found in a prior response, we clas-
sify the request as dynamic. If any part of the URI (delimited
by slash) matches with strings in the decompiled APK, we
classify it as static. For dynamic requests, we identify their
origin (i.e., sources of their dynamic URI).

Using the dataset, we test whether the request URIs and
responses obtained from PUMA matches with our signatures,
and our transactional relationships match network traffics
generated by PUMA. All signatures match with their cor-
responding traffic traces, and all transactional relationships



HTTP$Response$Body$$
[{#“all_listeners”:”99999”,#“listeners”:”13586”,#“online”:”TRUE”,##
##“playlist”:”hiphop”,##
##“relay”:”http://cdn.audiopump.co/radioreddit/hiphop_mp3_128k”,##
##“songs”:{#“song”:[{#
####“album”:#“”,#“artist”:#“stirus”,#“download_url”:#…(omitted),#
####“genre”:#“HipKHop”,#“id”:#“837”,#“preview_url”:#…(omitted),#
####“reddit_title”:#“stirus(\/u\/sonus)#–#Surviving#Minds”,#
####“reddit_url”:#…(omitted),#“redditor”:#“sonus”,##
####“score”:#“6”,#“title”:#“Surviving#Minds”#}]}#
}]#

HTTP$Response$URI$
GET$http://www.radioreddit.com/api/hiphop/status.json$

Figure 8: Traffic trace for RRD transaction #2

also match with their corresponding network traffic traces.
Surprisingly, Extractocol identified more than 4 transactions
than PUMA did. For example, PUMA did not identify a
request triggered in response to content updates, triggered
by the server. Such externally triggered events are hard to
reproduce using dynamic analysis.
Radio reddit (RR) is an online music streaming client that
allows users to choose radio stations and vote on or save
songs using their reddit accounts. Table 3 shows the result
for RR with six transactions; five of them use HTTP, while
login request uses HTTPS. It also shows a dependency graph
identified by Extractocol. Extractocol identifies that login
request (#3) includes three fields, and its response is a JSON
object including “modhash” and “cookie” as keys. The two
fields in login response (#3) are used in #4’s and #5’s requests.
They use the “modhash” value in the “uh” field, and add the
“cookie” value to their request headers. We verify that the
identified information accurately corresponds to reddit’s API
documentation Extractocol identified the exact API subset
that is actually used by the app. It even identified a hidden
API not discussed in the official document [66].

Figure 8 shows the actual traffic trace of transaction #2
with constant keywords highlighted from our regex represent-
ing the JSON’s tree structure. The URI signature contains
all strings in the URI except “api/hiphop” which is obtained
via user input. The response regex signature contains 16
keywords out of 18 in the response; two keywords (“album”
and “score”) are not processed by the app. The app then
passes the station’s “relay” URI (Figure 8) to Android’s Me-
diaPlayer, which generates transaction #6.

5.3 Reverse-Engineering
Manual reverse-engineering attempts use packet traces to an-
alyze popular REST APIs [22, 25, 42, 43, 74, 83]. We use
Kayak to demonstrate Extractocol’s practical usefulness in
reverse-engineering the API syntax. Kayak API is a private
REST API used by Kayak.com, a popular fare comparison
web site. Its API used to be public, but its service was re-
cently discontinued [22], and a repurposed private API was
introduced. We compare our analysis results with a manual
analysis result in [22], which lists three APIs related to flight
fare comparison.

We only scope the analysis to com.kayak classes exclud-
ing the external libraries to focus on its API. Extractocol iden-
tifies a total of 46 HTTP(S) transactions, including 39 GET

and 7 POST requests, 6 JSON responses, and other responses
(e.g., text and images). It identifies all three APIs from prior
manual analysis [22]. Additionally, Extractocol reveals 14
times more APIs in just 31 minutes. It also identifies the use
of app-specific HTTP header, “User-Agent : kayakandroid-
phone/8.1”. Table 5 shows a summary of requests grouped
into eight categories by their URI prefix. Table 6 shows three
selected APIs from the results, demonstrating that Extracto-
col identifies URIs and query strings used by the app.

To verify the results, we implement a simple Python script
code (73 LOC) that generates HTTPS requests for flight fare
comparison (Table 6) based on our signatures. It first sends
a ‘/k/authajax’ request to start a new session using the app-
specific ‘User-Agent’ field. It then sends ‘/flight/start’ and
‘/flight/poll’ requests. We verify that it successfully retrieves
flight fare information. We find that the APIs are slightly
different from [22] due to the difference in platform (e.g., ‘ac-
tion=registerandroid’ for ‘/k/authajax’). We also find that the
‘User-Agent’ header that we identified is important because
Kayak performs access control using the header to prevent
unauthorized access from other platforms.
Summary: Extractocol presents the first automatic and com-
prehensive protocol analysis for Android apps. It provides
higher coverage than dynamic fuzzing and even manual
fuzzing. We demonstrate the combination of signature ex-
traction, pairing, and dependency analysis produces a rich
characterization. We believe the rich information it provides
is valuable to a number of potential applications, including
understanding apps, app testing, and reverse-engineering. In
fact, Extractocol has been already used to build application
acceleration proxies for mobile apps [35].
Discussions: Our evaluation provides a comprehensive analy-
sis of a small number of applications, rather than a large-scale
analysis. Although Extractocol provides automatic analysis,
large-scale evaluation is still challenging because verifying
the result requires manual analysis of signatures and their de-
pendencies takes a long time since most apps are obfuscated.
Note, even generating all protocol messages requires manual
intervention due to limitations in UI-automation (§5.1). Sec-
ond, Extractocol does not support binary protocols and its
support for implicit callbacks is not complete (§3.4). Finally,
to handle obfuscated 3rd party libraries, Extractocol pre-
processes the code to generate a map between the obfuscated
identifier using heuristics (§3.4). However, if the mapping is
inaccurate, Extractocol may not be able to identify the correct
semantics and may generate wild card (“*”) signatures in-
stead of accurate ones. We expect that the limitations can be
overcome by incorporating it with techniques [9, 12, 33, 62]
discussed in §3.4.

6 Related Work
This work builds on a large body of work that performs
automated program analysis for Android applications. An
earlier poster version of this work can be found in [36].
Android program analysis: Prior work on Android program
analysis focuses on discovering privacy-sensitive information
leakage [27, 34, 46, 51, 53, 57, 63, 69, 81, 86, 87], identifying



# Request URI Request Body Dependency graph

1 GET (http://www.reddit.com/api/info.json?) -
1 2

6

3

4 5

modhash : <hash value>
cookie : <cookie value>
need_https : boolean

JSON Response

Transaction #1

POST cookie : <cookie value>

id = fullname
uh = <hash value>

POST cookie : <cookie value>

id = fullname
uh = <hash value>
dir = vote direction

Transaction #3

Transaction #4
Transaction #5

Transaction #2

relay : <URI>
listeners : numeric value
playlist : string value
(see figure 4)

JSON Response

GET <URI>

GETPOST

Transaction #6

2 GET
(http://www.radioreddit.com/)(status.json) -

3 POST (https://ssl.reddit.com/api/login) (user=).*(&passwd=)
(&api_type=json)

4 POST
(http://www.reddit.com/api/)(unsave | save) (id=).*(&uh=)(.*)

5 POST (http://www.reddit.com/api/vote) (id=).*(&dir=).*(&uh=)(.*)

6 GET (.*) (.*)

Table 3: Reconstructed HTTP transactions and their dependency graph for Radio reddit

# Request (Static/Dynamically-derived URI) Response Dependency graph

1 Speaker’s info (S)
JSON
name/description
inserted to DB android.content.res.Resource

1 2 3

4

5

6

7 8

android.database.sqlite.SQLiteDatabse

<Transaction #1>
GET (https://app-api.ted.com/v1/
speakers.json?limit=2000&api-key=)
(.*)(&filter=updated_at:%3E)(.*)

<Transaction #2>

GET (https://app-api.ted.com/v1/talks/)(.*)
(/android_ad.json?api-key=)(.*)

<Transaction #3>

JSON Response

GET <AD query URI>

<Transaction #4>

XML Response

GET <AD video URI>

<Transaction #5>
GET (.*)
<Transaction #7>

Thumbnail URI

GET (.*)
<Transaction #8>

Audio/video URI

<Ad query URI>

GET (https://app-api.ted.com/v1/
talk_catalogs/android_v1.json?api-key=)(.*)
(&fields=duration_in_seconds&filter=id:)(.*)

<Transaction #6> <Ad video URI>

api-key: <TED Api Key>

JSON Response
SQLiteDatabase.update()

GET (https://graph.facebook.com/me/
photos)

2 Facebook sharing (S) String

3 Advertisement query (S) JSON
Ad query URI

4 GET (.*): Ad query URI from #3 (D) XML
Ad resource URIs

5 GET (.*): Ad video URI from #4 (D) Binary

6 Talk info (S)
JSON
thumbnail/video URIs
inserted to DB

7 GET (.*): Thumbnail URI from DB (D) Binary

8 GET (.*): Audio/video URI from DB (D) Binary

Table 4: Selected HTTP transactions and its dependency graph for TED

application misbehaviors [45, 55, 76], or providing privilege
separation for apps [50].

Taint analysis tracks information flows to reveal unin-
tended information leakage. TaintDroid [46] performs real-
time dynamic taint analysis to detect privacy-sensitive in-
formation leakage on Android. While it is more accurate
(i.e., low false positives) than static program analysis, achiev-
ing high coverage for ahead-of-time analysis is an important
challenge. To overcome this, many studies employ static
analysis [27, 51, 86]. These studies commonly reconstruct
the inter-procedural control flow graph (ICFG) by modeling
Android app’s life-cycle. By analyzing the ICFG and data de-
pendencies, they identify whether a path exists from a source
of sensitive information to a taint sink (usually a network
interface). In this work, we leverage FlowDroid [27] to recon-
struct the ICGF and use data dependencies in three different
ways for protocol analysis. Finally, CryptoLint [45] detects
the misuse of cryptographic libraries using static program
slicing. SMV-Hunter [76] identifies Android applications
that fail to properly validate SSL certificates. Fratantonio et
al. [50] use symbolic execution to enable finer-grained access
controls in Android applications.

Finger-printing Android app traffic: FLOWR [84, 85]
tries to classify mobile app traffic by extracting key-value
pairs from HTTP sessions. NetworkProfiler [41] uses UI-
based fuzzing on Android apps to build a comprehensive
network trace. The main focus is to generate network traffic
and extract unique finger-prints, rather than protocol analysis.

A large body of work addresses protocol analysis for con-
ventional, non-mobile applications. We describe them below.

Protocol analysis using network traces: Many studies [26,
29, 38, 39, 49, 58, 59, 78, 80, 84] use traffic traces as input to
derive application protocol information, such as protocol syn-
tax and state machine. Discoverer [38] infers message format
to derive application protocol syntax, and ASAP [58] uses
machine learning to extract typical communication signatures
and their semantics. RolePlayer [39] and ScripGen [59] sup-
port automatic protocol replay by reconstructing one side
of an application session in different contexts by adjusting
protocol fields, such as ports, cookies, and sequence numbers.
However, this approach inherently relies on pattern inference
which is less accurate [30] than program semantic analysis
and cannot handle encrypted messages. Also, a common
limitation of the approach is that obtaining a sufficient size



Cat. Method URI Prefix # APIs Example Sub URI Response

Travel Planner GET https://www.kayak.com/trips/v2 11 /edit/trip/ -
Authentication POST https://www.kayak.com/k/authajax 4 - -
Facebook Auth POST https://www.kayak.com/k/run/fbauth 2 /login -
Flight GET https://www.kayak.com/api/search/V8/ 6 /flight/start JSON
Hotel GET https://www.kayak.com/api/search/V8/ 2 /hotel/detail JSON
Car GET https://www.kayak.com/api/search/V8/ 1 /car/poll JSON
Mobile Specific GET https://www.kayak.com/h/mobileapis 12 /currency/allRates JSON
Advertising GET https://www.kayak.com/s/mobileads 1 - JSON
Etc. POST https://www.kayak.com/k 4 /cookie -

Table 5: A summary of Kayak API analysis results

Sub URIs Query String

/k/authajax action=registerandroid&uuid=.*&hash=.*&model=.*
&platform=android&os=.*&locale=.*&tz=.*

/api/search
/V8/flight/start

cabin=.*&travelers=.*&origin=.*&nearbyO.*=.*
&destination.*=.* &nearbyD.*=.*&depart_date.*=.*
&depart_time.*=.*&depart_date_flex.*=.* &_sid_=.*

/api/search
/V8/flight/poll

searchid=.*&nc=.*&c=.*&s=.*&d=up&currency=.*
&includeopaques=true &includeSplit=false

Table 6: Selected Request Signatures for Kayak

of input that exhaustively contains protocol messages is hard
especially due to highly skewed message popularity [38].
Protocol analysis using program analysis: Many studies
identify application network protocol using program anal-
ysis [30–32, 37, 40, 56, 61, 82]. The majority of program
analysis techniques [30–32, 37, 40, 61, 82] use dynamic anal-
ysis as primary means to extract protocol information with
different goals. Dispatcher [30] reverse engineers a botnet’s
command-and-control (C&C) protocol to actively rewrite
C&C messages. Replayer [68] and Rosetta [31] focus on re-
playing application dialogs, while others [32, 37, 40, 61] aim
for identifying protocol fields within a message. Prospex [37]
extracts full protocol specification including the state ma-
chine. These approaches take protocol messages as input to
generate execution traces, use heuristics to decide the field
boundary within the message by inspecting the execution
traces, and generalize the observation using various inference
techniques to infer a generic message format and protocol
state. The limitations of dynamic approaches are that 1) they
only identify limited information, such as the field or de-
limiters (i.e., the goal is output fields similar to that used in
Wireshark); 2) can only analyze one-side of communication
(i.e., can only infer the format of received message) 6; 3)
require the input messages to exhaustively cover all message
types; 4) require multiple messages instances per type for
inferring general protocol format [37, 40, 61, 82]; and 5) rely
on pattern inference for reconstructing client protocol state
machine. In contrast, Extractocol provides richer behavioral
information. To our best knowledge, it is the first to provide
such in-depth behavior analysis. Finally, StateAlyzr [56]
6Analyzing both sides requires combining server and client
analysis. However, existing work falls short in analyzing two-
way communication. For Android apps, the server binary is
often unavailable.

applies static analysis techniques to automatically identify
states that need to be transferred when replicating middlebox
states across virtualized network function instances. It takes
middlebox application code to identify all state that must
be migrated/cloned to ensure consistent middlebox output
in the face of redistribution/cloning. It also uses program-
slicing technique to derive the dependencies between state
objects and packet processing logic in the source code of
middlebox applications. In terms of techniques used, the two
main differences between StateAlyzr and Extractocol are: (1)
our framework operates on binary whereas StateAlyzr takes
source code as input, and (2) Extractocol not only extracts
slices but it extracts their semantics to reconstruct protocol
messages.

7 Conclusions
This work presents the first system for automatic analysis
of HTTP(S)-based application protocol behaviors for An-
droid apps. Extractocol uses the application binary as input
to reconstruct application-specific HTTP-based interactions
using static program analysis. It combines network-aware
static taint analysis and semantic analysis to provide a com-
prehensive characterization of application protocol behav-
iors. Extractocol provides a rich analysis of app behaviors,
including message signatures, request-response pairs, and
inter-transactional dependencies. We expect that this pro-
vides valuable information for many applications [35]. Our
in-depth evaluation on open-source and closed-source apps
demonstrate that 1) it provides high coverage and accuracy in
identifying protocol messages; 2) it provides rich characteri-
zation of app behavior; 3) it is capable of reverse-engineering
REST APIs; and 4) it can automatically analyze many ap-
plications. Finally, we believe Extractocol and its approach
can serve as a basis for generic protocol analysis (other than
HTTP) for Android applications.
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