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Abstract

Sensors and actuators are essential components of cyber-
physical systems. They establish the bridge between cy-
ber systems and the real world, enabling these systems to
appropriately react to external stimuli. Among the vari-
ous types of sensors, active sensors are particularly well
suited to remote sensing applications, and are widely
adopted for many safety critical systems such as auto-
mobiles, unmanned aerial vehicles, and medical devices.
However, active sensors are vulnerable to spoofing at-
tacks, despite their critical role in such systems. They
cannot adopt conventional challenge-response authenti-
cation procedures with the object of measurement, be-
cause they cannot determine the response signal in ad-
vance, and their emitted signal is transparently delivered
to the attacker as well.

Recently, PyCRA, a physical challenge-response au-
thentication scheme for active sensor spoofing detection
has been proposed. Although it is claimed to be both ro-
bust and generalizable, we discovered a fundamental vul-
nerability that allows an attacker to circumvent detection.
In this paper, we show that PyCRA can be completely
bypassed, both by theoretical analysis and by real-world
experiment. For the experiment, we implemented au-
thentication mechanism of PyCRA on a real-world med-
ical drop counter, and successfully bypassed it, with only
a low-cost microcontroller and a couple of crude electri-
cal components. This shows that there is currently no ef-
fective robust and generalizable defense scheme against
active sensor spoofing attacks.

1 Introduction

Sensors observe environments by measuring physical
quantities and converting them to electrical signals, typ-
ically used for automation in sensing and actuation sys-
tems, such as self-driving cars and drones. In a sensing
and actuation system, a processor uses the output data

from the sensor to control system actuators. For exam-
ple, gyroscopes and accelerometers measure angular ve-
locities and accelerations to determine the position and
direction of a drone system. In addition, radars and lidars
gauge distances by calculating time differences between
an emitted signal and its echo.

To ensure the correct operation of sensing and actua-
tion systems, sensing systems, composed of sensors and
environment characterization algorithms using the out-
put of those sensors must be robust not only against the
various naturally arising sources of noise and errors but
also against the intentional fabrication of environments,
such as sensor spoofing attacks. However, most devel-
opers of sensing systems have considered only natural
disturbances or errors originating from the environment,
and intentional attacks by adversaries have been largely
ignored. Therefore, it is important to devise defense
schemes that can protect sensors against such intentional
fabrication. Such defense schemes should be robust with
the guarantee that the attacker cannot bypass them. Fur-
thermore, the universality of such defensive measures
is also important because defense schemes that depend
on the characteristics of a specific type of sensor cannot
be applied to sensors without them. Lastly, the cost for
such defenses should be in a reasonable range. Even if a
scheme is both robust and universal, impractical cost that
requires far more resources than the sensing function it-
self cannot be taken seriously by manufactures.

Shoukry et al. introduced PyCRA [27], an authentica-
tion scheme to detect spoofing attacks against active sen-
sors, based on an analog challenge and response mech-
anism at the 2015 ACM CCS, which is the only work
claimed to be robust and generalizable. Active sensors
are a special type of sensors that emit physical signals
and listen to echoes or variations of the transmitted signal
to measure the target. The basic idea of PyCRA is that
spoofing attempts can be detected if an active sensor re-
ceives an echo when no signal has been transmitted for a
random amount of time. Attackers cannot impersonate a



legitimate challenge and response process, because they
cannot predict when the challenge will be transmitted.
As a result, a nonzero delay lower bounded by the phys-
ical delay of the attacker will always accompany their
responses to challenges.

Despite this, we discovered a fundamental vulnerabil-
ity of PyCRA, and designed new attacks exploiting this
vulnerability and verified the result both analytically and
experimentally. Analytically, we show that PyCRA re-
duces to a race of sampling rate between the attacker
and the victim, unless the victim’s sampling rate is high
enough to detect the fundamental physical delay of the
attacker. We further derive a sufficient condition for the
attacker to avoid detection. We also show experimentally
that a victim’s sampling rate of over 350 kHz can be eas-
ily bypassed by an attacker, even with a low-cost micro-
controller and crude additional circuitries 1. Existence of
our attack shows that design of robust and generalizable
defense mechanism for active sensors remains as an open
problem. Finally, we discuss several anti-spoofing mea-
sures for active sensors, and also examine their own lim-
itations to becoming a robust and universal active sensor
spoofing defense. In summary, the main contributions of
this research are as follows:

• We analyze the security of PyCRA in theory, and de-
rive a sufficient bound for attack success.

• We experimentally prove that these limitations can be
exploited in practice with low-cost hardware.

The rest of this paper is organized as follows: Sec-
tion 2 provides background concerning active sensors,
sensor spoofing, various defense forms against active
sensor spoofing, and the PyCRA authentication mech-
anism. Section 3 describes the attack model for sensor
spoofing detection. Our analysis and experiments ad-
dressing the limitations of PyCRA are described in sec-
tions 4 and 5, respectively. We discuss other spoofing de-
fense approaches for active sensors and their limitations
in Section 6, and related works in Section 7. Section 8
concludes the paper.

2 Background

In this section, we explain the definition and classifica-
tion of active sensors, and review previous sensing at-
tacks on active sensors. A few defense mechanisms for
sensor spoofing attacks follow, with PyCRA as an exam-
ple detection mechanism.

1In PyCRA, the authors used 30 kHz of sampling rate for their ex-
periment, and stated that the range of 200 kHz is considered to be
a sampling rate for high-end microcontrollers. Our experiment uses
worse condition for attackers from the perspective of PyCRA.

Figure 1: Three attack vectors for sensor systems

2.1 Active Sensor

Sensors can be categorized into passive and active ones,
depending on the mechanism they use to measure the en-
vironment. Passive sensors simply receive natural emis-
sions from the surroundings. Owing to the energy atten-
uation to be measured, they are generally used for rel-
atively short-distance applications. For example, typi-
cal passive sensors such as gas, ambient light, and pres-
sure sensors can measure physical quantities only in their
vicinity. In contrast, active sensors have emitters to
transmit physical signals, and passive sensors (receivers)
to receive the response of the measured entity (via the
channels between emitters and receivers). They measure
physical quantities based on the difference between the
emitted and received signals.

Although active sensors tend to be more complex, they
are generally more effective. First, they can selectively
amplify signals from the objects of interest by illuminat-
ing them with their emitters. With this property, they
can even measure objects that cannot be measured by
only receiving ambient signals. Similarly, active sensors
can suppress the noise power to maximize the signal-
to-noise ratio, and measure objects of interest even in
a noisy environment. Second, because the transmitted
signal is well known, they can extract more informa-
tion of the received signal by comparing the transmit-
ted and received signals. For example, radars, lidars, and
sonars gauge distances to objects by comparing transmit-
ted signals (radio waves, light, and acoustic waves) and
received their echoes, which would not be possible un-
less the sensor fully recognizes the transmitted signal.

2.2 Sensor Spoofing

Sensor spoofing refers to the injection of a malicious sig-
nal into the victim sensor, so that the victim believes
the injected signal to be legitimate. This can be ac-
complished using various attack vectors, according to the
type and characteristics of the victim sensor.

Attack Vectors for Sensor Spoofing Sensor spoofing
can be categorized by the particular channel exploited.
As shown in Figure 1, there are three major channels ex-
posed to spoofing attacks. The first one is called the reg-
ular channel, and is the very physical interface the victim
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sensor depends on. For example, the regular channel for
ambient light sensors is light.

The second one is the transmission channel. Sensors
generally do not operate isolated; their output is typically
used to support higher-level functions. Therefore, the
sensor output must be transmitted to the remainder of
the system via transmission channels. Such transmission
channels can assume various forms: wired/wireless, and
analog/digital. Sometimes, however, these transmission
channels can be influenced by external physical stimuli,
an effect by which this attack vector is anchored. For
example, Foo Kune et al. [14] succeeded in injecting a
voice waveform into a Bluetooth headset by intentional
EMI in the wire connecting the microphone with the re-
mainder of the system. As a result, the injected voice
waveform was treated as if it had been a real voice, even
though there was no sound nearby.

The last one is called the side channel. Every sensor
comprises a transducer, to translate the physical signal of
interest into another type of signal (generally electric).
Sometimes, transducers are affected by physical stimuli
other than those they are supposed to sense. We call such
paths side channels. For instance, the internal structures
of MEMS gyroscopes are known to be affected not only
by movement but also by acoustic noise [4, 6, 7]. Son et
al. [28] exploited this property to incapacitate a drone.

All three aforementioned attack vectors have identical
outcomes: modification of the sensor output. Further-
more, owing to structural limitations, the victim sensors
cannot distinguish the legitimate input and the deceiv-
ing input given via these attack vectors. This leaves the
detection of spoofing attacks entirely up to the system
behind the sensor. Therefore, attackers can exploit any
of these vectors to spoof the victim sensor output.

Active Sensor Spoofing via the Regular Channel Of
the three attack vectors, active sensors are more prone to
be exposed to regular-channel attacks, especially when
they are used in remote sensing applications. In such ap-
plications, the channel connecting emitters and receivers
is publicly exposed, and attackers can freely access it.
Furthermore, to maximize sensitivity, these sensors gen-
erally use directional receivers, oriented toward the di-
rection of the incoming echoes of the transmitted sig-
nal. This allows attackers to easily infer the most effec-
tive attack direction. Consequently, without any defense
mechanisms, attackers can easily influence the victim’s
input signal without any authentication or authorization
by simply generating the same type of physical quantities
used by the victim sensor.

2.3 Defense Categorization
We consider that defenses for sensor spoofing attacks
generically fall into one of the following categories:

Spoofing Detection In this type of defense, the defender
can detect the malicious deceiving signal. However, the
sensor still remains vulnerable to the spoofing attack.
Once the defender detects a spoofing attempt, it can acti-
vate its defensive measures.

Signal Integrity In contrast to Spoofing Detection, this
type of defense cannot detect spoofing attempts. How-
ever, it is resilient against spoofing attacks.

Signal Recovery In this type of defense, the defender
identifies the spoofing signal in the received waveform,
and removes it. Although it is the most difficult to
achieve, this type of defense is the most complete form
of defense against sensor spoofing attacks, encompassing
both Spoofing Detection and Signal Integrity.

2.4 Concept of PyCRA
PyCRA was devised as a generalizable regular-channel
active sensor spoofing detection and recovery scheme,
which falls into the categories of Spoofing Detection
and Signal Recovery. We focus on bypassing detection
mechanism only, because its signal recovery process has
no effect when the attacker can avoid detection.

To detect spoofing attempts, PyCRA sets several traps
to identify ongoing spoofing attempts: a simple detector,
a confusion phase, and a χ2 detector. The simple detec-
tor [27, § 3.1] is the most basic detector, based on the
fundamental idea of PyCRA. The confusion phase [27,
§ 3.2] is an additional trap, devised to make spoofing
more difficult. Lastly, the χ2 detector [27, § 3.4] is a
more advanced detector, designed to identify spoofing
attempts during the transition time. We briefly introduce
them here, to show how PyCRA works.

Simple Detector On active sensors equipped with simple
detectors, the emitter signal is turned off at random in-
stants to verify the existence of any spoofers. Right after
the emitter is turned off, the receiver carefully monitors
the intensity of incoming signals. If there are no spoofing
attempts, it will receive nothing. Any spoofing attempts
will appear at the receiver with nontrivial signal inten-
sity, because the attacker cannot predict the instant of the
random challenge. In other words, no matter how fast the
attacker responds, a nonzero physical delay in turning off
the spoofing signal is unavoidable. As a result, spoof-
ing attempts can be detected under following conditions.
First, the physical delay of the attacker is long enough so
that the attacker cannot turn the spoofing signal off even
before the transition time finishes. Second, the victim
sensor has sufficient time precision to detect the minute
interval of nonzero signal during the attacker’s physical
delay. Finally, if the victim sensor is digital, its sampling
interval is shorter than the physical delay of the attacker.

Confusion Phase The confusion phase is an additional
trap to confuse the attacker. When challenging, the vic-
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tim sensor’s transmitted power is first lowered to a level
that slightly exceeds the noise level; this is called the
confusion phase. It lasts a random period, and after that
period, the emitter signal is completely turned off and en-
ters the silent phase. If the attacker continues to spoof the
victim even after the confusion phase starts, there will be
a nonzero probability that the attacker misses the change
in the emitter signal, which results in the detection of the
spoofing attempt. We note here that the confusion phase
concept assumes the attacker will not stop spoofing dur-
ing the confusion phase. We will later discuss if it is
possible to bypass this mechanism (Section 4.2).
χ2 Detector The main limitation of the simple detector
is that it does not consider the case when the attacker
has comparably shorter transition time than the victim.
The χ2 detector tries to solve this by adopting the mathe-
matically modeled dynamic characteristics of the victim.
The main idea of this detector is explained below, using a
modified version of the mathematical expressions, with-
out the loss of significant ideas from the original.

First, an accurate sensor model should be acquired, so
that the real input and output signals of the victim sensor
can be modeled as in Eq. (1).

x(t +δ ) = f (x(t))+w(t) (1a)
y(t) = h(x(t))+ v(t) (1b)

Here, x(t) and y(t) denote the transmitted and received
signals of the victim sensor, respectively. Note that x(t)
includes the random challenges (i.e., output modulation),
and x(t + δ ) represents the next emitter output immedi-
ately after x(t). f and h are precisely modeled transi-
tion functions, where f determines how x(t) evolves over
time, and h denotes the input-output transfer function of
the sensor. w(t) and v(t) are mismatch terms, responsible
for filling up the gap between modeling and reality.

Apart from real values, we can derive the estimated
emitter signal, x̂(t) from the modeling by solving x̂(t +
δ ) = f (x̂(t)), and ŷ(t) as h(x̂(t)). The residual denoting
difference between estimation and measurement is de-
rived as z(t) = y(t)− ŷ(t). Based on these notations, the
χ2 detector operate as follows.

1. Select a random instant: tchallenge, and a random time
period: tcon f usion.

2. Start entering the confusion phase at tchallenge, and
completely turn off the emitter after tcon f usion.

3. Measure how much the real output deviates from the
estimation by deriving the sum of squared residuals:

g(t) =
1
T

∫ t

τ=t−T
z2(τ)dτ (2)

where T is a preset time interval whose duration is
equal to the transition time of the victim, and t is the
instant the victim emitter completely turns off.

4. Alert when g(t) exceeds a preset alarm threshold.

3 Attack Model

In our attack model, attackers attempt to spoof the reg-
ular channel through the same physical media sensed by
the victim sensor, while the defender tries to detect or
incapacitate those spoofing attempts.

3.1 Victim System
We assume the following victim system:

• The victim system is an active sensor system com-
posed of an emitter and a receiver.

• Neither the emitter nor the receiver can be shielded
from the external environment to ensure correct oper-
ation.

• Although the sensor output is analog, it will be sam-
pled and quantized into digital form.

• The victim system may adopt a regular-channel spoof-
ing detection system (e.g., PyCRA) to detect spoofing
attacks against it.

The second assumption encompasses the case when the
location of the measured entity relative to the sensor is
not fixed, as is the case in radars or sonars. The third
assumption is required to take the sampling rate into
consideration. In purely analog systems, the equiva-
lent sampling rate is infinite, and comparing the sam-
pling rates of the attacker and the victim system becomes
pointless. However, in modern cyber-physical systems,
analog-digital systems are dominant because implement-
ing complex functions is much more difficult without the
aid of digital processors.

3.2 Capabilities of Attackers
Based on the characteristics of the victim system, we as-
sume that attackers have the following capabilities:

Attackers are capable of transparently receiving and
transmitting the physical signal from/to the victim’s
emitter/receiver. Note that transparency excludes appli-
cations where shielding can be applied, as assumed in
the victim system model. When both the emitter and the
receiver are properly shielded from the external environ-
ment, attackers cannot receive or inject signals.

We assume that the attacker has more resources than
the victim sensor, as in many other attack models. The
capability of a sensor is often limited owing to produc-
tion and maintenance cost. However, the attacker does
not have such limitations.

This assumption stems from a fundamental asymme-
try between attackers and defenders. Because sensors are
generally produced in large quantities, sensor manufac-
turers cannot adopt expensive microcontrollers or sens-
ing structures irrelevant to the sensors’ measuring capa-
bility. However, attackers can invest all their resources
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into the fabrication of one advanced attacking device.
For example, once the sampling rate is fast enough for
measurement, increasing the sensor’s maximum sam-
pling rate will be a difficult decision for sensor manufac-
turers; meanwhile, attackers can implement an attacking
device with a much higher sampling rate.

In addition to these two assumptions, we also directly
adopt assumptions A1–A4 from PyCRA [27, § 2.4],
which include the following:

• Non-invasiveness: Attackers do not have direct access
to the sensor hardware.

• Trusted measured entity: The physical entity to be
measured by the sensor is trusted and incapable of be-
ing compromised.

• Physical delay: Adversaries require physical hardware
with inherent physical delays.

• Computation delay: Adversaries may have superior
computing power.

The second assumption means that the attacker cannot
fabricate the measured entity itself. Taking an example
of fire alarm system, we do not assume that the attacker
starts an actual fire to spoof the system. In essence, we
make the exact same assumptions as PyCRA.

4 Security Analysis of PyCRA

Even though PyCRA was proposed as a generally ap-
plicable solution to detect analog sensor spoofing, we
point out that it has a fundamental vulnerability. Using
this vulnerability, attackers with the profile introduced in
Section 3 can spoof active sensors avoiding PyCRA’s de-
tection mechanisms. In this section, we first analyze its
fundamental vulnerability, and show how it can be used
to break all defensive measures of PyCRA. We also de-
rive the sufficient condition for detection avoidance.

4.1 Vulnerability: The Sampling Race
In typical challenge-response authentication, prover and
verifier share a secret, and the prover demonstrates to the
verifier that it knows the secret, normally using nonce
and cryptographic primitives such as encryption and dig-
ital signatures. If the nonce is not fresh or the crypto-
graphic primitives are not secure, the challenge-response
mechanism is vulnerable to replay or spoofing attacks.

However, in PyCRA, the only private information
shared between the emitter and the receiver is the timing2

2Because these timings depend on the channel between the emit-
ter and the receiver, PyCRA is applicable only to active sensors with
fixed channels, where such timings become predictable (e.g. magnetic
encoders). However, this does not hold for active sensors for ranging:
radars, lidars, and sonars. In such applications the channel is basically
assumed to be flexible.

of the emitter signal level changes (i.e., LOW, confusion
phase, and HIGH).If this information is leaked, the at-
tacker can defeat the challenge-response authentication.
The fundamental assumption behind PyCRA is that the
attacker’s hardware has a non-zero physical delay due to
its dynamic characteristics [15, pp. 25-31]. This physi-
cal delay is the time period between the time to sense the
victim’s challenge and the time to react to it. However,
the victim system also has a delay, the duration between
the time to emit its challenge and the time to recognize
it. Therefore, the victim system cannot notice the spoof-
ing signal, if an attacker can react faster than the victim
can notice. In other words, the delays in both systems
are in competition. For the victim to permanently win
the competition, key factors are if there exists nontriv-
ial3 lower bound in the physical delay in a certain active
sensor application and if the victim achieves more fine-
grained time precision than it. This lower bound of phys-
ical delay is discussed in PyCRA [27, § 5.6], but it was
limited to a specific type of active sensor, i.e. magnetic
encoder. The core issue in determining the effectiveness
of PyCRA for generalizable active sensor spoofing de-
tection was neither discussed nor considered.

In analog-digital systems, analog sensing outputs must
be converted to digital, which requires sampling of the
analog information. If attackers have a sufficiently faster
sampling rate than the victim, and the victim’s time pre-
cision is insufficient to cover the minimal physical de-
lay of the attacker, they can win the above competition.
Moreover, because PyCRA’s authentication is based on
the sudden drop of signal levels in the silent phase, at-
tackers can easily sense the start of the falling edge in
challenges issued by the victim and react before the sig-
nal level even reaches the LOW state.

4.2 Attacks on the Simple Detector and the
Confusion Phase

Figure 2a and 2b show two different cases of the vic-
tim and spoofing signals under PyCRA authentication.
Figure 2a shows how PyCRA detects spoofing attempts.
In this case, the physical delay of the attacker is larger
than the victim’s sampling interval. The attacker notices
the sudden drop of the signal, and attempts to react to
it. However, she fails to bypass the authentication, be-
cause the victim has already noticed the existence of the
spoofing signal before the attacker can react to the chal-
lenge. In contrast, in Figure 2b, the attacker’s physical

3The existence of nontrivial lower bound in physical delay is essen-
tial for establishing practical defense. As any change in signal cannot
be propagated faster than speed of light, trivial lower bounds always
exist. However, such trivial lower bounds will necessitate the defender
impractical time precision. As mentioned in Section 3.2, adoption of
sampling rate much higher than the one required for measurement itself
is a hard decision for sensor manufacturers.
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(a) (b) (c)

Figure 2: Illustration of PyCRA challenge under various physical delays of the attacker. (a) With long physical delays
of the attacker, spoofing is detected by PyCRA; (b) Detection fails when the attacker’s physical delay is sufficiently
small; (c) Spoofing against the victim with the confusion phase. The attacker’s sampling moments are marked with
white dots, and the sampling moments of the victim’s receiver are marked with black dots.

delay is shorter than the victim’s sampling interval, and
the attacker can detect the falling edge of the challenge
as in the previous case. In the second case, however,
the attacker successfully bypasses the authentication, be-
cause she can react to the challenge before the victim’s
next sampling moment. This result also shows that the
confusion phase of PyCRA is completely useless under
spoofing attacks by attackers who can react faster than
the victim, as illustrated in Figure 2c.

Based on the diagrams depicted on Figure 2, we can
derive the condition for deceiving the simple detector.
Figure 3 shows the worst case (from the attacker’s point
of view) when attacking the simple detector. In this worst
case, the attacker samples just before the victim chal-
lenges. As a result, it takes a full sampling period, TA for
the attacker to recognize that the challenge has started.
Therefore, to successfully bypass the authentication the
attacker should meet the condition below.

TA + t f ,A + tp,A ≤ TV (3)

Note that, this also applies to the confusion phase. The
only difference compared to the case of the simple detec-
tor is that the attacker turns off its emitter after the victim
enters the confusion phase, not the silent phase.

4.3 Attacks on the χ2 Detector

PyCRA introduces χ2 detector to defend against spoof-
ing attacks with shorter physical delays than that of the
victim sensor. As discussed in Section 2.4, χ2 detector
adopts the mathematically modeled dynamic character-
istics of the victim, to detect spoofing attacks even when
the attacker’s signal completely vanishes before the end
of the victim transition time. More precisely, the adopted
mathematical approach is to calculate the residual during

Figure 3: Worst case on attacking a simple detector.
Attacker samples just before the victim emitter signal
drops.

the transient state of the sensor. However, it can also be
useless in digital systems with finite sampling rates, par-
ticularly for applications where the transition time of the
attacker can be reduced below the victim’s sampling in-
terval. It is important to note that the key transition time
here is not that of the victim but that of the attacker, who
willingly invests all her available resources to reduce this
amount of time.

Here, we show this in greater detail. For digital sys-
tems, Eq. (1) and (2) become Eq. (4) and (5), respec-
tively:

x[n+1] = f (x[n])+w[n] (4a)
y[n] = h(x[n])+ v[n] (4b)

g[n] =
1
N

n

∑
m=n−N+1

z2[m] (5)

where the residual is z[n] = y[n]− ŷ[n], and N denotes the
number of victim’s sampling intervals, approximately
equal to the victim’s transition time.

When we assume that the victim’s signal completely
turns off at n = n0, g[n0] becomes close to zero (i.e.,
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Figure 4: Illustration of the χ2 detector bypass. Symbols
are directly borrowed from Figure 3.

g[n0] ≈ 0) under faster attackers, as depicted in Fig-
ure 4. This is because y− ŷ = z ≈ 0 even on the first
sample of the transition time, n = n0−N + 1. Needless
to say, the same applies to all following samples, i.e.,
z2[i] ≈ 0 (i = n0−N + 1, n0−N + 2, · · · , n0). We note
that, the same inequality (3) also applies to the χ2 detec-
tor bypass as in bypassing simple detector.4

4.4 Summary
The fundamental idea of PyCRA is reasonable and sim-
ple, but it ignores critical problems: whether the lower
bound of the physical delay can be universally deter-
mined for every active sensor, whether such lower bound
is in practical range, and whether the victim can achieve
the corresponding time precision. When the two sam-
pling intervals satisfy inequality (3), attackers can always
bypass all PyCRA detection mechanisms. Furthermore,
the χ2 detector designed for the case when the attacker’s
physical delay is less than that of the victim becomes
useless when the above inequality holds.

5 Experiments

In the previous section, it was shown that PyCRA can-
not detect attackers who react faster than the victim’s
sampling interval. What remains to be proved is if, in
practice, it is possible to reduce the reaction delay of the
attacker to a level much lower than the sampling inter-
val of most high-performance microcontrollers. In this
section, we experimentally show that, with only low cost
devices, the delay can be reduced to much less than 5 µs,
the sampling period corresponding to the 200 kHz sam-
pling rate of most high-end microcontrollers. We also

4In practice, the condition for bypassing χ2 detectors will be looser
than inequality (3). As no modeling can completely fit the reality, a
χ2 detector have a margin—an alarm threshold—to detect spoofing at-
tempts as remarked in Section 2.4. This margin does not only prevent
the sensor from frequent false alarms, but helps the attacker to be un-
detected by ignoring small deviations from the modeling.

Figure 5: Experimental setup. T1 and T2 indicate
the moments when the victim and attacker emitters are
turned off. The time difference, T2 − T1 is repeatedly
derived to measure the attacker’s delay. Dotted and solid
lines indicate optical and wired channels, respectively.

note that the 200 kHz of sampling rate was not arbitrar-
ily chosen, but taken from the original PyCRA paper [27,
§ 5.6]. This experiment, along with the aforementioned
theoretical limitations, shows that PyCRA is vulnerable
even to low cost attacks.

5.1 Design

We implemented an elementary infrared (IR) PyCRA
evading system, which attempts to avoid detection by
the victim. As a victim sensor, an IR drop counter in-
stalled on a commercial infusion pump [5] was used.
Drop counters are used to count the number of droplets
passing through the emitter and the receiver. We note
that a real-world active sensor was used here, instead of
a custom-built one, and that the victim sensor was not
modified at all during the experiment.

As an attacking emitter and receiver, we used an IR
light emitting diode (LED) and an IR phototransistor, re-
spectively, whose targeted wavelength is from 850 nm
to 950 nm. Two Arduino UNO [1] boards were used
to implement the victim and attacker processors, and for
the attacker’s side only, a simple self-implemented crude
comparator was built, with an operational amplifier.

Figure 5 shows the overall experimental setup. Ar-
duino 1 (together with the drop counter) plays the role of
a victim, while Arduino 2 (on the right side) is used as an
attacker. The victim drop counter is directly connected
to Arduino 1, and both the LED and the phototransistor
are connected to Arduino 2. Arduino 1 was programmed
to turn off its emitter at random instants, and Arduino 2
was programmed to react to the challenge as fast as pos-
sible, to bypass authentication. In this experiment, the
attacker receives the IR signal from the emitter via opti-
cal channel. With an oscilloscope, we measured the time
difference between the turn-off instants of each emitter,
while applying various attacker-side circuitries, to mini-
mize the attacker delay.
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Figure 6: Comparison between the comparator input and
output (P1 and P2 in Figure 5). The upper graph is the
transition signal of the victim emitter (i.e., the compara-
tor input) and the other is the comparator output.

5.2 Minimizing the Attacker Delay

In this experiment, the primary goal is to reduce the at-
tacker delay, which is measured by deriving the time dif-
ference, T2 − T1 in Figure 5. We now describe the pro-
cess of minimizing this time difference, to show that the
attacker delay can be reduced to less than 5 µs, which is
equivalent to the sampling rate over 200 kHz.

Reducing the Transition Time We first attempted to
minimize the phototransistor delay. Phototransistors are
generally used with a resistor to convert the photocur-
rent into voltage, thus constituting a photodetector. Ac-
cording to various application notes on phototransis-
tors [29, 18], the resistance used with the phototransistor
and the agility of the photodetector are negatively corre-
lated. Therefore, we reduced the resistance as much as
possible to 100 Ω in order to maximize the agility of the
attacker receiver. Note that this resistance cannot be re-
duced infinitely, because it is positively correlated to the
resulting photodetector sensitivity.

As discussed in Section 4.3, the attacker does not have
to wait until the victim’s emitter completely turns off.
Instead, for faster response, the attacker can turn off her
emitter, whenever the victim’s emitter signal drops below
a certain threshold. Therefore, the next step was to attach
a comparator with a carefully chosen threshold in front
of the attacker’s processor, to further reduce the transi-
tion time of the attacker. As a result of the combined
effect of these two design decisions, the transition time
was drastically reduced, as shown in Figure 6.

Reducing the Processor-side Delay We first used one
of analog pins of the Arduino with a sampling rate of
10 kHz, to react to the victim challenge. However, it was
too slow to bring the reaction time under 5 µs. Con-
trary to the victim sensor, which must precisely measure
the emitter signal to perform its sensing function, the at-
tacker only needs to determine whether the victim is or is
not challenging at a given time. Therefore, we changed

Figure 7: Total attacker’s delay versus the victim chal-
lenge. The upper graph is the victim challenge signal,
and the other is the attacker emitter input (measured at
P3 and P4 in Figure 5) respectively.

from an analog pin to a digital input pin, and to further
reduce the attacker delay, we used the digitalReadFast
and digitalWriteFast libraries [8], which directly use port
commands, instead of the Arduino APIs.

5.3 Results
As an intermediate result, we were able to reduce the
transition time to under 10 µs, by setting the photode-
tector resistance to the optimal value of 100 Ω. When
the comparator was added, the delay was again reduced
to about 1.7 µs, as shown in Figure 6. We note that this
value can be reduced even further, if a dedicated com-
parator IC is adopted instead of our crude comparator.

After all manipulations mentioned above, the total at-
tacker delay was reduced to 2.8 µs. Figure 7 shows the
time difference between the start of the victim’s chal-
lenge and the attacker’s reaction. As shown, the delay
between two graphs is about 2.8 µs, which is approxi-
mately equivalent to the sampling rate of 358 kHz.

So far, we have experimentally shown that it is possi-
ble to react faster than 200 kHz, even with several low-
cost devices. 200 kHz of sampling rate is possibly not
an absolute criterion for determining the effectiveness of
a PyCRA detector. However, our experiment is a con-
ceptual one showing that even a 200 kHz of sampling
rate can readily be bypassed with some crude equipment.
Serious attackers will be equipped with much more ad-
vanced devices. In summary, as long as the victim sys-
tem has a finite sampling rate, this race will never end
until the sampling interval of the victim becomes much
shorter than the best transition time achievable with con-
temporary technologies.

6 Discussion

So far, we have shown the limitations of PyCRA as a gen-
eralizable active sensor spoofing detection scheme both
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theoretically and empirically. Because no active sen-
sor defense scheme is both robust and generalizable to
our knowledge, we list several alternative defense ap-
proaches. However, none of them are both robust and
generalizable.

6.1 Shielding

When applicable, shielding is the simplest and robust de-
fense approach. Once the actuator, the receiver, and the
measured entity are tightly shielded so that the measured
physical media cannot be penetrated from the outside,
the active sensor will no longer be affected by external
stimuli. This is guaranteed as long as the shielding takes
effect, and the shielded active sensor is thus immune to
attack attempts outside the shielding. Drop counters and
magnetic encoders are good examples of active sensors
that can be shielded. Indeed, shielding is already being
applied in these cases [24, 2], with the caveat, however,
that it is not designed for security against spoofing at-
tacks. This type of defense can be categorized as Signal
Integrity type defenses.

However, despite its strong resilience against external
spoofers, shielding is not generalizable. As mentioned
above, we cannot shield when measured entity is not
fixed: radars, lidars, and sonars. Active sensors spanning
large volumes of space such as optical beam smoke de-
tectors are also difficult to be shielded properly, because
a massive area of shielding would be required to enclose
the emitter, receiver, and measured entity.

6.2 Redundancy and Sensor Fusion

A sensing and actuation system might improve its re-
silience against sensor spoofing attacks by employing
redundancy. This includes adopting not only an iden-
tical type of sensors, but also multiple types of sensors
(e.g., camera and radar for detecting road objects). To ac-
commodate the acquired multiple sensor output streams,
sensor fusion techniques can be used, further enhanc-
ing the overall system resistance. Although there are
not many works suggesting sensor fusion as a defensive
mechanism against sensor spoofing [23], many previous
works have addressed the resulting improvements in pre-
cision [25, 19, 22] or reliability [3, 17] of the overall sen-
sor system, which might also improve security against
spoofing attacks.

Despite its advantages, this line of approach cannot
guarantee its robustness, because an attacker might still
compromise the sensing system by simultaneously con-
ducting sensor spoofing attacks against multiple sensors.

7 Related Work

Making secure sensors is not easy, because most sensors
have limited computational resources and simple func-
tionalities, directed only to measurement. Consequently,
only a few existing works are directly related to the topic
of sensor security, and most of them concentrate on es-
tablishing non-ideal defenses. In this section, we clas-
sify the existing works into three broad categories: sen-
sor spoofing attacks, defenses against them, and sensor
reliability enhancement.

Sensor spoofing attacks: As mentioned in Section 2.2,
there are three attack vectors for sensor spoofing.
Shoukry et al. demonstrated a sensor spoofing attack
through the regular channel of an automotive magnetic
encoder [26]. They put a magnetic actuator in front of
an anti-lock braking system sensor, whose base is a mag-
netic encoder, and falsified the wheel speed of a vehicle.
Son et al. showed that a commercial drone can be ren-
dered uncontrollable by a side-channel spoofing attack
against MEMS gyroscopes [28]. They first found the
resonant frequencies of the MEMS structure, and showed
that several MEMS gyroscopes behave abnormally under
acoustic noise at their resonant frequencies. Using this
phenomenon, they successfully forced the victim drone
to drop to the ground. Finally, Foo Kune et al. attacked a
wired transmission channel connecting an analog sensor
and its backend system [14]. They successfully injected
fake sensor outputs by generating intentional EMI within
the wire. In addition to these, sensor spoofing attacks
to bypass biometric authentication schemes such as fin-
gerprint recognition [20, 10], facial recognition [9], and
automatic speaker verification [11] have also been pro-
posed.

Defenses for sensor spoofing attacks: The work most
directly related to defenses is PyCRA [27], which has
already been deeply discussed (Section 2.4). Addition-
ally, there have been several works based on redundancy
using multiple sensors or additional resources. Park et
al. proposed a detection algorithm based on sensor fu-
sion, which detects malfunctioning sensors on an un-
manned ground vehicle [23]. Montgomery et al. demon-
strated a global positioning system (GPS) spoofing de-
tection method with dual antennas on a GPS receiver,
using antenna multiplexing [21]. An upper bound on
the detectable number of corrupted sensors in multisen-
sor systems was characterized for cyber-physical control
systems by Fawzi et al. [13]. Shielding has been also
mentioned as a defense in three of the aforementioned
attack papers [26, 28, 14].

Reliability enhancement for sensor systems: A num-
ber of works have proposed the use of multiple sensors to
enhance the precision and reliability of sensor systems,
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although not for security purposes. Caron et al. [3] devel-
oped an algorithm fusing GPS and inertial measurement
unit (IMU) using a Kalman filter, to enhance the reliabil-
ity of location based applications. Nützi et al. [22] and
Martinelli [19] fused IMU and vision sensors for accu-
rate pose estimation. For reliable pedestrian navigation,
sensing data from an inertial sensor, an image sensor, and
a barometer were utilized [12, 16]. A number of works
also exist to improve the reliability and precision of sen-
sor networks [25, 17].

8 Conclusion

This paper focuses on breaking PyCRA, the only authen-
tication mechanism to detect spoofing attacks against ac-
tive sensors, claimed to be robust and generalizable. We
show in theory as well as in practice, PyCRA is insecure.
In theory, we derive a sufficient condition for the attacker
to avoid detection. We also show experimentally that Py-
CRA can be easily bypassed by an attacker, even with a
low-cost microcontroller and crude additional circuitries.
Existence of our attack shows that design of robust and
generalizable defense mechanism for active sensors re-
mains as an open problem.
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