
PIkit : A New Kernel-Independent Processor-Interconnect Rootkit

Wonjun Song, Hyunwoo Choi, Junhong Kim, Eunsoo Kim, Yongdae Kim, John Kim
KAIST

Daejeon, Korea
{iamwonjunsong, zemisolsol, jh15, hahah, yongdaek, jjk12}@kaist.ac.kr

Abstract
The goal of rootkit is often to hide malicious soft-

ware running on a compromised machine. While there
has been significant amount of research done on differ-
ent rootkits, we describe a new type of rootkit that is
kernel-independent – i.e., no aspect of the kernel is mod-
ified and no code is added to the kernel address space
to install the rootkit. In this work, we present PIkit –
Processor-Interconnect rootkit that exploits the vulner-
able hardware features within multi-socket servers that
are commonly used in datacenters and high-performance
computing. In particular, PIkit exploits the DRAM ad-
dress mapping table structure that determines the desti-
nation node of a memory request packet in the processor-
interconnect. By modifying this mapping table appro-
priately, PIkit enables access to victim’s memory ad-
dress region without proper permission. Once PIkit is in-
stalled, only user-level code or payload is needed to carry
out malicious activities. The malicious payload mostly
consists of memory read and/or write instructions that
appear like “normal” user-space memory accesses and it
becomes very difficult to detect such malicious payload.
We describe the design and implementation of PIkit on
both an AMD and an Intel x86 multi-socket servers that
are commonly used. We discuss different malicious ac-
tivities possible with PIkit and limitations of PIkit, as
well as possible software and hardware solutions to PIkit.

1 Introduction
Rootkits are used by attackers for malicious activities
on compromised machines by running software with-
out being detected [47]. Different types of rootkits can
be installed at the application-level, kernel-level, boot
loader level, or hypervisor level. There has been sig-
nificant amount of research done on different types of
rootkits [57, 28, 25, 24] as well as different rootkit detec-
tions [21, 31, 11]. Recently, there have been other types
of rootkits [20, 50] that exploit vulnerable hardware fea-
tures such as de-synchronized TLB structures and un-

Malicious Payload
User-Level Kernel-Level

V
ul

ne
ra

bi
lit

ie
s

Software
t0rn [35], ROR [25],
lrk5 [48], DKOM [15],

dica [23], etc. knark [17], etc.

Hardware
This work Cloaker [20]

(PIkit) Shadow Walker [50]

Table 1: Classification of different rootkit attacks.

used interrupt vector. Prior work on rootkit can be classi-
fied based on whether the payload consists of user-level
or kernel-level code and whether rootkit is installed in the
software or with the support of the hardware (Table 1).
In this work, we propose a new type of rootkit that mod-
ifies hardware state but enables malicious activities with
simple user-level code that consists of read/write mem-
ory accesses to user-level memory space. While prior
work on user-level software rootkit often modified ex-
isting files [35, 48, 23], this work does not modify the
kernel or any existing files. Since this work does not
require any code modification or code injection to the
kernel, traditional approaches to detect software rootkit,
such as kernel integrity monitoring [42, 31, 53] or code
signature-based detection [1, 2] can not be used for de-
tection.

In this work, we present PIkit, processor-interconnect
rootkit, that exploits hardware vulnerability in x86 multi-
socket servers. x86 is the most dominant server proces-
sor in datacenters and high-performance computing [36]
and a recent survey found over 80% of the x86 servers
are multi-socket servers. The multi-socket servers con-
tain a processor-interconnect that connects the sockets
together (e.g., Intel QPI [37], AMD Hypertransport [10])
and we exploit the processor-interconnect to implement
PIkit. Once PIkit is installed, the payload or the mali-
cious code to carry out an attack exists in user space and
appears like a “normal” user program – i.e., all of the
memory accesses from the payload are legal memory ac-
cesses and it becomes very difficult to identify such user
code as “malicious” code. As a result, PIkit is a seri-

ous threat to multi-socket servers that is difficult to detect
with currently available rootkit detection mechanisms.

PIkit that we propose is implemented on x86 servers
from both AMD and Intel to demonstrate how PIkit
enables an attacker to continuously access the victim’s
memory region without proper permission. 1 In particu-
lar, we exploit the configurability in the DRAM mapping
table that enables a memory request packet to be routed
to a different node by modifying a packet’s destination
node. We also exploit the extra entries available in the
DRAM mapping table to define an attack memory region
when installing PIkit. As a result, user-level memory
read or write requests to the attack memory region get
re-routed to another memory region or the victim’s mem-
ory region. To the best of our knowledge, this represents
the first rootkit where with the support of hardware state
modification, user-level code or payload is sufficient to
carry out malicious activities.

Most rootkits often modify some components of the
OS while other rootkits add malicious payload to the
kernel without modifying the OS to carry out malicious
activities. However, such approaches can be exposed
by signature-based detection and integrity checking. In
comparison, PIkit only requires user-level payloads with
the support of hardware state modifications as no mali-
cious payloads to the kernel space are added or modified
(Figure 1). In addition, any signature scan of the memory
that contains the user-level payload can not identify the
user code as “malicious” since the memory accesses ap-
pear to be legal accesses as the malicious access is only
achieved through the support of the hardware modifica-
tions. As a result, PIkit demonstrates how a very stealthy
rootkit can be achieved compared to previously proposed
rootkits.

The proposed PIkit is a non-persistent rootkit [20, 45,
41] and does not remain after the server is restarted.
However, servers are rarely rebooted to minimize the im-
pact on availability – for example, one study measured
the average time between reboot in the server room to
be 481 days [22]. Thus, PIkit poses a serious threat to
servers while powered on. Prior work on non-persistent
rootkit [20] has argued that non-persistence can also sig-
nificantly reduce the detectability of rootkits.

In particular, the contributions of this work include the
followings.

• We show that the DRAM address mapping table
structure in the processor-interconnect of multi-
socket servers has security vulnerability that can be
exploited maliciously in both an AMD and an Intel-
based x86 server.

1This work can also be viewed as a “backdoor” since once PIkit
is installed, it provides a covert mechanism for the attacker to gain
privileged access to the system.

0x000…

0xFFF…

PIkit

Installa,on

Kernel

Text/Data/Heap

Memory-Mapped

Registers

User

Text/Data/Heap

0x..01

Kernel

Text/Data/Heap

Memory-Mapped

Registers

Malicious Payload

User

Text/Data/Heap

0x..10

DRAM

Mapping
Table

(1)

Figure 1: High-level overview of PIkit showing DRAM address
mapping table modification and user-level malicious payload
added for malicious activities.

• We describe a new type of rootkit that is kernel-
independent that requires only hardware state mod-
ification with user-level payload, no modification or
addition to the kernel is necessary. In particular, we
present PIkit, Processor-Interconnect rootkit, that
exploits the mapping table vulnerability to enable
the malicious attacker privileged access (both read
and write) to a victim memory address region with
only user-level access.
• Once PIkit is installed, we demonstrate how differ-

ent malicious activities can be carried out including
bash shell credential object attack, shared library
attack, and keyboard buffer attack with only user-
level memory accesses.
• We describe alternative solutions, including a

software-based, short-term solution to detect PIkit
as well as hardware-based, long-term solutions to
prevent PIkit.

We responsibly disclosed this vulnerability to CERT be-
fore publishing this paper. The rest of the paper is or-
ganized as follows. We first describe our threat model
in Section 2 and background into processor-interconnect
as well as related work. The DRAM address mapping
table structure is described and analyzed in Section 3.
The design and implementation of PIkit that modifies the
mapping table structure is described in Section 4 and we
illustrate different malicious activities in Section 5. We
provide some discussion on different solutions as well
as limitations of PIkit in Section 6 and we conclude in
Section 7.

2 Background
2.1 Threat Model
In this work, we assume an attacker and a victim share
the same multi-socket server that is commonly used in
cloud servers and high-performance computing. We as-
sume an attacker has no physical access to the hardware
and also assume the same threat model as prior work on
rootkit attack – the attacker, through some vulnerabili-
ties (e.g., vulnerabilities in commodity OSes [39, 16, 6]
or perhaps through an administrator (or an insider) who

2

NODE%0
 NODE%1

NORTHBRIDGE

CORE

0

CORE

1
 …
 CORE

N

MC
 ROUTER

NORTHBRIDGE

CORE

0

CORE

1
 …
 CORE

N

MC
ROUTER

DRAM
 DRAM

DRAM
 DRAM

…

…

NODE%2
 NODE%3

NORTHBRIDGE

CORE

0

CORE

1
 …
 CORE

N

MC
 ROUTER

NORTHBRIDGE

CORE

0

CORE

1
 …
 CORE

N

MC
ROUTER

DRAM
 DRAM

DRAM
 DRAM

…

…

Figure 2: Block diagram of a processor-interconnect in a 4-
socket server. (MC: memory controller)

maliciously provides one-time root access [54]) or so-
cial engineering, is assumed to have privileged access
for rootkit installation. Once this is achieved, the next
goal is to avoid detection of intrusion while carrying out
malicious activity, similar to other rootkits. After PIkit is
installed, it becomes very difficult to detect or determine
the source of the attack as there are no changes to the
kernel in the target system.

2.2 Processor-Interconnect Overview
A high-level block diagram of a processor-interconnect
is shown in Figure 2. The processor-interconnect pro-
vides connectivity between multiple nodes (or sockets)
in a NUMA (non-uniform memory access) server with
each node containing multiple cores. The router within
the Northbridge is used to connect to other nodes and it
is also used to access local memory. For simplicity, the
example in Figure 2 shows a ring topology to intercon-
nect the 4 nodes together but for a small-scale system,
all of the nodes can be fully connected as well. Given
the processor-interconnect and its topology, the routing
algorithm determines the path taken by a packet to its
destination [19]. To provide flexibility, a routing table
is commonly used in the processor-interconnect to im-
plement the routing algorithm. Based on the destination
of the packet, a routing table look-up is done to deter-
mine the appropriate router output port that the packet
needs to be routed through. However, the routing table is
only used to determine which router output port should
be used (and the routing path); the routing table is not
responsible for determining the packet destination.

The packet destination information is determined by
the packet header. The format of messages (or packets2)
in the processor-interconnect is similar to other intercon-
nection networks [19] as shown in Figure 3. A packet
is the high-level message that is sent between the nodes,
which can include memory requests, cache line replies,
coherence message, etc. A packet is often partitioned
into one or more flits or flow control units within the
interconnection networks – thus, a packet can be par-
titioned into a head flit, one or more body flits, and a

2A message can consist of multiple packets but within the
processor-interconnect, messages are often single packet.

tail flit. The head flit contains additional “header” infor-
mation, which can include the packet type and both the
source and destination node information of the packet.
The body/tail flits do not contain destination informa-
tion but only the payload and simply follows the head
flit from the source to its destination.

2.3 Related Work
To the best of our knowledge, very few prior re-
search have investigated security vulnerabilities within
the hardware of the processor-interconnect in multi-
socket servers. Song et al. [49] demonstrated the security
vulnerability of the routing table in a multi-socket server
This vulnerability enabled performance attacks by send-
ing packets through longer routes and degrading both in-
terconnect latency and bandwidth. In addition, it also
enabled system attacks by creating a livelock in the net-
work to crash the system. However, the routing table did
not modify the destination of a packet and thus, the scope
of the attack was limited. In this work, we show how the
destination of a packet can be changed by modifying the
DRAM mapping table to enable a rootkit attack.

Rootkit Attacks: User-level, software rootkits (upper
left box in Table 1) often modify existing system utili-
ties to enable malicious codes. Lrk5 [48], T0rn [35] and
Dica [23] replace the system binaries (e.g., ls, ps and
netstat) with modified versions to hide files, processes
or network connections. SAdoor [40] is a non-listening
daemon that grabs packets directly from the NIC and
watches for special key and command packets before ex-
ecuting a pre-defined command (e.g., /bin/sh). However,
it has been shown that these rootkit are often easily de-
tected by integrity checking for the system binaries.

Traditional kernel-level, software rootkits (upper right
box in Table 1) exploit the control hijacking and inter-
ception, modifying static kernel data structures (e.g., sys-
tem call table) to jump to malicious codes indirectly.
DKOM [15] introduced a more advanced kernel-level
rootkit approach which exploits dynamic (non-control)
kernel data structures (e.g., processor descriptors) to
install the rootkit. Hofmann et al. [24] introduced a
rootkit which allows for malicious control flows by re-
placing pointer variables. Hund et al. [25] introduced
a return-oriented rootkit based on Return-Oriented Pro-
gramming [14] to bypass integrity checking for the ker-
nel code. However, these kernel-level, software rootkits
require modifications to the kernel and can be detected
with protecting return addresses on the stack and critical
data structures from the modification.

In addition to software rootkits, hardware-supported
rootkits have been proposed (lower right box in Table 1).
ShadowWalker [50] hid the trace of the rootkit by hook-
ing the page tables while Cloaker [20] exploited ARM-
specific architectural feature to conceal the rootkit with-

3

SRC

ID

DEST
ID
 …
 TYPE

Head%flit
 Body%flits
 Tail%flit

…

Figure 3: Packet format in interconnection networks with
packet consisting of multiple flits.

out altering existing kernel code. However, these work
require adding malicious payload to the kernel which can
be prevented by guaranteeing the execution of only veri-
fied kernel code or detected by checking the flow of the
hijacked code. In comparison, while PIkit also leverages
a hardware-vulnerability, PIkit enable malicious activity
with only user-level code.

The rootkits that we categorized in Table 1 and de-
scribed earlier focus mostly on the software or hard-
ware (CPU)-related rootkits. There have also been
other device-specific rootkits such as network interface
card [51], hard-drives [57], USB mouse [33], and print-
ers [18]. In addition, rootkits involving BIOS [56] have
also been proposed. However, these rootkits also in-
volve modifying existing firmware to carry out the at-
tack. Subvirt [28] presented a more stealthy rootkit by
using virtual machine monitor (VMM) but Subvirt can
also be detected with physical memory signature scans.
Run-DMA [44] is a DMA (direct memory access) rootkit
attack that enables a “malicious computation” where at-
tacker modifies data inputs to induce arbitrary compu-
tation, in comparison to a more traditional “malicious
code” model attack. The PIkit that we present in this
work is not necessarily limited to either malicious com-
putation or malicious code model since any region in the
memory can be modified as long as the memory mapping
can be determined by the attacker.

Rootkit Detection: The rootkit detection can be
largely divided into two types, checking the integrity of
kernel codes and data structures and detecting malicious
control flows (e.g., hooking system call table and inter-
rupt vector table). Copilot [42] detects the modification
of kernel and jump tables with the separated PCI card
monitor. However, such approaches do not guarantee
hardware register integrity, such as the register modi-
fied in Cloaker [20] or the DRAM address mapping ta-
ble modified in this work. KI-mon [31] introduced a
hardware-assisted monitor, which snoops all bus traffic
to verify updates of the kernel objects with the address
filter while Shark [53] proposed an architectural sup-
ported rootkit monitor. However, since PIkit does not
access the kernel objects directly, such approaches can-
not detect PIkit.

3 Analysis of Processor-Interconnect in
Multi-Socket Servers

In this section, we describe the DRAM address map-
ping table structure within the Northbridge (or the un-

Base Address Limit Address Destination ID
0 0x0000000000 0x041F000000 0
1 0x0420000000 0x081F000000 1
2 0x0820000000 0x0C1F000000 2
3 0x0C20000000 0x101F000000 3
4 RESERVED RESERVED RESERVED
5 RESERVED RESERVED RESERVED
6 RESERVED RESERVED RESERVED
7 RESERVED RESERVED RESERVED

Figure 4: An example of DRAM address mapping table for a
4-node system.

core) that we analyze in detail and then describe how
it can be exploited to enable a hardware vulnerability-
based rootkit attack through the processor-interconnect.

3.1 DRAM Address Mapping Table
One of the critical information in packet’s header is the
destination information; this information is often based
on the destination memory address in modern multi-
socket servers. The destination node is determined by
a memory address mapping table structure between the
core and the processor-interconnect router – we refer to
this as the DRAM Address Mapping Table. 3 Based on
the destination address of the packet, the DRAM address
mapping table determines the destination. As a result,
regardless of the address, the packet is simply forwarded
to the destination based on the packet header information
within the processor-interconnect.

A separate copy of DRAM address mapping table
structure exists within each node of a multi-socket sys-
tem, between the core (or the last level cache) and the
router. Each entry in the mapping table contains a
DRAM physical memory address range, often including
the start (or the base) address and the limit address. Each
entry also contains the destination node information –
thus, if an address falls within the address range, the des-
tination node information is appended to the packet. An
example of a DRAM address mapping table is shown in
Figure 4.

The number of entries in the DRAM address mapping
table should be equal to or greater than the maximum
number of nodes in the system. In the AMD system that
we evaluate (AMD Opteron 6128), the system contains 4
nodes but the system is scalable up to 8 nodes. Thus, the
DRAM mapping table contains 8 entries with only 4 of
the entries used and the remaining 4 entries not used (or
shown as RESERVED in Figure 4).

The DRAM address mapping table is initialized by the
BIOS at boot time. Since the table entries are memory-
mapped registers, the BIOS uses memory operations to
initialize the memory mapping table. The contents of

3In Intel-based NUMA systems, this structure is referred to as the
DRAM address decoder [5] while in AMD- multi-socket systems, sim-
ilar structures are referred to as DRAM address map register [13].

4

the address mapping table entries are dependent on the
DRAM capacity installed on each node. To determine
the address range for each entry (and each node), the
BIOS calculates the current memory capacity by obtain-
ing DRAM information such as the number of rows,
banks and ranks from the SPD (Serial Presence De-
tect) [4] on the DRAM.

3.2 Vulnerable Hardware Features

To implement PIkit, we exploit the following three as-
pects of the DRAM address mapping table in multi-
socket servers.

Configurability: The memory mapping table needs to
be configurable since the memory capacity per system
(and per node) is flexible and determined by the system
user.

Extra entries: Since the system needs to be designed for
scalability, the number of entries in the DRAM address
mapping table needs to equal to or greater than the largest
system configuration. For most multi-socket servers to-
day, the maximum number of nodes in the system is of-
ten 8; however, the most dominant NUMA servers on
the market are often 2 or 4 nodes [26] and thus, there are
memory mapping table entries that are unused.

Discrepancy: The DRAM mapping table content val-
ues can be modified after the initialization such that the
values are not consistent with the original values. This
discrepancy may or may not cause a problem, depending
on how the table is modified. 4

Thus, given these three hardware vulnerabilities,
the destination node information of packets in the
processor-interconnect can be modified such that the
packets are sent to a different node (and its correspond-
ing victim’s memory address) to allow an attacker to
access unauthorized memory space without proper per-
mission. In the following section, we describe the chal-
lenges in the design and implementation of PIkit.

4 PIkit Design & Implementation

PIkit installation procedure that includes modifying the
DRAM address mapping table is described in this sec-
tion. We first provide an overview and describe how
the attack address region needs to be prepared by the at-
tacker, and then modify the DRAM mapping table based
on the attack address region. Our initial design and im-
plementation are shown for an AMD-based server but
we also discuss how PIkit can be implemented on Intel-
based servers as well.

4Steps to ensure that the discrepancy does not cause a problem is
discussed in Section 4.3 (for AMD) and Section 4.5 (for Intel).

NODE 0
 NODE 1
 NODE 2
 NODE 3

 SOFTWARE STACK

MEMORY REQUEST

So2ware

Hardware

READ/WRITE opera=on

USERLEVEL APPLICATION

ROOKIT MONITORING

OPERATING SYSTEM

NODE 0 memory
 NODE 1 memory
 NODE 2 memory
 NODE 3 memory

ATTACK

ADDR

REGION

VICTIM

ADDR

REGION

0x0…000
 0xF…FFF

ROUTER

NORTHBRIDGE

PIkit

ROUTER

NORTHBRIDGE

SYSTEM SOFTWARE LAYER

APPLICATION LAYER

VICTIM

NODE

ATTACK

NODE

Main

Memory

ROUTER

NORTHBRIDGE

ROUTER

NORTHBRIDGE

Figure 5: High-level description of the proposed PIkit on a 4-
node multi-socket server.

4.1 Overview

In this work, we define the attack node as the node in
the multi-socket system where the DRAM address map-
ping table is modified to implement PIkit, and the victim
node is the node where its memory is maliciously ac-
cessed, through user-level read or write operations with-
out proper permission. The address region that is mod-
ified in the memory mapping table in the attack node
is defined as the attack address region while the corre-
sponding address in the victim node is the victim address
region, as shown in Figure 5. The PIkit and the mod-
ification in the DRAM address mapping table result in
read/write memory requests to the attack address region
being routed to the victim address region. The high-level
diagram in Figure 5 also shows how the PIkit relates to
the entire system. Most rootkit monitoring mechanisms
(or solutions) exist at the software-level but the PIkit that
we propose in this work is at the hardware-level (within
the processor-interconnect) and exploiting vulnerability
in the mapping table structure.

After the core injects a memory request into the North-
bridge and before the packet is actually routed through
the processor-interconnect by the router, a packet header
is created based on the physical address of the memory
request as shown in Figure 6. The processor-interconnect
does not observe the memory address as that is included
in the packet payload 5 and is only observed at the
destination (i.e., memory controller). The processor-
interconnect only observes the destination node informa-
tion that is appended at the interface between the core
and the router. The PIkit that we propose in this work
exploits this vulnerability of modifying the destination
of a packet – in particular, the DRAM address mapping
table structure to modify the packet’s destination.

5Packet payload refers to the non-header or the data portion of the
packet while the payload terminology used in the rest of this paper
refers to the malicious code used after rootkit is installed.

5

…

NODE 1

NORTHBRIDGE

CORE

0

CORE

1
 …
 CORE

N

MC
 ROUTER

…

ADDR
Memory Request

SRC

ID

DEST

ID
 …
 TYPE
 ADDRESS
Packet

Figure 6: Hardware overview of memory request and packet
header.

4.2 Defining Attack Address Region
Before the PIkit installation, the attacker first needs to
prepare the attack address region such that only the at-
tacker has access to that particular memory region. This
step is critical to ensure that PIkit and the DRAM address
mapping table modification do not cause any unknown
system behavior including crashing the system. For ex-
ample, if another program (or user) attempts to access
the attack memory region after the PIkit is installed, the
memory access will be routed to the victim node and un-
expected system behavior will occur if a memory write
is being done on an unintended memory address – i.e., it
can cause critical data in kernel space to be overwritten.

The memory address range of the attack address re-
gion needs to be equal to granularity or the resolution
of the memory mapping table. Although each entry in
the DRAM address mapping table specifies both the base
and the limit addresses, the full width of the address (i.e.,
48 bits) is not stored as some of the lower bits are not
specified in the DRAM address mapping table. For ex-
ample, in the AMD Opteron 6128 system that we eval-
uate, the granularity of the memory mapping table is 16
MBs as only 24 most-significant bits are stored – thus,
the attacker needs to obtain at least 16 MBs of physi-
cally contiguous memory region. To achieve this, we
take advantage of huge pages that are commonly avail-
able. In the system that we evaluate, we used 1 GB huge
page. After successful malloc for a huge page, an ad-
dress range within the contiguous memory region allo-
cated can be used as the attack address region, as long as
the process that received the memory allocation is con-
tinuously running.

4.3 Modifying the DRAM Address Map-
ping Table

The DRAM address mapping table consists of physical
addresses while the attack address region obtained in the
previous section are virtual addresses. Thus, an attacker
needs to obtain the translated physical address of the at-
tack region before modifying the DRAM address map-
ping table. The translation of the virtual to physical ad-
dress can be determined by using /proc/(pid)/pagemap
interface from the Linux kernel. Based on this transla-
tion information, the DRAM address mapping table can
be modified using the corresponding physical address of

Base Address Limit Address Destination ID
0 0x0000000000 0x041F000000 0
1 RESERVED RESERVED RESERVED
2 0x0820000000 0x0C1F000000 2
3 0x0C20000000 0x101F000000 3
4 0x0420000000 0x07BF000000 1
5 0x07C0000000 0x07C1000000 2
6 0x07C2000000 0x081F000000 1
7 RESERVED RESERVED RESERVED

Figure 7: A modified DRAM address mapping table where en-
try 5 (highlighted) is used as the attack address region.

the attack region.
An example of a modified mapping table is shown

in Figure 7, based on the original DRAM address map-
ping table shown earlier in Figure 4. We assume the at-
tack node is node 1 and the victim node is node 2, with
the attack address region defined as the address between
0x07C0000000 and 0x07C1000000 in node 1. In Fig-
ure 7, the entry 1 of the table which originally identi-
fied node 1 memory region has been removed. Instead,
the same address range has been partitioned across en-
tries 4, 5, and 6 of the modified DRAM mapping ta-
ble (Figure 7). The key difference compared with the
original mapping table is that for entry 5, the destina-
tion node ID has been modified such that it is no longer
node 1 but modified to node 2 – thus, entry 5 represents
the attack address region. Any address requests between
0x07C0000000 and 0x07C1000000 from node 1 have a
destination of node 2 added to the packet header, instead
of the original destination of node 1. When this particular
packet arrives at node 2, the DRAM memory controller
within the node 2 will receive this packet and convert the
address within the payload of the packet into the actual
victim address region. For example, in the AMD sys-
tem that we evaluate, address 0x07C0000000 from node
1 ends up being mapped to address 0x0840000000 in
node 2. As a result of the mapping table modification, the
physical memory connected to node 1 that originally cor-
responded to the address range between 0x07C0000000

and 0x07C1000000 can no longer be physically accessed
from node 1.

Since the table entries are memory-mapped registers,
the entries can be modified through system read/write
commands (e.g., setpci utility). However, to properly
modify the DRAM address mapping table entries, the
following caution must be taken.

1. The new entries must be written before the old entry
is removed (e.g., in Figure 7, entries 4, 5, 6 must be
written before entry 1 is cleared).

2. For the new entries added, the base address register
must be written before the limit address register.

3. For the existing old entry that needs to be removed,
the limit address register must be cleared first, be-
fore the base address register.

6

Node 1

NORTHBRIDGE

ROUTER

MEMORY

CONTROLLER

MEMORY

Node 2

NORTHBRIDGE

ROUTER

MEMORY

CONTROLLER

MEMORY

…
ADDRESS MAP
 ADDRESS MAP

0x0000 0x041F 0
0x0420 0x081F 1
0x0820 0x0C1F 2
0x0C20 0x101F 3

Reserved Reserved Reserved
Reserved Reserved Reserved
Reserved Reserved Reserved
Reserved Reserved Reserved

Base Addr Limit Addr Dest Node ID

0x0420
 0x081F
 0x0820
 0x0C1F

0 North
1 Local
2 East
3 South

Dest Node ID Output Port

Rou@ng
Table

DRAM Address Mapping Table

0x07C0

(a)

Node 1

NORTHBRIDGE

ROUTER

MEMORY

CONTROLLER

MEMORY

Node 2

NORTHBRIDGE

ROUTER

MEMORY

CONTROLLER

MEMORY

…
ADDRESS MAP
 ADDRESS MAP

0x0000 0x041F 0
RESERVED RESERVED RESERVED

0x0820 0x0C1F 2
0x0C20 0x101F 3
0x0420 0x07BF 1
0x07C0 0x07C1 2
0x07C2 0x081F 1

Reserved Reserved Reserved

Base Addr Limit Addr Dest Node ID

0x0420
 0x081F
 0x0820
 0x0C1F

0x07C0
DRAM Address Mapping Table

0 North
1 Local
2 East
3 South

Dest Node ID Output Port

RouMng
Table

(b)

Figure 8: Example of PIkit (a) before and (b) after PIkit is installed on an AMD Opteron 6128 server.

Since memory accesses continuously occur in the sys-
tem, randomly changing the mapping table in any order
can result in a memory request that is not able to match
an entry in the mapping table and result in a system crash.

4.4 Example
A complete example of PIkit is shown in Figure 8 for
a 4-node system with only 2 nodes shown in the figure
for simplicity. The same DRAM address mapping tables
shown earlier in Figure 4 and Figure 7 are used in the ex-
ample.6 Assume a read access to address 0x07C0000000
is made by a core in node 1. With an unmodified DRAM
address mapping table, the address 0x07C0000000 finds
a match in entry 1 and determines that the destination
should be node 1. Based on this information, a routing
table look-up is done for the node 1 to determine the out-
put port. Since the current node is the local node, the
output port determined by the routing table is the “Lo-
cal” port and the memory request is routed appropriately
to the local node’s memory.

However, with the modified DRAM address map-
ping table (Figure 8(b)), the same request to address
0x07C0000000 finds a match to entry 5 where the desti-
nation is now node 2. Based on this new destination node
ID information, the routing table look-up is done within
the router and the output port returned is the “East” port
– thus, the packet is routed to node 2. Within the node
2, the packet is simply treated as a packet that was des-
tined for node 2 (or the “Local” output port) and will be
routed to the memory controller. Since the processor-
interconnect only looks at the destination node informa-
tion to determine where to send the packet, the PIkit
shown in Figure 8(b) results in packets accessing a mem-
ory region where it does not have proper permission. If
this packet was a read request, the packet would read data
from the corresponding victim memory address while if
this packet was a write request, the packet would modify
or overwrite existing data in the victim memory address.

6For simplicity, the lower 3 bytes of the address are not shown in
Figure 8.

<	SAD	Modification	ordering>	

0 0x22 0 1
1 0x42 1 1
2 - - 0
3 - - 0

Limit	
Addr

Dest
Node	ID Valid

0 0x22 0 1
1 0x42 1 1
2 0x22 0 1
3 0x42 1 1

Limit	
Addr

Dest
Node	ID Valid

0 0x22 0 0
1 0x42 1 0
2 0x22 0 1
3 0x42 1 1

Limit	
Addr

Dest
Node	ID Valid

0 0x18 0 0
1 0x1A 1 0
2 0x22 0 1
3 0x42 1 1

Limit	
Addr

Dest
Node	ID Valid

0 0x18 0 1
1 0x1A 1 1
2 0x22 0 1
3 0x42 1 1

Limit	
Addr

Dest
Node	ID Valid

(1) (2) (3) (4) (5)

Figure 9: Example of how the Source Address Decoder (SAD)
can be modified on the attack node to implement PIkit on an
Intel Sandybridge architecture.

4.5 Extending PIkit to Intel Architecture
In the previous sections, we described how PIkit is im-
plemented on an AMD multi-socket server and in this
section, we discuss how PIkit can be extended to an Intel-
based server. A structure similar to the memory mapping
table exists within Intel x86 server architecture and is re-
ferred to as the Source Address Decoder (SAD) [5]. A
key difference with the AMD architecture in the mem-
ory mapping table is that instead of specifying both the
base and the limit memory address for each entry, only
the limit address is specified. In addition, a valid bit per
entry exists in the SAD which specifies if the entry is en-
abled or not. As a result, the “base” address is implied
from the previous entry limit address and PIkit design
needs to properly add/modify entries of SAD to ensure
proper behavior for memory accesses. An example of
how the SAD table can be modified is shown in Figure 9.
The initial entries are first duplicated in the table (step
(2)) and then, the initial entries are invalidated (step (3))
before the addresses are modified (step (4)) and then, the
modified addresses are made valid (step (5)) to create an
attack address region with entry 1 of the SAD table.

Another key difference in the Intel architecture com-
pared with the AMD system is the Target Address De-
coder (TAD) which is accessed before the address is sent
to the memory controller at the destination node. 7 TAD
is an additional table that is responsible for mapping dis-
continuous address regions [5] and includes both a limit
address and an offset. While the purpose of the “off-
set” within the TAD is to relocate the memory location as
necessary, it enables PIkit to be implemented by defining

7While a similar structure existed in the AMD system that we eval-
uated, it only had a single entry and could not be exploited for PIkit.

7

< SAD figure BEFORE (Modified) Output Port>

Node 0
UNCORE

ROUTER
TAD

MEMORY

Node 1
UNCORE

ROUTER

MEMORY

SAD SAD

0x22 0 1
0x42 1 1

RESERVED RESERVED 0
RESERVED RESERVED 0

RESERVED RESERVED 0

Limit Addr Dest Node ID Valid

0x00 0x22 0x23 0x42
0 Local
1 East

Dest Node ID Output Port
Routing Table

Source Address Decoder
0x19

TAD

Limit Addr Offset

Target Address
Decoder (TAD)

… … …

0x42 0x23
RESERVED RESERVED
RESERVED RESERVED

RESERVED RESERVED

… …

(a)

Node 0
UNCORE

ROUTER
TAD

MEMORY

Node 1
UNCORE

ROUTER

MEMORY

SAD SAD

0x18 0 1
0x1A 1 1
0x22 0 1
0x42 1 1

RESERVED RESERVED 0

Limit Addr Dest Node ID Valid

0x00 0x22 0x23 0x42

Source Address Decoder
0x19

TAD

Limit Addr Offset

Target Address
Decoder (TAD)

… … …

0x22 0x0
0x42 0x23

RESERVED RESERVED

RESERVED RESERVED

… …
< SAD figure AFTER (Modified) Output Port >

0 Local
1 East

Dest Node ID Output Port
Routing Table

(b)

Figure 10: PIkit example on an Intel Sandybridge-based server (a) before and (b) after PIkit is implemented. For simplicity, the
TAD on Node 0 and SAD 0 on Node 1 are not shown.

<	SAD	TAD	ROLE		Modified>

Attack	Address	
Region

Victim	Address	
Region	0

Low	Addr

High	Addr

Low	Addr

High	Addr

Victim	Address	
Region	1

NODE	 0	MEMORY NODE	 1	MEMORY

…

TAD	
limit/offset

Figure 11: Impact of the Target Address Decoder (TAD) on the
mapping of the attack memory region to the victim memory
region.

the victim memory address region based on the attack
address region. The impact of TAD offset is shown in
Figure 11. Since the offset is subtracted from the ad-
dress, by varying offset entry, the attack memory address
region can be mapped to different victim memory region
based on the offset value and enables a more “controlled”
attack by providing control over the memory mapping
(i.e., victim’s address range). One constraint is that since
the offset is being subtracted, the victim memory address
region can only be equal or smaller than the attack mem-
ory address region.

A PIkit example for an Intel-based architecture is
shown in Figure 10 based on the SAD modification
shown in Figure 9. The PIkit consists of both the SAD
modification in the attack node and the TAD modifica-
tion in the victim node. Thus, the same vulnerability
that was exploited for PIkit on the AMD-based system
is available in the Intel-based servers – the table struc-
tures are memory-mapped registers that are configurable
and extra number of entries are available. Based on doc-
umentations [5], the number of entries for SAD is 20 and
thus, it is more than sufficient for a 2-node multi-socket
system.

5 Malicious User-level Payloads
After PIkit is installed, PIkit enables access to the victim
address region regardless of the privilege level. In this
section, we describe different malicious activities with
user-level payloads that can exploit PIkit. While many
different attacks (and payloads) have been proposed as
part of rootkit attacks, previous attacks often require

Description Value
System AMD Opteron 6128
of Sockets (Nodes) 2 (2 per socket)
of Cores 4 per node
Interconnect 6.4 GT/s HT 3.0
of HT Links 4 per node
OS version Linux Kernel 3.6.0

Table 2: Dell PE R815 server used in our evaluation.

leveraging (or modifying) some OS capability or creat-
ing additional payload to mimic the OS. In comparison,
the malicious payload for PIkit is fundamentally differ-
ent as the payload is relatively simple with the source
code mostly consisting of memory read and write com-
mands. 8 The main challenge with PIkit payload is deter-
mining the attack (or the corresponding victim) address
region to carry out the malicious activity.

5.1 Bash Shell Credential Object Attack
In the operating system, a process is represented by a
process control block (PCB) data structure in the privi-
leged memory space. The process control block has crit-
ical information such as memory information, open-file
lists, process contexts and priorities, etc. In particular,
we exploit the credential kernel data structure which is
contained within the PCB and is responsible for access
controls of a process in the Linux kernel. If the attacker
locates the credential data structure in the victim address
region, the attacker can modify any value within the cre-
dential data structure with PIkit. In this work, we modify
the UID or the EUID of a bash shell process to achieve
root privilege escalation. An overview of the malicious
activity is shown in Figure 12. We demonstrate this at-
tack on a 4-node AMD server described in Table 2.

5.1.1 Scanning the Fingerprint

In this attack, we assume the attacker uses a common
user-level application, Bash Shell, to obtain root privi-
lege. After the PIkit is installed on the attack node, the
attacker starts the bash shell on the victim node and at-
tempt to modify the credential data structure for privi-

8Pseudo-code for the malicious payload is shown in Appendix for
the three different malicious activities described in this section.

8

VA

PA

Translation	 of	VA to	PA
(pagemap interface)

Finger-Print	Scanning

Found	?

No

Data	Modification
Yes

Memory	Allocation
(malloc huge-page)

Pikit	Installation
(DRAM	mapping	table

modification)

PCB(Bash $)	Spraying

Privilege
Escalation

: Attack	Node

: Victim	Node

: Pikit Attack		Node
è Victim	Node

Figure 12: High-level overview of the attack with PIkit for priv-
ilege escalation.

lege escalation. One challenge before obtaining privi-
lege escalation is determining the actual address of the
PCB (or in particular, the credential data structure) of the
bash shell on the victim node. In order to determine the
memory location, we use the fingerprint of the credential
data structure to identify the proper starting address. As
shown in Figure 13, the credential data structure consists
of multiple integer variables and pointers which contain
64 bits addresses. Since the bash shell user-level process
is owned by the attacker, the attacker knows the user/-
group ID of the process and can use the consecutive user
and group IDs (e.g., UID, GUID, ..., FSGID), as shown
in Figure 13 1© as these variables often have the same
values.

To increase the accuracy of the fingerprint, additional
pointer information within the credential data structures
can also be used. Since most of the x86-64 Linux sys-
tems use the specific virtual address ranges for the ker-
nel objects based on the kernel virtual address map [29]
(e.g., 0xffff880000000000 – 0xffffc7ffffffffff for the di-
rect mapping), the pointers shown in Figure 13 2© should
have virtual addresses that are within this range. This
approach is similar to what was used in prior work [46]
that used virtual address characteristic to find the pro-
cess control block used by Window operating system in
dumped memory. In addition, some addresses of dif-
ferent variables used in kernel space are publicly avail-
able even in the user-level space, including the Symbol
Lookup Table (’/boot/System.map’) [32]. In particular,
the virtual address of ’user ns’, shown in Figure 13 3©,
can be found in the Symbol Lookup Table which is deter-
mined at kernel compile time and can be used as part of
the fingerprint.

Based on the three types of information described
above, a fingerprint for the credential kernel data struc-

①

②
③

Figure 13: The credential kernel data structure in the Linux
kernel 3.6.0 and the fingerprint that we exploit in this work,
with the fingerprint highlighted with a rectangle.

ture can be used to determine the location of the creden-
tial data structure. The attacker from the attack node can
issue read operations for the attack address region – de-
termined by the allocated memory region and the modi-
fied DRAM address mapping table on the attack node as
described in Section 4 – and begin the fingerprint scan-
ning. The read requests will be routed to the victim node
and the data in memory will be returned to the attack
node where it will be compared against the fingerprint.
If there is a match, the starting address of the credential
data structure is found and the attacker can modify the
data. If no match is found, the credential data structure of
the bash shell is not found on the victim address region
– thus, the attacker needs to stop the current bash shell
process and restart the bash shell on the victim node, and
repeat the fingerprint scanning.

Note that the attacker does not need to know the start-
ing virtual address of the kernel data structure on the vic-
tim node. In fact, the appropriate physical address within
the victim address region does not need to be known as
well. Only the corresponding address on the attack node
needs to be determined from the fingerprint scanning and
the attack (or the modification of the data) is done based
on the physical address of the attack node and the corre-
sponding virtual address within the attack node is used
in the actual data modification.

5.1.2 Modifying the Data

Once the corresponding address of the credential data
structure is determined from the scanning, the offset
within the data structure can be easily determined based
on the credential data structure definition (e.g., Fig-
ure 13) and the different variables within the data struc-
tures can be easily modified with PIkit. Thus, the root
privilege can be obtained by modifying either the euid
(Effective User ID) or the uid (User ID) field within the
credential data structure to a value of 0 (instead of the
original value) as the uid of 0 specifies the root user. In
order to overwrite this variable, a memory write instruc-
tion in assembly language can be used by the attacker to
obtain the root privilege – e.g.,
movnti $0, (Virtual Address)

where the virtual address is the address determined from

9

Figure 14: Screen capture from id command of privilege esca-
lation, before the attack and after the attack.

Mhead (8 Bytes) Keyboard Input Buffer (256 Bytes)

①
②
③

Figure 15: Keyboard buffer data structure in the bash 4.3 and
the fingerprint that we exploit in this work, with the fingerprint
highlighted with a rectangle.

scanning and PIkit routes this write instruction to the vic-
tim node. However, we used a non-temporal SSE instruc-
tion in our evaluation in order to bypass the cache within
the processor. If the write occurs to the cache within the
attack node, the effect of the root privilege escalation can
be delayed until write-back to the memory occurs.

The result from the attack is shown in Figure 14, con-
sisting of the ID information before and after that attack
using the id command from of the bash shell on the vic-
tim node. The EUID of Bash Shell in the victim node is
modified to root user and thus, root privilege escalation
is achieved.

5.1.3 Spraying the Process Control Block

As described earlier, the attack address region is mapped
to some victim address region on the victim node through
PIkit. As a result, all memory accesses to the attack ad-
dress region on the attack node are constrained to some
victim address region based on the DRAM physical map-
ping which is not known. As a result, if a user-level ap-
plication (i.e., bash shell) executing on the victim node is
not placed in the victim address region, an attacker can
not access the kernel objects of the process. To increase
the probability that the credential data structure can be
found, the PCB can be sprayed across the victim node by
executing multiple bash shells on the victim node. This
increases the probability that one of the processes (and
the corresponding PCB) is placed within the victim ad-
dress region and reduces the amount of time it takes to
achieve privilege escalation.

5.2 Bash Keyboard Buffer Attack
In this section, we describe how PIkit can be exploited to
carry out an information leakage attack on another user’s
bash shell and perform a bash keyboard buffer monitor-
ing attack. Since no data modification is required, this
attack can be classified as a read-only attack. When a

①
②
③

Figure 16: Snapshot of bash keyboard buffer monitoring.

Description Value
System Intel Xeon E5-2650
of Sockets (Nodes) 2 (1 per socket)
of Cores 8 per node
Memory Capacity 8 GB per node
Interconnect 6.4 GT/s QPI
OS version Linux Kernel 3.6.0

Table 3: Dell PE R620 server using in our evaluation.

user types any word on their own shell prompt, all char-
acters are stored in a bash keyboard buffer in the memory
unencrypted.

In the Bash shell (v4.3), the bash keyboard buffer is
represented by a data structure referred to as mhead, as
shown in Figure 15. Similar to the bash shell credential
object attack described earlier, a fingerprint is necessary
to detect this data structure in memory. For the finger-
print of the bash keyboard buffer, we use three unique
values as the fingerprint based on the mhead data struc-
ture. The character variable (Figure 15 1©) has a unique 8
bits value (e.g., either 0x7F when allocated or 0x54 when
freed). In addition, the 16-bit variable (Figure 15 2©) is
always a predefined magic number (0x5555) and the 32-
bit variable (Figure 15 3©) is always 0x100 that refers to
the size of the buffer.

Based on the fingerprint, after PIkit is installed, an at-
tacker can search for the fingerprint to gather information
from victim users’ shell prompt, including potentially
password information since data in the keyboard buffer
is unencrypted. To evaluate this attack, we use the sys-
tem described in Table 3 and assume a SSH server where
multiple users use bash shell prompts from remote con-
nections. Multiple remote SSH connections are made on
the victim node and for each shell, different prompt in-
puts are used to evaluate the bash keyboard buffer attack.

By scanning for the fingerprint on the victim address
region, we were able to monitor the bash keyboard buffer
of other users. Different examples are shown in Fig-
ure 16 – Figure 16 1© shows a user typing in their pass-
word while Figure 16 3© show other commands being
typed by another user. In comparison, Figure 16 2© shows
a keyboard buffer for another user that does not contain
any content. Thus, with the buffer monitoring with PIkit
installed, the dynamic information from other users’ key-
board input can be leaked.

5.3 Shared Library Attack
The attack described earlier in this section required both
heap spraying and fingerprint scanning to obtain privi-

10

Determine VA
for a libc function

: Attack Node : Victim Node : Any Node : Pikit Attack Node  Victim Node

Translation of VA to PA
(pagemap interface)

PIkit installation
(TAD & SAD

modification)

Re-write
malicious binary code
for the libc function

Restore
original binary code
for the libc function

SUID program execution
linked with

the libc function

// dummy.c
void main(void) {

struct passwd *ret;
int pid = getpid();
int uid = getuid();
ret = getpwuid(uid);
printf("pid : %d\n", pid);
sleep(600);

}

$./dummy &
pid : 7145

$gdb dummy 7145
(gdb) p getpwuid
$1 = {<text variable>}
0x3ade699570

⑤

①

②

③

0xc03100000001be55
0x8318ec8348fb8953
0x107400002bd9aa3d
0x002bb36835b10ff0
0x0deb00000103850f
0x0f002bb35935b10f

getpwuid()
{

size_t buffersize;
malloc(buffersize);
……

}
Original Binaries Modified

getpwuid()
{

setuid(0);
system("/bin/sh");
……

}

0x48050f69b0ff3148
0x69622fffbb48d231
0x08ebc14868732f6e
0x50c03148e7894853
0x050f3bb0e6894857
0x050f583c6a5f016a

Malicious Binaries

④

Privilege
Escalation

VA

PA

Figure 17: Shared library (libc) Attack with PIkit.

lege escalation. While this approach was successful, the
attack can be time consuming because of the amount of
time to scan the memory and attack reliability can be-
come an issue since if the heap spraying does not fall
within the victim memory region as the attack process
needs to be repeated. To increase the attack reliability
with PIkit, we take advantage of the target address de-
coder (TAD) structure available in the Intel Sandybridge
architecture that provides the ability to “fix” the victim
memory address region based on the attack memory ad-
dress region. This approach is useful if the victim ad-
dress region contains information that can be maliciously
modified at a fixed physical memory location and does
not change over time.

In this section, we take advantage of shared libraries
that are often loaded into user memory space at single
physical location and shared by different users. Once
the shared library is initially loaded, the physical address
of the library will likely not change. A commonly used
shared library is libc and in this section, we exploit PIkit
to overwrite existing functions in the libc with a mali-
cious code to obtain privilege escalation. No fingerprint
scanning or heap spraying is required and results in a
highly reliable attack.

An overview of the libc attack is shown in Figure 17.
To first obtain the virtual address of the libc shared li-
brary, an attacker can write a simple attack program (Fig-
ure 17 1©) which links libc dynamically. By executing a
function within libc (e.g., getpwuid()) in the attack
program, the libc library is dynamically linked. Af-
ter obtaining the process ID for the attack program that
loaded the shared library (Figure 17 2©), we use a de-
bugger (e.g., gdb) on the running process to determine
the virtual address of the getpwuid()) function in the
shared library (Figure 17 3©). The physical address corre-
sponding to the virtual address of the libc library can be
determined through the /proc/pid/pagemap interface and
PIkit can be installed as described earlier in Section 4.5.
Since the target victim address (i.e., libc function code
location) is known, we modify the TAD structure offset
accordingly, based on the attack address region obtained
with PIkit.

After PIkit is installed, the attacker can re-write the
runtime code loaded in the memory with user-level mem-
ory operation (Figure 17 4©). In our example attack,
the first 48 bytes of getpwuid() function is re-written
with malicious binary code that executes shell with root
privilege. Even if the shared library is located in non-
writable memory regions, PIkit bypasses any OS permis-
sion check (W⊕X9 based implementations [3, 52, 34])
and write the malicious code to the physical DRAM di-
rectly. The modified code executes setuid(0) to ob-
tain root access but this does not work with user-level
privilege and requires root access. However, the passwd
Linux program has SUID (Set owner User ID) permis-
sion and is linked with getpwuid() function at runtime,
the execution enables the malicious binary code to esca-
late the user privilege to the root (Figure 17 5©). Once
privilege escalation is obtained, the attacker can restore
the original binary of getpwuid() function to prevent the
execution of the malicious code for other users that exe-
cutes getpwuid(). While getpwuid() function for the
libc was used to demonstrate this attack, other seldomly
used library functions can be used or the malicious code
can be modified to enable root shell only for specific user
ID.

6 Discussion
In this section, we provide discussion on how PIkit can
be potentially exploited for other types of attack, possible
solutions both in software and hardware, as well as some
limitations of PIkit.

6.1 VM Escape Attack
VM (virtual machine) escape is defined as enabling a
VM to interact with the hypervisor directly and/or ac-
cess other VMs running on the same host [30, 55]. If
PIkit is installed on a multi-socket server that supports
VMs, we expect that VM escape attack can be carried
out. However, there are two challenges to implement VM
escape with PIkit – huge pages and virtual address trans-
lation. PIkit exploited the availability of huge pages in
modern OS to define the attack address region. Modern
virtualization hardware technologies such as Intel VT-d
support 1 GB huge pages [43] and hypervisors such as
KVM, Xen and VMware also support 1GB huge page
for guest VMs. We evaluated the VM escape attack pos-
sibility with Xen 4.4 but the hypervisor underneath the
guest OS implemented the huge pages as a collection of
smaller pages (e.g., 2 MB pages), likely because of im-
plementation complexity. However, there is no funda-
mental reason why the hypervisor cannot support 1 GB

9A memory page must never be writable and executable at the same
time.

11

Algorithm 1: PIkit monitor to detect modification to the
DRAM address mapping table.

Input : monitoring
begin

while monitoring do
– Get DRAM in f ormation from SPD
– Calculate Valid address ranges of installed

DRAM from in f ormation
A← Valid address ranges
– Get Current address ranges from DRAM

address mapping table
B←Current address ranges
if A != B then

PIkit detected
return

huge pages. 10 Another challenge is that address trans-
lation needs to be done twice to properly install PIkit –
from the guest virtual address (gVA) to the guest physical
address (gPA) within the VM and then, another transla-
tion to the machine physical address. While /proc/pid/-
pagemap interface can be used for the translation from a
gVA to a gPA for the VM local OS system, similar to the
PIkit implementation described earlier, the hypervisor is
responsible for another translation from gPA to machine
PA. The hypervisor likely maintains a separate table/data
structure for this translation and this needs to be reverse
engineered to implement VM escape.

6.2 Possible Solutions
Possible solutions to PIkit can be classified as either a
software-based or a hardware-based solution. The actual
solution to PIkit is highly dependent upon the manufac-
turer of the hardware (e.g., Intel, AMD) as well as the
system software used.

6.2.1 Exploit Existing Features
While evaluating PIkit on different systems, some of the
recent AMD systems were not vulnerable to PIkit. To
the best of our knowledge, the vulnerability was not re-
moved for security reasons but removed for power sav-
ing implementation. C6 state is an ACPI defined CPU
power saving state where the CPU is put in sleep mode
and all CPU contexts are saved. In some AMD imple-
mentations, when the CPU enters the C6 state, the pro-
cessor context is saved into a pre-defined region of the
main memory. To avoid any possible corruption of the
processor contexts that are saved, the AMD systems im-
plement LockDramCfg option where some memory sys-
tem related configurations cannot be modified, includ-
ing the DRAM address mapping table [7]. However, the

10A very recent version of Xen (v 4.6) actually has support for 1 GB
huge pages.

Description Ratio (%)
SPD access period (I/O bound) 99.975 %
DRAM size calc period (CPU bound) 0.003 %
DRAM table access period (I/O bound) 0.019 %
Table Comparison period (CPU bound) 0.003 %

Table 4: Breakdown of CPU cycles ratio for the PIkit monitor.
BIOS can disable the C6 state for some of these systems
– which would enable PIkit to be installed. A simple
solution for PIkit on such AMD systems is to always en-
able LockDramCfg to prevent PIkit from being installed.
For the Intel systems, C6 power state is supported but
the processor contexts are saved to the last level cache
(and not the memory) to provide faster context switch –
thus, to the best of our knowledge, similar LockDramCfg
feature is not readily available in Intel x86 CPUs.

6.2.2 Software-based Solutions

Prior rootkit monitors can be extended to detect the pres-
ence of PIkit. The monitor continuously compares the
value of the current DRAM address mapping table with
the “correct” DRAM mapping table value – where the
correct value is determined similar to how the DRAM
mapping table is initialized by the firmware at boot time.
Thus, if we assume the software monitor is protected
with a secure platform [8, 9], the solution to detect PIkit
can also be protected.

We implemented the PIkit monitor as a Linux ker-
nel thread and we evaluate its performance overhead.
High-level description of PIkit monitor is shown in Al-
gorithm 1. We used the PARSEC 3.0 [12] and eval-
uated workloads with varying MPKI (misses per kilo-
instructions), using the system described earlier in Ta-
ble 2. To measure overall system performance, we run
each workload with the number of threads equal to the
number of physical cores in the system. Based on Linux
kernel 3.6.0, we implemented the rootkit monitor as a
loadable kernel module to avoid kernel code modifica-
tion and re-compilation. The execution time with PIkit
monitor is normalized to the baseline without the mon-
itor and the performance overhead from the software is
negligible as there is less than 2% impact on overall per-
formance (Figure 18).

The analysis of the PIkit monitor overhead is shown in
Table 4. The two CPU computation periods (e.g., DRAM
size calculation and comparison) take only 0.006% of the
total PIkit monitor execution time. In comparison, the
other two I/O bound periods (e.g., SPD and PCI address
access) occupy 99% of the monitor execution time since
these accesses have long latency – resulting in the kernel
thread waiting on the I/O and mostly experience uninter-
ruptible Sleep state. Thus, the PIkit monitor and software
solution has minimal impact on performance.

12

0.99

1.00

1.01

1.02

BTRK FREQ BLK RAY X264 FLUID DEDUP FERRET STCS CANN

Ax
is	
Ti
tle

No
rm

al
ize

d	E
xe
cu
tio

n	
Ti
m
e

LOW	MPKI MID	MPKI HIGH	MPKI

Figure 18: Performance overhead for PIkit monitor

6.2.3 Hardware-based Solutions

PIkit can be prevented with minimal hardware modifica-
tions. One hardware solution is to restrict the usage of
the DRAM address mapping table entries used in multi-
socket servers, based on the number of nodes in the sys-
tem. If the hardware restricts the number of entries used
to equal the number of nodes in the system, PIkit can be
minimized. This approach does not completely remove
the possibility of the PIkit since the attacker could use
the entire local node’s memory as attack address region.
However, unless the attacker is the only user on the lo-
cal node, this can cause non-deterministic behavior. If
the number of entries is restricted, the attacker can also
modify the DRAM address mapping where only small
region is specified as the attack address region but the
remaining address range of the local node would not be
mapped in the table. As a result, if any memory access
occurs to an unmapped address region, the system will
likely crash.

Another possible hardware solution is to design the
DRAM address mapping table entries as write-once
memory-mapped registers such that the DRAM mapping
table can not be modified after it is initially written. A
block diagram of such write-once register is shown in
Figure 19 – after a write is done, the write enable (WE)
to the register will be disabled and no further writes can
be done to the registers unless system reset is asserted.
This approach avoids any possibility of the PIkit attack
since the DRAM address mapping table cannot be modi-
fied after it is initialized; however, this removes any flex-
ibility in the system if CPU hotplug [38] or memory hot-
plug [27] is supported. If the system supports hotplug
where the DRAM (or CPU) can be added or removed
while the system is running, the DRAM address mapping
table needs to be modified after it is initialized to reflect
the change in the memory capacity. This would require
a minor change to the hardware (i.e., OR’ing the RESET
signal with another signal that detects a hotplug event).
However, this can also open up other attack opportuni-
ties if the attacker has physical access to the memory
modules – for example, doing a hotplug creates an op-
portunity to modify the DRAM address mapping table
and install the PIkit.

WE

RESET

WRITE

WRITE ENABLE

DIN
 DOUT

WE

Figure 19: A PIkit hardware solution by creating a write-once
register for the DRAM address mapping table.

6.3 Limitations
Memory mapping granularity: As described earlier
in Section 4.2, there is a granularity (or the resolution)
of the attack memory address region that can be speci-
fied with the DRAM address mapping table entries. In
the AMD Opteron 6128 system, the smallest amount of
memory address range that can be used as the attack
address region is 16 MB. For the Intel Xeon E5-2650
(Sandybridge), the lower 26 bits are not specified and
the granularity is 64 MBs. Thus, the granularity specifies
the lower limit on the smallest attack address region that
can be specified. This can be problematic if only normal
page size is supported – i.e., with memory page size of
2 MBs, the attacker would require obtaining 8 physical
pages to cover the 16 MBs attack region. If the entire
attack region is not obtained by the attacker, other users
(and programs) will access the victim address region and
can cause unknown behaviors. However, huge pages that
are available in modern OS can overcome this limitation.

DRAM coverage: One challenge of PIkit is the un-
known DRAM physical mapping when an attack address
is sent to the victim node. The details of how the DRAM
physical address is mapped to the DRAM (i.e., row, col-
umn, channel, etc.) is vendor-specific. Although these
details are often described in the specifications, the PIkit
results in an unintended address arriving at the victim
node memory system and it is not clear how the phys-
ical address bits are interpreted by the DRAM. For ex-
ample, in the AMD Opteron 6128 system, the memory
controller (or MCT) consists of two DRAM controllers
(DCT0 and DCT1) where each DCT is responsible for
half of the DRAM main memory connected to that par-
ticular node. When the attack node ID was smaller than
the ID of the victim node (i.e., node 1 attacking node
2), only DCT0 address range could be accessed. How-
ever, by attacking node 2 from node 3, we discovered
that DCT1 range can be accessed. Another limitation
was that for some memory accesses, multiple attack ad-
dresses can map to the same victim address but this is
a fundamental limitation of our proposed PIkit on the
AMD system. In comparison, for the Intel Xeon E5-
2650 (Sandybridge) server, the DRAM coverage issue
was significantly minimized as there was an 1:1 memory
mapping between the attack and the victim memory ad-
dress region through the TAD structure. However, it is

13

not clear if this can be generalized to other Intel-based
servers.

7 Conclusion
In this work, we described a new type of rootkit where
the vulnerable hardware feature enables malicious activ-
ities to be carried out with only user-level code or pay-
load. In particular, we presented PIkit – a processor-
interconnect rootkit that enables an attacker to modify
a packet’s destination and access victim’s memory re-
gion without proper permission. We described the de-
sign and challenges in implementing PIkit across both
AMD and Intel x86 multi-socket servers. Once PIkit
is installed, user-level codes used for malicious activ-
ities become very difficult to detect since memory ac-
cesses within the attack code appears as “normal” mem-
ory accesses to user-allocated memory. We demonstrated
different malicious activities with PIkit, including bash
shell credential object attack, keyboard buffer attack, and
shared library attack.

Acknowledgements
We would like to thank the anonymous reviewers for
their insightful comments. This research was supported
in part by the Mid-career Researcher Program (NRF-
2013R1A2A2A01069132), in part by IITP grant funded
by MSIP (No.10041313, UX-oriented Mobile SW Plat-
form), in part by the MSIP under the ITRC support pro-
gram (IITP-2015-H8501-15-1005), and in part by Next-
Generation Information Computing Development Pro-
gram through NRF funded by the Ministry of Science,
ICT & Future Planning (2015M3C4A7065647) and (No.
NRF-2014M3C4A7030648).

References
[1] chkrootkit. http://www.chkrootkit.org/.

[2] Rootkit Hunter. https://rootkit.nl/projects/rootkit_

hunter.html.

[3] OpenBSD 3.3 release notes. http://www.openbsd.org/33.

html, May 2003.

[4] JEDEC Standard, SPD General Standard, 2008.

[5] Intel R© Xeon R© Processor 7500 Series.

[6] Linux Kernel Vulnerabilities Over Time. http://www.

cvedetails.com/product/47/Linux-Linux-Kernel.

html?vendor_id=33, 2015. [Online; accessed 19-Aug-2015].

[7] ADVANCED MICRO DEVICES. BIOS and Kernel Developer
Guide (BKDG) for AMD Family 15h Models 00h-0Fh Proces-
sors, 2012.

[8] ALVES, T., AND FELTON, D. TrustZone: Integrated Hardware
and Software Security. ARM white paper 3, 4 (2004), 18–24.

[9] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.
Innovative Technology for CPU Based Attestation and Sealing. In
Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (2013), vol. 13.

[10] ANDERSON, D., AND TRODDEN, J. Hypertransport System Ar-
chitecture. Addison-Wesley Professional, 2003.

[11] AZAB, A. M., NING, P., AND ZHANG, X. SICE: A Hardware-
Level Strongly Isolated Computing Environment for x86 Multi-
core Platforms. In Proceedings of the 18th ACM conference on
Computer and communications security (2011), ACM, pp. 375–
388.

[12] BIENIA, C. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[13] BIOS, A. kernel developers guide for amd family 10h proces-
sors, 2008.

[14] BUCHANAN, E., ROEMER, R., SHACHAM, H., AND SAVAGE,
S. When Good Instructions Go Bad: Generalizing Return-
Oriented Programming to RISC. In Proceedings of the 15th ACM
conference on Computer and communications security (2008),
ACM, pp. 27–38.

[15] BUTLER, J. Direct Kernel Object Manipulation (DKOM). Black
Hat USA (2004).

[16] CHEN, H., MAO, Y., WANG, X., ZHOU, D., ZELDOVICH, N.,
AND KAASHOEK, M. F. Linux kernel vulnerabilities: State-of-
the-art defenses and open problems. In Proceedings of the Second
Asia-Pacific Workshop on Systems (2011), ACM, p. 5.

[17] CREED. Information about the Knark Rootkit.
http://ossec-docs.readthedocs.org/en/latest/

rootcheck/rootcheck-knark.html, 1999.

[18] CUI, A., COSTELLO, M., AND STOLFO, S. J. When Firmware
Modifications Attack: A Case Study of Embedded Exploitation.
In NDSS (2013).

[19] DALLY, W. J., AND TOWLES, B. P. Principles and Practices of
Interconnection Networks. Elsevier, 2004.

[20] DAVID, F. M., CHAN, E. M., CARLYLE, J. C., AND CAMP-
BELL, R. H. Cloaker: Hardware Supported Rootkit Con-
cealment. In 2008 IEEE Symposium on Security and Privacy
(S&P’08) (2008), IEEE, pp. 296–310.

[21] HEASMAN, J. Implementing and Detecting an ACPI BIOS
Rootkit. Black Hat Federal 368 (2006).

[22] HEATH, T., MARTIN, R. P., AND NGUYEN, T. D. Improv-
ing Cluster Availability Using Workstation Validation. In ACM
SIGMETRICS Performance Evaluation Review (2002), vol. 30,
ACM, pp. 217–227.

[23] HOCK, R. Dica rootkit. https://packetstormsecurity.

com/files/26243/dica.tgz.html, 2002.

[24] HOFMANN, O. S., DUNN, A. M., KIM, S., ROY, I., AND
WITCHEL, E. Ensuring Operating System Kernel Integrity with
OSck. In ACM SIGARCH Computer Architecture News (2011),
vol. 39, ACM, pp. 279–290.

[25] HUND, R., HOLZ, T., AND FREILING, F. C. Return-Oriented
Rootkits: Bypassing Kernel Code Integrity Protection Mecha-
nisms. In USENIX Security Symposium (2009), pp. 383–398.

[26] INTEL. Intel R© Xeon R© Processor E7-8800/4800/2800 v2 Prod-
uct Family.

[27] ISHIMATSU, Y. Memory Hotplug. LinuxCon Japan (2013).

[28] KING, S. T., AND CHEN, P. M. SubVirt: Implementing malware
with virtual machines. In 2006 IEEE Symposium on Security and
Privacy (S&P’06) (2006), IEEE, pp. 14–pp.

[29] KLEEN, A. Virtual Memory Map with 4 level page
tables. https://www.kernel.org/doc/Documentation/

x86/x86_64/mm.txt, 2004.

[30] KORTCHINSKY, K. CLOUDBURST: A VMware Guest to Host
Escape Story. Black Hat USA (2009).

14

http://www.chkrootkit.org/
https://rootkit.nl/projects/rootkit_hunter.html
https://rootkit.nl/projects/rootkit_hunter.html
http://www.openbsd.org/33.html
http://www.openbsd.org/33.html
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://ossec-docs.readthedocs.org/en/latest/rootcheck/rootcheck-knark.html
http://ossec-docs.readthedocs.org/en/latest/rootcheck/rootcheck-knark.html
https://packetstormsecurity.com/files/26243/dica.tgz.html
https://packetstormsecurity.com/files/26243/dica.tgz.html
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt

[31] LEE, H., MOON, H., JANG, D., KIM, K., LEE, J., PAEK,
Y., AND KANG, B. B. KI-Mon: A Hardware-assisted Event-
triggered Monitoring Platform for Mutable Kernel Object. In
USENIX Security (2013), pp. 511–526.

[32] LOVE, R. Linux Kernel Development. Pearson Education, 2010.

[33] MASKIEWICZ, J., ELLIS, B., MOURADIAN, J., AND
SHACHAM, H. Mouse Trap: Exploiting Firmware Updates in
USB Peripherals. In 8th USENIX Workshop on Offensive Tech-
nologies (WOOT 14) (2014).

[34] MICROSOFT. A detailed description of the Data Execution Pre-
vention (DEP) feature in Windows XP Service Pack 2. http:

//support.microsoft.com/kb/875352, 2008.

[35] MILLER, T. Analysis of the T0rn rootkit. SANS Institute (2000).

[36] MORGAN, T. P. X86 Servers Dominate The Datacenter-For
Now. http://www.nextplatform.com/2015/06/04/

x86-servers-dominate-the-datacenter-for-now/,
2015.

[37] MUTNURY, B., PAGLIA, F., MOBLEY, J., SINGH, G. K., AND
BELLOMIO, R. QuickPath Interconnect (QPI) Design and Anal-
ysis in High Speed Servers. In 19th Topical Meeting on Electrical
Performance of Electronic Packaging and Systems (2010), IEEE,
pp. 265–268.

[38] MWAIKAMBO, Z., RAJ, A., RUSSELL, R., SCHOPP, J., AND
VADDAGIRI, S. Linux Kernel Hotplug CPU Support. In Linux
Symposium (2004), vol. 2.

[39] NIU, S., MO, J., ZHANG, Z., AND LV, Z. Overview of Linux
Vulnerabilities. In 2nd International Conference on Soft Comput-
ing in Information Communication Technology (2014), Atlantis
Press.

[40] NYBERG, C. M. SAdoor - A non listening remote shell and exe-
cution server. http://krutibrko.sk/school/dp/samples/
SAdoor/sadoor.pdf, 2002.

[41] OP, F. The FU rootkit. https://www.soldierx.com/tools/
FU-Rootkit, 2008.

[42] PETRONI JR, N. L., FRASER, T., MOLINA, J., AND ARBAUGH,
W. A. Copilot - a Coprocessor-based Kernel Runtime Integrity
Monitor. In USENIX Security Symposium (2004), San Diego,
USA, pp. 179–194.

[43] RIGHINI, M. Enabling Intel R© Virtualization Technology Fea-
tures and Benefits. Intel White Paper. Retrieved January 15
(2010), 2012.

[44] RUSHANAN, M., AND CHECKOWAY, S. Run-DMA. In
9th USENIX Workshop on Offensive Technologies (WOOT 15)
(2015).

[45] RUTKOWSKA, J. Subverting the Vista Kernel For Fun And Profit.
SyScan (2006).

[46] SCHUSTER, A. Searching for Processes and Threads in Mi-
crosoft Windows Memory Dumps. digital investigation 3 (2006),
10–16.

[47] SHIELDS, T. Survey of Rootkit Technologies and Their Impact
on Digital Forensics. http://www.donkeyonawaffle.org/

misc/txs-rootkits_and_digital_forensics.pdf, 2008.

[48] SOMER, L. Linux Roootkit 5. https://

packetstormsecurity.com/files/10533/lrk5.src.

tar.gz.html, 2000.

[49] SONG, W., KIM, J., LEE, J.-W., AND ABTS, D. Security
Vulnerability in Processor-Interconnect Router Design. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (2014), ACM, pp. 358–368.

[50] SPARKS, S., AND BUTLER, J. Shadow Walker: Raising The Bar
For Windows Rootkit Detection. Black Hat Japan 11, 63 (2005),
504–533.

[51] SPARKS, S., EMBLETON, S., AND ZOU, C. C. A Chipset Level
Network Backdoor: Bypassing Host-Based Firewall & IDS. In
Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security (2009), ACM, pp. 125–
134.

[52] TEAM, P. Documentation for the PaX project - overall descrip-
tion. http://pax.grsecurity.net/docs/pax.txt, 2008.

[53] VASISHT, V. R., AND LEE, H.-H. S. SHARK: Architectural
Support for Autonomic Protection Against Stealth by Rootkit Ex-
ploits. In 2008 41st IEEE/ACM International Symposium on Mi-
croarchitecture (2008), IEEE, pp. 106–116.

[54] WANG, G., ESTRADA, Z. J., PHAM, C., KALBARCZYK, Z.,
AND IYER, R. K. Hypervisor Introspection: A Technique for
Evading Passive Virtual Machine Monitoring. In 9th USENIX
workshop on offensive technologies (WOOT 15) (2015).

[55] WOJTCZUK, R., RUTKOWSKA, J., AND TERESHKIN, A. Xen
0wning Trilogy. Invisible Things Lab (2008).

[56] WOJTCZUK, R., AND TERESHKIN, A. Attacking Intel BIOS.
BlackHat, Las Vegas, USA (2009).

[57] ZADDACH, J., KURMUS, A., BALZAROTTI, D., BLASS, E.-O.,
FRANCILLON, A., GOODSPEED, T., GUPTA, M., AND KOLTSI-
DAS, I. Implementation and Implications of a Stealth Hard-Drive
Backdoor. In Proceedings of the 29th annual computer security
applications conference (2013), ACM, pp. 279–288.

15

http://support.microsoft.com/kb/875352
http://support.microsoft.com/kb/875352
http://www.nextplatform.com/2015/06/04/x86-servers-dominate-the-datacenter-for-now/
http://www.nextplatform.com/2015/06/04/x86-servers-dominate-the-datacenter-for-now/
http://krutibrko.sk/school/dp/samples/SAdoor/sadoor.pdf
http://krutibrko.sk/school/dp/samples/SAdoor/sadoor.pdf
https://www.soldierx.com/tools/FU-Rootkit
https://www.soldierx.com/tools/FU-Rootkit
http://www.donkeyonawaffle.org/misc/txs-rootkits_and_digital_forensics.pdf
http://www.donkeyonawaffle.org/misc/txs-rootkits_and_digital_forensics.pdf
https://packetstormsecurity.com/files/10533/lrk5.src.tar.gz.html
https://packetstormsecurity.com/files/10533/lrk5.src.tar.gz.html
https://packetstormsecurity.com/files/10533/lrk5.src.tar.gz.html
http://pax.grsecurity.net/docs/pax.txt

	Introduction
	Background
	Threat Model
	Processor-Interconnect Overview
	Related Work

	Analysis of Processor-Interconnect in Multi-Socket Servers
	DRAM Address Mapping Table
	Vulnerable Hardware Features

	PIkit Design & Implementation
	Overview
	Defining Attack Address Region
	Modifying the DRAM Address Mapping Table
	Example
	Extending PIkit to Intel Architecture

	Malicious User-level Payloads
	Bash Shell Credential Object Attack
	Scanning the Fingerprint
	Modifying the Data
	Spraying the Process Control Block

	Bash Keyboard Buffer Attack
	Shared Library Attack

	Discussion
	VM Escape Attack
	Possible Solutions
	Exploit Existing Features
	Software-based Solutions
	Hardware-based Solutions

	Limitations

	Conclusion
	Acknowledgements

