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Drones are widely used for various purposes such as delivery, aerial photography, and surveillance. Consid-
ering the increasing drone-related services, tracking the locations of drones can cause security threats such
as escaping from drone surveillance, disturbing drone-related services, and capturing drones. For wirelessly
monitoring the status of drones, telemetry is used, and this status information contains various data such as
latitude and longitude, calibrated sensor outputs, and sensor offsets. Because most of the telemetry imple-
mentation supports neither authentication nor encryption, an attacker can obtain the status information of
the drones by using an appropriate wireless communication device such as software-defined radio. While the
attacker knows the locations of the drones from the status information, this information is not sufficient for
tracking drones because the status information does not include any identity information that can bind the
identity of the drone with its location.

In this article, we propose a fingerprinting method for drones in motion for the binding of the identity of
the drone with its location. Our fingerprinting method is based on the sensor outputs included in the status
information, i.e., the offsets of micro-electro mechanical systems (MEMS) gyroscope, an essential sensor for
maintaining the attitude of drones. We found that the offsets of MEMS gyroscopes are different from each
other because of manufacturing mismatches, and the offsets of five drones obtained through their telemetry
are distinguishable and constant during their flights. To evaluate the performance of our fingerprinting
method on a larger scale, we collected the offsets from 70 stand-alone MEMS gyroscopes to generate
fingerprints. Our experimental results show that, when using the offsets of three and two axes calculated
from 128 samples of the raw outputs per axis as fingerprints, the F-scores of the proposed method reach
98.78% and 94.47%, respectively. The offsets collected after a month are also fingerprinted with F-scores of
96.58% and 78.45% under the same condition, respectively. The proposed fingerprinting method is effective,
robust, and persistent. Additionally, unless the MEMS gyroscope is not replaced, our fingerprinting method
can be used for drone tracking even when the target drones are flying.
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1 INTRODUCTION

A drone is a type of unmanned aircraft system (UAS), whose components include a flight controller,
an inertial measurement unit (IMU), multiple rotors, and a battery. At present, drones are widely
used for distribution delivery, aerial photography, and surveillance, as well as for private hobbies.
Because of the increasing drone population, tracking drones has become an important issue for
both improving their safety and attacking drones.

Tracking drones can be used to enhance their safety, as it can be used to avoid collisions, im-
prove traffic efficiency, and prevent the flights of unauthorized drones, considering the increasingly
crowded airspace. For example, the National Aeronautics and Space Administration (NASA) and
the Federal Aviation Administration (FAA), in cooperation with various companies, such as Ama-
zon and Google, have been developing the UAS traffic management (UTM) system for drones flying
at low altitudes between 200 and 500 feet. In the UTM system, location tracking for the drones is
necessary to manage the drone traffic using additional means (such as an automatic dependent
surveillance-broadcast (ADS-B) or “ADS-B-like” system) that transmit the identity and location
of the drone to the UTM system [50, 53, 54]. On the other hand, tracking drones can be used for
malicious purposes as well. An attacker can maliciously track the locations of the drones for escap-
ing from drone surveillance, disturbing drone-related services, and capturing drones themselves.
In this article, from adversarial viewpoints, we introduce a fingerprinting method for drones that
can be used to track their locations based on the outputs of an essential sensor of the drones
even during flight. Most drones have a telemetry functionality based on the micro aerial vehicle
link (MAVLink) protocol [28] for monitoring their status. Because the drones are used for flying,
the status information supported by this telemetry is usually given via wireless communication
modules, such as 433 or 915MHz telemetry and Wi-Fi transceivers, in real time. Transmitted sta-
tus data are different from each implementation of flight controllers, but most implementations
include system parameters, global positioning system (GPS) data, altitude, rotor status, memory
status, sensor status, and sensor outputs. These data are used not only to monitor but also to de-
bug the drone systems. An attacker can collect the data using an appropriate radio device because
many telemetry modules have neither authentication nor encryption [11, 23, 27, 41, 43]. Thus, an
attacker can find the locations of drones from the GPS data as well as altitude included in the
status information, but cannot track each drone, because there is no identifier that can be used
for binding drones and the location information. In other words, essential information needed to
track drones is a persistent identifier that does not change before, during, and after the flight.

For this purpose, we propose a fingerprinting method that can identify drones based on the
offset information of microelectromechanical system (MEMS) gyroscopes readily available from
the status information. MEMS technology has been used to implement extremely small mechan-
ical structures in chips, and the MEMS gyroscope measures angular speed by sensing the force
caused by rotation in the MEMS structure. Because of mismatches in manufacturing processes,
every MEMS gyroscope is slightly different from the others. This leads to minute differences in
the outputs of each MEMS gyroscope even for identical inputs, and these differences can be used as
fingerprints. These differences are represented by the offsets of MEMS gyroscopes for three axes (X,
Y, and Z), which are measured by averaging the raw outputs of MEMS gyroscopes in a stationary
state for calibrating the gyroscopes. The values of the offsets are determined when the drones are
turned on (for calibration in a stationary state): these offsets do not change during flight.

To evaluate our method, we collected fingerprints from five commercial drones through teleme-
try before, during, and after the flight. We found that all fingerprints 1) are distinguishable and
2) do not change before, during, and after the flight. We further confirmed the latter by manu-
ally analyzing each drone’s firmware. To confirm if offsets can be used as fingerprints, we ran
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Table 1. Comparison with Existing Device Fingerprinting Methods Based on MEMS Sensors

MEMS " Target Data for Fingerprinting | Time for

Work Sensors Condition devices fingerprint method learning Results

Bojino Lab & public Smart Calibrated .Weight.ed 100% accuracy
X o X . sensor outputs Euclidean distance _ (Lab),
etal. Acc | (with flipping | devices with ; e 15.1%

[4] devices) web browsers (using based on sensitivity 1% acguracy

JavaScript) and offset (Public)

Smart . . .

Accel- Lab (station- | devices with Calibrated Machine learning 99% accuracy,
. sensor outputs | based on 36 features 30 L
Print Acc ary, motor web : 96% precision

[10] vibration) browsers (using SPT among 80 seconds & recall
> & JavaScript) extracted features
sensors
Lab & public Calibrated Machine learning 99% E-score
Das X Smart (Lab, Acc &
etal Acc & | (stationary, devi ith sensor outputs | based on 70 features 30-40 Gyro)
" | Gyro in hand, cevices wi (using among 100 seconds yro),
[9] audio) web browsers JavaScript) tracted feat 95% F-score
p extracted features (Lab, Gyro)
Bounded 98.78% F-score
L Jit .
Gyros- 'ab Drones Se'nsor offsets Euclidean distance 1.28 (Using 3 axes),
. Gyro (stationary, (using telemetry
Finger . . & sensors based on offsets secondsT 94.47% F-score
in motion) & SPI) ' .
for each axis (Using 2 axes)

*Acc: accelerometer, Gyro: gyroscope
fIf the offsets already calculated can be obtained from the target devices (i.e., through the telemetry of drones), this time is not required.

large-scale experiments as well. We collected over 40 million samples of raw data in a stationary
environment from 70 MEMS gyroscope chips (five models from two manufacturers) for each axis
with a sampling rate of 100Hz. Our experiment shows an F-score of 98.78% for generating fin-
gerprints using the offsets of the three axes averaged over 128 samples (collected for about 1.28
seconds in our experiment), and an F-score of 94.47% on average, using the offsets of two axes
under identical conditions. We collected additional data after about a month to verify whether our
fingerprints are time-invariant. After a month, the F-scores decreased to 96.58% and 78.45% when
using the offsets of three and two axes, respectively, because of the changes in offsets over time.
As drones are using offsets of three axes, this shows that gyroscope offsets can be used as a persis-
tent identifier for tracking drones. Because our fingerprint is based on hardware characteristics, it
can be used without modifying the software and hardware of commercial drones. Moreover, our
method can be applied to UTM for tracking commercial drones that are already released in the
market without any modification and additional cost.

As a side note, our study related with the previous fingerprinting methods using MEMS sen-
sors [4, 9, 10] to fingerprint smart devices with web browsers. While the purposes are different,
the comparison of our work with the previous studies is summarized in Table 1. To the best of our
knowledge, the proposed method is the first device-fingerprinting method that uses only MEMS
gyroscopes! and targets embedded devices without web browsers such as drones.

The remainder of this article is organized as follows. Section 2 provides information about the
telemetry of drones, MEMS gyroscopes, and their hardware imperfections. Section 3 describes our
attack model including assumptions. In Section 4, we explain the design of the proposed finger-
printing method. Section 5 provides details of our experiments. Discussions including limitations
of the proposed method are presented in Section 6. Section 7 outlines the existing researches on
security issues related to our study. We conclude this article with a summary in Section 8.

1 All previous studies considered fingerprinting with accelerometer output or a combination of accelerometer and gyroscope
outputs.
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Fig. 1. Block diagram of a typical drone system.

2 BACKGROUND

In this section, we provide information about the telemetry functionality used to monitor drones.
We also explain the principle and characteristics of MEMS gyroscopes including the manufactur-
ing mismatch in their hardware that causes the minute difference in the outputs of the MEMS
gyroscopes.

2.1 Telemetry in Drones

In a drone, two different types of wireless communication are utilized between the drone and its
user. A block diagram of a typical drone is shown in Figure 1. In the middle of this figure, the flight
controller, which is the brain of the drone, is connected to a GPS receiver to receive GPS signals
from GPS satellites, rotors to adjust their speeds, and sensors? to measure the environment. For
the wireless communication, the flight controller is also connected to the wireless receiver and
the telemetry transceiver. To control the drone, the remote controller wirelessly transmits control
signals to the wireless receiver according to user controls. To monitor the status of the drone,
both the telemetry transceivers at user and drone sides communicate with each other. The ground
station connected a user-side telemetry transceiver comprised of a laptop and monitoring software
such as QGroundControl [39]. Many telemetry transceiver pairs communicate using frequencies of
433 or 915MHz, and some of them support Wi-Fi.

The most commonly used protocol for the telemetry of drones is the MAVLink protocol [28]
defined and built on top of various wireless communication protocols. In MAVLink, the ground
station has to send request messages for receiving any data from the drone. According to the pre-
defined MAVLink messages, the ground station can obtain 269 types of data including heartbeat,
system status and parameters, sensor outputs, location, and altitude, but the number of supported
data types depends on the implementation of each drone. Although the protocol does not support
authentication and encryption [11, 23, 27, 41, 43], it has been applied to flight controllers such as
Pixhawk1 [37] and Pixhawk2 [38], which are used not only for commercial drones, but also for DIY
drones. Therefore, if an attacker has the capability to communicate with the telemetry transceiver
on a drone using an appropriate radio transceiver, she can collect its status information. In addition,
because the range of the wireless communication used in the telemetry transceivers is hundreds
of meters, the attacker can collect the status information from the target drones remotely.

2These sensors are usually installed on the flight controller board.

ACM Transactions on Privacy and Security, Vol. 21, No. 2, Article 10. Publication date: February 2018.



GyrosFinger: Fingerprinting Drones for Location Tracking 10:5

500 pm~

Rotation

Vibration

Vibration

Fig. 2. An example of the structure of a MEMS gyroscope.> When a rotation occurs while the middle of the
structure is continuously vibrating, a force is generated in a direction perpendicular to the vibrating direction.

2.2 MEMS Gyroscopes

A gyroscope is a device that measures the angular rate when spinning around one or more axes.
Based on the angular rate, a system equipped with a gyroscope can calculate the amount of ro-
tation or tilt. Because of the benefit of the MEMS technology that can implement micrometer-
or nanometer-sized mechanical structures into a microchip, it is becoming more popular and less
expensive. MEMS gyroscopes have been used in many applications, such as smartphones, health
care or fitness devices, drones, and gaming mice. Several types of MEMS gyroscopes are available
in the market. We differentiate between the analog and digital types according to the represen-
tation of the output data and between one-, two-, or three-axis types according to the number of
supporting axes. The most popular type is the digital three-axis MEMS gyroscope, which is mostly
manufactured by STMicroelectronics and InvenSense.

A drone is equipped with a MEMS gyroscope that acts as an essential part of their inertial
navigation system. To stabilize the drone’s movement in the air, its firmware or operating system
reads the raw outputs of its sensors, including the MEMS gyroscope, calibrates the outputs, and
converts them into meaningful physical quantities to observe and control the posture of the drone.

Operation: The principle of MEMS gyroscopes is a physical phenomenon called the Coriolis ef-
fect, which explains the deflected force (called Coriolis force) of a moving object in a rotating
structure. An example of the mechanical structure is shown in Figure 2. For sensing a rotation
along the Z axis, the structure continuously vibrates along the X direction. When a rotation oc-
curs, the deflected force is generated in the Y direction. This deflected force is measured in terms of
capacitances that are sensitively changed by the thickness of the physical gap between two plates
in the MEMS structure. By measuring this force, a MEMS gyroscope can sense the angular rate
because the force is proportional to it.

Manufacturing Mismatch: Every analog system has variances because of different noise sources
in nature, and the mass production of MEMS structures is no exception. Variances exist even among
the same models. Since the manufacturing of MEMS sensors is subject to nanometer scales, any
small variance leads to manufacturing mismatches [16, 22]. Not all causes of manufacturing mis-
matches are known, but an obvious cause is related to the capacitance [29]. The electrical capac-
itance mentioned in the previous subsection is determined by the size of two metallic plates and

3The base image is obtained from iFixit website [18].
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the gap between them. Therefore, any physical mismatch in the structure of MEMS gyroscopes
generates differences in their outputs. These manufacturing mismatches can appear in different
features, such as the offset, bias, and skewness of outputs.

2.3 Offsets of MEMS Gyroscopes

A MEMS gyroscope has many electronic and mechanical characteristics. An important charac-
teristic relevant for our fingerprinting method is the zero-rate level (also known as the zero-rate
output) [19-21, 47, 48]. The zero-rate level denotes an output level with no actual angular rate.
This level of each MEMS gyroscope can vary because of the mechanical stress caused by processes
such as soldering and mounting as well as the manufacturing mismatches. It is also known that
the zero-rate level is not affected greatly by the changes in temperature and does not change much
over time. We call this characteristic as offset in this article.

In many systems that utilize MEMS gyroscopes, the raw sensor outputs are calibrated or com-
pensated for standardized measurements. Because the measurement of MEMS gyroscopes is af-
fected by the temperature and the manufacturing mismatches, the systems compensate for the
variance in temperature and calibrate the output to be zero with no rotations. Through this cali-
bration process, the sensitivity and the offset of MEMS gyroscope outputs are adjusted properly
so that the calibrated outputs of every MEMS gyroscope have similar levels for the same physi-
cal quantities. Although some variances are removed by compensation and calibration, previous
studies [9, 10] proved that the outputs of each sensor still have distinguishable variances.

As an example of the calibration, according to open-source drone projects [13, 14] that support
various MEMS gyroscopes, the relationship between the raw outputs d, 4., [n] and the calibrated
outputs d.4;[n] of a MEMS gyroscope for each axis (an index for axes is omitted) is modeled as
follows:

dear[n] = AX draw[n] — B, (1)
where A is a sensitivity factor for converting the measured data into an actual physical quantity, B
is a bias factor used to make the offset of the calibrated outputs close to zero, and n is a discrete time
index for collected N samples (0 < i < N — 1). Ais a constant value that is unique for each model
of MEMS gyroscopes [13, 14]. B is unique for each MEMS gyroscope, and its value is determined
by the calibration process during the booting stage of the device in a stationary state [13, 14].

. N—_l draw
When the average value of the raw outputs is drawlavg = Z""’T["], the raw outputs can be

represented as the sum of the alternating dyqw[nllair (i-e., drawln] = drawlavg) and the average
drawlavg components. Then, from Equation (1), we obtain the following:

dea B

el | B @)
A A

When the device is calibrated in a stationary state, because both d, 4w [n]la; and dqi[n] are

close to zero, the average component d, 4. |avg is equal to %, which is the offset of the raw outputs.
Therefore, by averaging the raw outputs, the offset can be easily calculated.

draw[n] = draw[n]lar: + draw|avg =

2.4 Obtaining the Outputs of MEMS Gyroscopes

In the case of drones, the outputs of the MEMS gyroscopes, which are calibrated by the flight
controller, can be obtained using the telemetry. Even though each firmware developer may adopt
different implementations, the calibrated outputs are usually included in the status information,
because they can be used for not only monitoring but also debugging. For most flight controllers,
the offsets of MEMS gyroscopes obtained during the boot time are provided as well.

On the other hand, in the case of stand-alone MEMS gyroscopes, we can access the MEMS gyro-
scopes directly by using a programmable processor such as Arduino, which allows the collection of
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raw outputs. Analog MEMS gyroscopes represent the angular rate by means of the output voltage
level, and thus the processor only needs to read this level. Most of the digital MEMS gyroscopes
support a digital communication interface called by the serial peripheral interface (SPI). By send-
ing the request messages through the SPI, the processor can receive response messages including
the values of the angular rate as a bit sequence.

3 ATTACK MODEL

In this section, we introduce our attack model, including the assumptions for our fingerprinting
method for tracking drones. Based on our attack model, we also suggest a possible attack scenario.

3.1 Target System

In this article, we focus on fingerprinting and tracking flying drones based on the offsets from
the MEMS gyroscopes and location information included in the status information that can be
obtained through open telemetries. For this, we need to investigate if there exists a useful and per-
sistent identifier used in telemetry and its underlying communication. As discussed in Section 2.1,
status information does not include any identifier. Moreover, the network address of the telemetry
transceivers may not be used for reliable fingerprints because they can be temporarily assigned
and periodically updated, and even the telemetry transceivers can be easily replaced because they
are usually stand-alone modules just connected to the mainboard of drones unlike the MEMS gyro-
scopes which are soldered on the mainboard. Hence, the manufacturing mismatches of the MEMS
gyroscopes are one of the few characteristics that can serve as a fingerprint for drones.
We make the following assumptions regarding the target systems:

—The target systems are drones equipped with MEMS gyroscopes and telemetry transceivers
that have no authentication and encryption.

—The target systems are implemented to transmit the location information (or GPS data) and
the offsets (or the raw and calibrated outputs) of MEMS gyroscopes through telemetry.

A MEMS gyroscope is the essential component of the IMU that controls a drone’s attitude.
Telemetry transceivers are optional components, but they are necessary not only for monitoring
but also for configuring some parameters wirelessly. The lack of authentication and encryption of
such transceivers has been publicly reported [11, 23, 27, 41, 43]. Some drones use Wi-Fi modules
to communicate with user controllers and with ground stations as a telemetry transceiver as well
(e.g., 3DR Solo [1]). Wi-Fi supports authentication, but it also has vulnerabilities such as the use of
default passphrases. We also confirmed that the location information (i.e., latitude and longitude)
and the scaled offsets of MEMS gyroscopes can be obtained in default from two kinds of popular
flight controllers, Pixhawk1 [37] and Pixhawk2 [38]. Therefore, the first and second assumptions
hold in practice.

3.2 Capabilities of Attacker

To identify and track target drones, we assume that an attacker (1) has one or multiple ground
stations using the same type of telemetry transceivers to the target systems or software-defined
radio devices, such as the universal-software radio peripheral, HackRF, and BladeRF, using which,
the attacker implements the telemetry transceivers and (2) can obtain the location information and
offsets of MEMS gyroscopes from the target drones.

The offsets can be obtained in three ways. First, if the offsets are readily available through the
telemetry, the attacker only needs to send requests to obtain them. Second, if the attacker can
acquire the raw outputs of MEMS gyroscopes when the target drones are not moving (i.e., be-
fore flying), the offsets can be simply calculated by averaging the raw outputs (as explained in
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Fig. 3. An attack scenario for tracking drones using multiple ground stations based on the proposed finger-
printing and tracking method. (Each shaded region denotes the coverage of a station.)

Section 2.3). However, this requires multiple samples of the raw outputs collected over several
seconds. Third, if both the raw and calibrated outputs of MEMS gyroscopes can be acquired and
synchronized, the offsets can be calculated by comparing them, regardless of whether the drones
are flying, because both are highly correlated [Equation (1)].

3.3 Attack Scenario

Under the assumptions mentioned above, an attacker can collect the status information via teleme-
try interfaces from multiple drones using a single ground station because the range of the wireless
communication using the telemetry is hundreds of meters. From the collected information, the
attacker can know the locations of the drones, but the location data cannot be assigned to spe-
cific drones, owing to the lack of identifiers in the collected information. However, the offsets of
MEMS gyroscopes in the information can be used as fingerprints, allowing the attacker to match
the locations and the drones.

The range of wireless communications can be increased to several kilometers by using powerful
COTS radio frequency amplifiers [49]. Therefore, the attacker can track the target drones in large
areas, and the coverage of the tracking can be widened by using multiple ground stations like
mobile cell towers. Figure 3 illustrates this attack scenario.

4 FINGERPRINT DESIGN

In this section, we describe our investigation to find the fingerprints, including the evidence
of the fingerprints in the measured data from several drones and the detailed design of our
fingerprinting method. Through our measurements and analyses, we conclude that the offsets
of MEMS gyroscopes for each axis can serve as efficient fingerprints.

4.1 Evidence of Fingerprints

To ensure that offsets can be used for fingerprinting drones, we first evaluate with a number of
commercial drones equipped with commercial flight controllers, both of whose source codes are
open. As examples, we collected the offset data included in the status information from five drones
(four Pixhawk1 [37] and one Pixhawk2 [38] flight controllers based on the ArduPilot project) with
the latest firmware. These drones transmit scaled offsets (i.e., B as explained in Section 2.3) of

ACM Transactions on Privacy and Security, Vol. 21, No. 2, Article 10. Publication date: February 2018.



GyrosFinger: Fingerprinting Drones for Location Tracking 10:9

Table 2. Offsets Collected from Five Drones
at Room Temperature

Drone Offset Offset Offset
(flight controller) | of X axis | of Yaxis | of Z axis
Pixhawk1 #1 —12.57 65.75 4.07
Pixhawk1 #2 8.32 34.46 -1.15
Pixhawk1 #3 —0.81 52.28 -9.53
Pixhawk1 #4 22.95 19.57 —15.75
Pixhawk2 —4.26 -12.06 3.70

MEMS gyroscopes in the status information using the telemetry transceiver [13, 14]. In this case,
we can possibly use these offsets directly to fingerprint them even though they are scaled. How-
ever, since sensitivity factors may be different from each gyroscope model, to accurately compute
the actual offset, we need to find the sensitivity factor for each gyroscope, which can be obtained
from the source code of flight controller. For the MPU6000 gyroscope with which the five drones
are equipped, the constant sensitivity factor, A, is % [13, 14]. The actual offsets (i.e., %) for
all axes are listed in Table 2 (the offsets are averaged for 10 times of measurements at room tem-
perature), and we can see that they are distinguishable. These values are determined during the
boot procedure before the drone’s flight and are not changed during the flight.

4.2 Large-Scale Experiments

For further experiments and evaluations, we chose tens of stand-alone MEMS gyroscopes to test
instead of commercial drones because our method is based on the outputs of MEMS gyroscopes
to identify the drones, and purchasing tens of commercial drones is not economical. To measure
offsets from stand-alone MEMS gyroscopes, we need to collect their raw outputs as explained in
Section 2.3. The remaining part of this section explains the experiments, and Section 5 reports
evaluation results performed using those stand-alone MEMS gyroscopes.

An overview of our fingerprinting method for stand-alone MEMS gyroscopes is illustrated in
Figure 4. The upper and the lower parts are for the learning and the matching processes. Both pro-
cesses consist of three steps: (1) collecting the raw data, (2) generating fingerprints, and (3) storing
the fingerprints in the attacker’s database (in the learning process) and searching the fingerprints
of collected samples among the existing fingerprints (in the matching process).

4.2.1 Collecting Raw Data. All of the MEMS gyroscopes that we investigated are digital. To read
the raw outputs, we built an SPI-to-USB converter using Arduino. This converter reads the raw
outputs for the three axes every 10 milliseconds and transmits the outputs to a laptop. A program
on the laptop receives the outputs and stores them into files. The setting for collecting the raw
data is shown in Figure 5.

We investigated 70 MEMS gyroscopes listed in Table 3 and collected 2!? samples (approximately
524k samples) for all axes of each MEMS gyroscope when they were on a stationary desk. After
a month, we collected additional 2'° samples (approximately 65k samples) under identical con-
ditions to test whether the fingerprints are time-invariant. The second collection was obtained
after shaking the MEMS gyroscopes randomly for 30 minutes, imitating their normal usages. This
movement is automatically generated using a DIY gimbal shown in Figure 6, which can perform
random rotations around the three axes independently using three identical Arduino boards and
step motors. All of our measurements are performed in the same environment (in a closed room
at room temperature).
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Fig. 4. An overview of the proposed fingerprinting method (for large-scale evaluation using stand-alone
MEMS gyroscopes).
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Fig. 5. Setting to collect the raw outputs of MEMS gyroscopes (5 different models and 70 chips).

Table 3. List of MEMS Gyroscopes Used
in Our Experiments

Model name | # of chips | Manufacturer
L3G4200D 11 STMicroelectronics
L3GD20 12 STMicroelectronics
MPU6050 17 InvenSense
MPU6500 16 InvenSense
MPU9150 14 InvenSense

4.2.2  Generating Fingerprints. To illustrate that the offsets can be used as fingerprints, the off-
sets of the three axes for all collected samples are shown in Figure 7. Each point is the average
of all samples per axis, and thus 70 points are represented (i.e., one point per MEMS gyroscope).
We can observe that the points are distinguishable and rarely overlapped. Based on this observa-
tion, we calculate the offsets as a fingerprint of the i-th MEMS gyroscope F;, where 0 < i < 69, by
averaging the raw outputs for the three axes d; [n], d; y[n], and d; ;[n]:

o di,x[n] di,y[n] d; .[n]
Fi=1>, N Yon N "N

®)
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Fig.6. ADIY gimbal that can make random rotations in three axes independently using three Arduino boards

and step motors.
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Fig. 7. Spatial distribution of the offsets for three axes. (Each point is averaged for all samples per axis and

represents each MEMS gyroscope.)

In this equation, n is a set of discrete time indices that includes samples in a specific or the entire
time interval, and N is the number of corresponding samples. Finally, a fingerprint of one MEMS
gyroscope is represented as a point in a three-dimensional coordinate system.

Because our fingerprints are mapped into points in space for all MEMS gyroscopes, we can cal-
culate the Euclidean distances between fingerprints. Figure 8 shows the cumulative distribution of
the Euclidean distances between two fingerprints. In our measurements, about 80% of the differ-
ences in distance are over 30, and this fact strengthens the argument that the offsets can be used as
effective fingerprints. The minimum and maximum differences are 2.94 and 207.46, respectively.

(Figures 7 and 8 show the distribution of the intra-distance among the fingerprints from all 70
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Fig. 8. A cumulative distribution of the Euclidean distances between two fingerprints. (The minimum Eu-
clidean distance is 2.94, and the maximum is 207.46.)

MEMS gyroscopes. For more information, the distributions of the inter-distance for each gyro-
scope models are described in Appendix A.)

4.2.3 Storing and Searching Fingerprints. The fingerprints generated by Equation (3) are as-
sumed to be stored and labeled in an attacker’s database. When a new fingerprint F), is obtained,
the attacker can identify a MEMS gyroscope (i.e., a drone) by taking the i-th fingerprint F; that has
the minimum Euclidean distance from a given offsets:

arg min||F, — Fi|l. (4)
1

However, using only the minimum Euclidean distance for matching makes it impossible to find
a new distinct device. For example, the matching might identify a point that lies outside the space
shown in Figure 7 as a fingerprint from within the space. To avoid this, we need to determine a
decision boundary for each fingerprint. We assume virtual spherical and non-overlapping bound-
aries around each fingerprint. Accordingly, we chose the half of the Euclidean distance between
i-th fingerprint and its nearest neighboring fingerprint for the bound B; of the i-th fingerprint as
shown in Equation (5). Now, Equation (4) can be modified as Equation (6). Using this equation, we
can detect new devices whose fingerprints lie beyond the spherical boundaries:

IIF; — F;l|

B; = min———, (5)
Jj 2

arg (IF, - Fll < By). ©

The bound B; can be adjusted according to the density of the fingerprints. When an attacker
starts generating fingerprints, she starts with one or only a small number of fingerprints. In this
situation (i.e., when the density is low), the bound B;, which is determined by Equation (5), is
not suitable because it is too large. Therefore, we need to reduce the bound appropriately until a
sufficient number of fingerprints are generated. For instance, the bound can be fixed in this case
as a constant considering the minimum difference in the distance among fingerprints (2.94 in our
dataset). The bound can also be dynamically determined to cluster the collected offsets to minimize
the total standard deviation of the offsets on the basis of each fingerprint.
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5 PERFORMANCE EVALUATION

We evaluated the proposed fingerprinting method on a large scale by using several metrics. Addi-
tionally, we investigated the invariance of our fingerprints with temperature and time.

5.1 Experimental Setup

The experiment consists of two steps, namely training and matching. We divided the 2!° samples
that we collected for each axis into % groups (i.e., one group consists of continuous N samples
for each axis) and obtained the offsets for each group.

For training, we randomly selected one group and generated fingerprints by averaging the sam-
ples in that group. To determine the minimum number of samples required for efficiently generat-
ing fingerprints, we changed the number of samples N in a group from 2 to 1,024, exponentially.
As inputs for the matching step, we also randomly selected 500 groups among the remaining 511
groups (i.e., except the one group used for training).* The fingerprints of the inputs in the match-
ing step are generated in the same manner to those in the training step, and B; is calculated by
Equation (5). In both steps, we tested the performance of the fingerprints using the offsets of three
axes, two axes, and one axis. Each test was repeated 100 times, and the results are averaged.

5.2 Evaluation Metrics

In the previous device fingerprint studies, several evaluation metrics such as precision, recall, F-
score, and accuracy were used. According to the fingerprint result for the i-th device, each finger-
print event can be divided into four cases, namely, the true positive TP;, the true negative TN;, the
false positive FP;, and the false negative FNj;. Then, the precision PR;, recall RE;, F-score FS;, and
accuracy ACC; of the i-th device are defined as follows:

PR; = TP;/(TP; + FP;), (7)

RE; = TP;/(TP; + FN;), (8)

FS; = (2= PR; = RE;)/(PR; + RE;), 9)

ACC; = (TP; + TN;)/(TP; + FP; + FN; + TN;). (10)

Precision, which is also known as positive predictive value, indicates how many fingerprinted
devices are relevant. Recall is also called sensitivity or hit rate, and it signifies how many relevant
devices are fingerprinted. F-score is the harmonic mean of precision and recall, and accuracy is the
proportion of correct fingerprints. In a multi-class classification, considering the i-th device, all the
results that are estimated to be other devices for other devices are true negative, even though they
are not correct. This indicates that accuracy is not a good measure for this experiment; therefore,
we chose precision, recall, and F-score to evaluate the proposed fingerprinting method.

The overall performance of the proposed fingerprinting method is represented as the averaged
precision PR, recall RE, and F-score FS for all classes. They are defined as the following equations.
The number of all devices M is 70 in the evaluation.

PR = %, (11)
i=0 M
M-1
RE = ; I%[l], (12)
FS = (2 = PR = RE)/(PR + RE). (13)

4When N is 1,024, the total number of groups is 512.
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Fig. 9. The precision, recall, and F-score of the proposed fingerprinting method. (When the offsets of all the
axes with 128 samples are used as fingerprints, the F-score is close to 98.78%. Under the same condition, the
F-score is close to 94.47% when using the offsets of only two axes.)

5.3 Overall Performance

To identify which MEMS gyroscope the data is sourced from, we need to find a fingerprint that
satisfies Equation (6). The performance metrics defined in Section 5.2 are measured and shown in
Figure 9 as the results. In all cases, as N increased, all metrics tend to be increased and converge
(the X axis of Figure 9 is in the log scale). The values of the metrics when they converge (i.e., for
N = 1024) are summarized in Table 4. In our experiment, the F-scores that we achieved are 99.94%
and 97.52% when using the offsets of three and two axes, respectively.

The results in Figure 9 show that the larger N we use for generating fingerprints, the better
performance we can achieve. The larger N requires more time to fingerprint because an attacker
has to collect N samples while the target devices are stationary. Therefore, the efficiency of the
fingerprinting and N present a trade-off, and we need to minimize N while maintaining the per-
formance sufficiently. When we chose N as 128, the F-scores reach 98.78% and 94.47% when using
the offsets of three and two axes, respectively. The detailed results are listed in Table 5.
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Table 4. Results of the Performance Evaluation When Using
1,024 Samples to Generate Fingerprints (the Convergence
Values of Each Metric)

Condition | Precision | Recall | F-score

Using three axes 100.0% 99.88% | 99.94%
Using two axes (in average) 99.48% 95.64% | 97.52%
Using one axis (in average) 73.26% 59.47% | 65.65%

Table 5. Results of the Performance Evaluation When Using
128 Samples to Generate Fingerprints

Condition | Precision | Recall | F-score

Using three axes 99.95% 97.63% | 98.78%
Using two axes (in average) 98.47% 90.79% | 94.47%
Using one axis (in average) 63.90% 48.35% | 55.03%

Based on the results, we can conclude that if an attacker obtains the offsets of MEMS gyroscopes
from drones, she can efficiently identify the drones. Furthermore, in our setting, if an attacker
can read simultaneously the raw and calibrated outputs of a MEMS gyroscope, she needs only
approximately 1.28 seconds (128 samples X 10 milliseconds per sample) to generate the fingerprint
of a drone and to identify it.

5.4 Time Invariance

The datasheets [19-21, 47, 48] specify that the MEMS gyroscopes are tolerant of temperature and
time variations. While the variances over temperature are described in the datasheets, the vari-
ances over time are not listed.

To examine the time invariance of the fingerprints, we collected the second dataset after one
month as explained in Section 4.2.1. We measure the variance v; of the i-th MEMS gyroscope as
the ratio of the Euclidean distance between the original fingerprint F; and the changed offsets F;
over time to the Euclidean distance between the original fingerprint and the one nearest to it. If the
variance exceeds 1.0, our method determines that the changed offsets originate from a different
MEMS gyroscope, which means that our fingerprint is time-variant. The variance of the i-th MEMS
gyroscope is represented by the following equation:

-5
v; = B (14)

The results of our investigation are shown in Figure 10. All variances are below 0.5, which means
that the generated fingerprints are still valid after one month.

Figure 11 shows the precision, recall, and F-score of the data after one month. For the experi-
ment, we used the same setup and fingerprints, but tested 60 groups randomly selected from the
secondary dataset because the minimum number of groups is 63 when N is 1,024. This test was
also repeated 100 times. For all cases, the evaluation metrics show a tendency similar to that of the
results in Section 5.3, but their values are decreased over time. When we use the offsets of all axes
and N is 1,024, we achieved an F-score of 97.91%. The detailed results are summarized in Table 6.

The evaluation metrics corresponding to 128 samples for generating fingerprints are compiled
in Table 7. When we use the offsets of all axes, the F-score is 96.58%, which is still effective, but
dropped to 78.45% when using the offsets of two axes.
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Fig. 10. The amount of change in offsets after a month: the ratio of the changed Euclidean distance to
the half of the minimum Euclidean distance between the one fingerprint and others. (The IDs are assigned
sequentially in the order shown in Table 3. If the ratio exceeds 1.0, the changed offsets will be judged as
different devices.)

5.5 The Effect of Temperature

The MEMS gyroscopes can be impacted by thermal noise because they are fabricated with silicon,
which is a temperature-sensitive material.

To investigate the effect of temperature, unlike the previous experiments evaluating 70 MEMS
gyroscope sensors, we used five flight controllers (i.e., drones). We simulated real-world environ-
ments with varying ambient air temperature against these five drones. On average, the room tem-
perature was 24.0°C. To control the temperature, we put the flight controllers in a refrigerator and
in a sunny spot for an hour. We measured the offsets from the devices while we repeatedly reduced
and raised the temperature 10 times. In the measurements, the average ambient air temperatures
were 4.0 and 29.6°C, respectively.

The average and the standard deviation of the amount of changes in Euclidean distances be-
tween offsets are listed in Table 8. When the ambient air temperature is decreased from 24.0 to
4.0°C and increased from 24.0 to 29.6°C (the second and third columns in Table 8), the average
changes of measured fingerprints in Euclidean distance are relatively small considering the cu-
mulative distribution shown in Figure 8. Additionally, when the temperature went back to 24.0°C
(i.e., room temperature) after variations (the fourth column in Table 8), we can see that the finger-
prints also went to near the original points as shown in Figure 12 with a relatively small amount
of changes, comparing to the changes in decreasing or increasing temperature cases. These re-
sults mean that the fingerprints are not much affected by temperature variations, but they can
probabilistically lead misclassification for fingerprinting.

To examine how these results affect the classification, we assume an attacker who has 75 fin-
gerprints: 70 from Figure 7 and 5 by averaging points in Figure 12 (at 24.0°C). Then, we tested
whether each measured offset (total of 50 measurements, as we measured 10 times for 5 drones)
changed by temperature variance can be correctly matched to one of those 75 fingerprints. As
results, after the temperature raised to 29.6°C, 45 measurements of the changed fingerprints are
matched correctly (i.e., 90%). When the temperature dropped to 4.0°C, the number of the correct
match is 39 (i.e., 78%). In detail, especially, Pixhawk2’s success rate is very low for both 29.6 and
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Fig. 11. The precision, recall, and F-score of the proposed fingerprinting method after one month. (When
the offsets of all axes with 128 samples are used as fingerprints, the F-score is close to 96.58%. In all cases,
the F-score is decreased over time.)

4.0°C cases (each had 50 and 10% success rate) because its fingerprints are located in a dense area.
In all cases of Pixhawk2, they were ranked top 5 among closest offsets in terms of the distance.
Hence, even though the offsets are affected by temperature, they are still useful as fingerprints to
identify the drones within a specific range of temperature.

Considering the results in Section 5.4 and 5.5, the proposed method can be used as a persistent,
robust, and effective fingerprinting method even when considering the variances of temperature
and time. However, the results also indicate that an attacker may need to update the fingerprints
over these variations because the changes can be biased in a specific direction cumulatively.

6 DISCUSSION

In this section, we discuss the possibility to extend the proposed fingerprinting method to drones
from other manufacturers and for drone traffic management systems such as UTM. We also discuss
the limitations and a possible countermeasure of the proposed fingerprinting method.
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Table 6. Results of the Performance Evaluation after a Month
When Using 1,024 Samples to Generate Fingerprints
(the Convergence Values of Each Metric)

Condition | Precision | Recall | F-score

Using three axes 100.0% 95.90% | 97.91%
Using two axes (in average) 84.83% 73.19% | 78.56%
Using one axis (in average) 42.91% 29.25% | 34.65%

Table 7. Results of the Performance Evaluation after a Month
When Using 128 Samples to Generate Fingerprints

Condition | Precision | Recall | F-score

Using three axes 99.87% 93.49% | 96.58%
Using two axes (in average) 87.66% 71.03% | 78.45%
Using one axis (in average) 41.41% 27.74% | 33.15%

Table 8. The Average of Changes in Euclidean Distance between Fingerprints
According to Temperature Variations (the Numbers in Round Brackets
Are the Standard Deviations of the Changes)

Drone (flight controller) || 24.0 = 4.0°C | 24.0 = 29.6°C || 24.0 ©1]= 24.0°C

Pixhawk1 #1 15.48 (3.98) 7.23 (4.35) 453 (3.73)
Pixhawk1 #2 6.36 (1.80) 4.44 (2.52) 1.65 (0.66)
Pixhawk1 #3 6.95 (1.14) 6.10 (3.59) 2.45 (1.41)
Pixhawk1 #4 3.37 (0.61) 2.71 (1.17) 1.36 (0.54)

Pixhawk2 14.50 (2.76) 6.75 (4.05) 1.79 (0.99)

6.1 Extensions

We show that, using the proposed method, fingerprinting drones and tracking their locations are
possible for two kinds of commercial flight controllers, i.e., Pixhawk1 [37] and Pixhawk2 [38],
which are used for the drones manufactured by 3DR’ as well as for many DIY drones and open-
source drone projects. If an attacker can obtain the offsets of MEMS gyroscopes from any other
model of drones, the same approach can be applicable. However, because the sensitivity factor (in
Section 4.1) may be different per model, the density of fingerprints in three-dimensional space may
also differ per model. Thus, the fingerprinting performance can decrease unless the exact value of
the sensitivity factor is known. We note that the drones manufactured by DJI° use a proprietary
telemetry protocol, and its state information does not include the offsets per axis.

The proposed fingerprinting and tracking method can also be used for drone traffic manage-
ment systems such as UTM mentioned in Section 1. In UTM, all drones should be registered, and
their users should submit their detailed flight plans in advance. Then, the system checks possi-
ble conflicts, approves (or disapproves) the plans, and tracks the drones. Tracking the registered
drones in UTM is based on low-altitude radar, cellular signals, ADS-B, and GPS information by
the UAS ground control station [53]. In the registration and submission steps, the offsets of MEMS
gyroscopes from each drone can be measured legitimately and used as an identity of the drone.

>DJI and 3DR are drone manufacturers that have the first and third market shares, respectively [55].
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Fig. 12. Spatial distribution of the offsets when the temperature went back to room temperature after
variations.

Therefore, the proposed method can be used to track moving drones without any modification for
them and with no additional cost for drone management systems.

6.2 Limitations

Because the probability distribution of the offsets from every MEMS gyroscope is unknown, we
can only calculate the entropy of the offsets from our sample datasets. More specifically, based on
our dataset used in Figures 7 and 8, we can roughly estimate the entropy of our fingerprints with
several assumptions. For this estimation, we assume that (1) the outputs of MEMS gyroscopes from
each axis are independent to other axes, (2) the offsets are uniformly distributed in the range (rx,
ry, and rz) between the maximum and minimum values in our dataset for each axis, and (3) the
interval of the uniform distribution is 2.94 (the minimum Euclidean distance in Figure 8). These
assumptions are inevitable considering the size of our dataset.

When the probability distributions of X, Y, and Z axes are Px[i], Py[i], and Pz[i] (i is an index
of an interval in each axis, and the total number of intervals is nx, ny, and nz for each axis.), by
the assumptions, ny is rx/2.94, and Px/[i] is .- (the same for other axes). Then, the entropy of the
fingerprints can be obtained as follows:

nx
H =" Px[i]log Px[i] ZPY i] log Py [i] - Z P[] log Pz [i]. (15)

i=1
By Equation (15), the estimated entropy of the fingerprints collected in our experiments is 16.04.
Therefore, increasing the number of devices that need to be identified decreases the distances
among the fingerprints, while the amount of noise does not change. However, we note that the

performance degradation caused by an increasing number of devices applies to other fingerprint
techniques as well.

6.3 Countermeasure

The root cause that makes the fingerprinting and tracking possible is the lack of authentication
and encryption not only in MAVLink protocol, but also in wireless communication protocols for
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the telemetry. However, MAVLink protocol is used as the upper layer of various wireless com-
munication protocols. Therefore, using secure wireless communication protocols is an obvious
countermeasure without modifying MAVLink protocol. We note that, today, most of the wireless
communication mechanisms for telemetry are not secure.

7 RELATED WORK

Security research on sensor-related issues is a relatively new field that gained popularity with the
rise of embedded devices such as smartphone and Internet of Things devices. This study focuses on
designing a fingerprinting mechanism based on sensor data for tracking the locations of drones. In
this section, we review the existing studies on sensor-based device fingerprints and other privacy
problems caused by sensors.

7.1 Device Fingerprinting Using Sensors

There exist quite a few studies focusing on device fingerprinting methods using MEMS sensors.
Bojinov et al. [4] attempted to identify mobile devices on a large scale by using the hardware
imperfections of MEMS accelerometers. They collected sensor outputs through web browsers of
smart devices, and their results showed that 33 and 3,583 smart devices in their lab and a public
place could be classified with accuracies of 100% and 15.1%, respectively. AccelPrint [10] also used
MEMS accelerometers, and achieved an accuracy of 99.9% using supervised machine learning for
the outputs of MEMS accelerometers collected through web browsers of 27 smart devices and SPI
interfaces of 80 accelerometer chips. Most recently, Das et al. [9] conducted experiments similar
to those of AccelPrint, but they used both MEMS accelerometers and gyroscopes. They collected
data from 30 and 63 smartphones in the lab and a public place, and the F-score results were 99%
and 95%, respectively.

In contrast, our work is different from these works in several ways. (1) They used accelerometers
or combinations of a gyroscope and accelerometer, while we used only gyroscopes. (2) Our raw
output samples can be obtained in 1.28 seconds with comparable accuracy, while previous studies
require samples longer than 30 seconds. In addition, when we gather the calculated offsets through
telemetry, only a few milliseconds are required for exchanging several telemetry messages. (3) Our
method can be applied regardless of whether the target is moving or stationary.

In addition to MEMS sensors, microphones or speaker and microphone pairs (i.e., acoustic sen-
sors) were used to identify smart devices [8, 25, 57]. Analog signals and hardware modules to
receive these signals (i.e., wired or wireless analog signal sensors) were also used for device fin-
gerprinting [2, 7, 12, 24].

Furthermore, physical unclonable functions (PUFs) can be utilized for device fingerprinting be-
cause of their inter-device uniqueness. In 2010, Rosenfeld et al. proposed the first sensor-based PUF
using non-homogeneous coatings on sensor chips that causes uniqueness in measurements [40].
The unclonable physical features of touchscreen sensors and MEMS gyroscopes were also used
for PUFs [42, 52]. However, these sensor-based PUFs are implemented in advance on the target
devices. Especially, the MEMS-based PUF [52] requires wafer-level hardware modification. There-
fore, these techniques are not appropriate for our case.

7.2 Other Privacy Issues Caused by Sensors

The sensors of smart devices such as accelerometers, gyroscopes, microphones, and cameras have
been used to obtain private information. Many researchers have been interested in problems re-
lated to leakage of keystrokes, passwords, and PIN numbers. Previous studies showed that an
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attacker can successfully infer those text data from sensor outputs collected by malicious applica-
tions [3, 5, 6, 26, 33, 34, 36, 44, 46, 51, 56] or web browsers [30, 31]. It is also known that sensors
can extract the voice of an adjacent user and the locations of devices. Gyrophone [32] used MEMS
gyroscopes to eavesdrop on a conversation near a smartphone. Accomplice [15] used MEMS ac-
celerometers to infer the location of smartphones. Barometers have also been used to infer or track
locations [17, 35].

8 CONCLUSION

Recently, drones have become increasingly popular for various applications. In terms of security,
maliciously tracking the locations of drones is a serious threat to the drone operators because it can
cause escape from drone surveillance, service disturbance, delivery information leakage, and drone
capture by attackers. Drones transmit their status information through telemetry channel based
on the MAVLink protocol upon wireless communication protocols, and the information contains
the location, the offsets of MEMS gyroscopes, and other sensor-related data. Because most of the
telemetry communication supports neither authentication nor encryption, an attacker can access
the status information for the drones that are equipped with telemetry transceivers. However, she
cannot track the drones because the information has no identity that can bind the identities of the
drones with their locations.

In this article, we proposed a fingerprinting method that uses the offsets of MEMS gyroscopes
to identify and track the drones. Based on our results and through open-source drone firmware
analysis, we found that the offsets obtained via the telemetry are a scaled version of the offsets of
the raw outputs of MEMS gyroscopes. Moreover, because the offsets are calculated during the boot
process and not changed during flight, the attacker can identify the flying drones. Experimental
results using 70 stand-alone MEMS gyroscopes show that the proposed method achieves an F-score
of 98.78% for identifying MEMS gyroscopes using 128 raw output samples of all three axes and an
F-score of 94.47% using samples of two axes in the same setup. We also show that our fingerprints
are effective, robust, and persistent despite the changes in temperature and time. In addition, the
proposed method can be utilized to track commercial drones for drone traffic management systems,
such as UTM.

In the future, commercial drones may provide their identifying codes in public [45]. Because
these identifiers can be maliciously used from an attacker’s viewpoint, developers and researchers
need to consider both security and safety issues to broadcast them.

APPENDIX
A INTRA-DISTANCE DISTRIBUTION

In Section 4, the spatial distribution of the offsets (Figure 7) and the cumulative distribution of the
Euclidean distances between two offsets (Figure 8) are illustrated for all data that we collected.
Both figures show the distributions of inter-distance among the fingerprints from 70 MEMS gyro-
scopes. To compare the characteristics of the collected fingerprints for each gyroscope model, the
distributions of intra-distance are illustrated in this appendix.

Figure 13 visualizes the spatial distribution of the fingerprints for each gyroscope model. We
can observe that most of the fingerprints collected from one gyroscope model are grouped in dif-
ferent spaces. The cumulative distributions of the Euclidean distances for each gyroscope model
are shown in Figure 14. The higher slope of the cumulative distribution graph means the more
spatially scattered, and thus the easier to classify the fingerprints. In our experiments, the finger-
prints of L3G4200 are the most spread among five gyroscope models.
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However, this difference is not enough to identify gyroscope models because the spaces overlap
each other. We note that our main purpose is to classify each gyroscope using its fingerprint, not
each gyroscope model.
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