
FirmAE: Towards Large-Scale Emulation of IoT Firmware for
Dynamic Analysis

Mingeun Kim
The Affiliated Institute of ETRI

rla5072@nsr.re.kr

Dongkwan Kim
KAIST

dkay@kaist.ac.kr

Eunsoo Kim
KAIST

hahah@kaist.ac.kr

Suryeon Kim
Ministry of National Defense

c16192@kaist.ac.kr

Yeongjin Jang
Oregon State University

yeongjin.jang@oregonstate.edu

Yongdae Kim
KAIST

yongdaek@kaist.ac.kr

ABSTRACT

One approach to assess the security of embedded IoT devices is
applying dynamic analysis such as fuzz testing to their firmware in
scale. To this end, existing approaches aim to provide an emulation
environment that mimics the behavior of real hardware/peripherals.
Nonetheless, in practice, such approaches can emulate only a small
fraction of firmware images. For example, Firmadyne, a state-of-the-
art tool, can only run 183 (16.28%) of 1,124wireless router/IP-camera
images that we collected from the top eight manufacturers. Such a
low emulation success rate is caused by discrepancy in the real and
emulated firmware execution environment.

In this study, we analyzed the emulation failure cases in a large-
scale dataset to figure out the causes of the low emulation rate. We
found that widespread failure cases often avoided by simple heuris-
tics despite having different root causes, significantly increasing the
emulation success rate. Based on these findings, we propose a tech-
nique, arbitrated emulation, and we systematize several heuristics
as arbitration techniques to address these failures. Our automated
prototype, FirmAE, successfully ran 892 (79.36%) of 1,124 firmware
images, including web servers, which is significantly (≈4.8x) more
images than that run by Firmadyne. Finally, by applying dynamic
testing techniques on the emulated images, FirmAE could check
320 known vulnerabilities (306 more than Firmadyne), and also find
12 new 0-days in 23 devices.

CCS CONCEPTS

• Security and privacy→ Embedded systems security; •Com-

puter systems organization→ Firmware.

KEYWORDS

Firmware, embedded device, emulation, dynamic analysis
ACM Reference Format:

Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang,
and Yongdae Kim. 2020. FirmAE: Towards Large-Scale Emulation of IoT
Firmware for Dynamic Analysis. In Annual Computer Security Applications
Conference (ACSAC 2020), December 7–11, 2020, Austin, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3427228.3427294

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427294

1 INTRODUCTION

The number of active Internet of things (IoT) devices is projected
to reach 34.2 billion by 2025 [36]. As numerous IoT devices are
connected to the Internet [33], they are exposed to cyber threats.
For instance, Linux-based IoT devices such as wireless routers and
IP cameras are often targeted for a large scale attacks. In the wild,
multiple backdoors were discovered from those devices [30, 38],
and malwares, such as Mirai and Satori, infected over millions of
such devices [5, 31, 32, 37].

To address security problems in such numerous IoT devices,
researchers have been focusing on analyzing firmware of those
devices in scale. Specifically, a stream of studies take an approach
to run device firmware in an emulated environment with virtual
hardware and then apply dynamic analysis to the firmware [12, 17,
23–25, 57, 60, 64]. With this approach, one can not only analyze
firmware dynamically without obtaining hardware but also utilize
cloud infrastructure to scale the security analysis. Among many,
Firmadyne [17] is the current state-of-the-art firmware emulation
framework that aims at enabling large-scale emulation for IoT de-
vices in general by providing a full-system emulation environment.

Problem: discrepancy in the real and virtual environment.

The approach is not a silver bullet in practice because running
firmware in a full-system emulation environment often fails due to
the inconsistencies between the real and the virtual, emulated envi-
ronment. Any discrepancies in the emulated environment may lead
the firmware execution to an unexpected state, resulting in a failure
of emulation and dynamic security analysis. Resolving this emula-
tion discrepancy is challenging because such inconsistencies stem
from the wide diversity in IoT device hardware and configurations.
Particularly, each of IoT devices equipped with specific hardware
devices from a plethora of manufacturers. Moreover, firmware often
relies on the configuration vectors, such as data in NVRAM, and an
emulated environment may miss such data because the data is only
available in hardware. Such convoluted circumstances does not
match with the emulation environment of Firmadyne. Its emulator,
QEMU [6], only supports few general devices and configurations,
and without putting extensive efforts on emulating each device and
configuration the problem will never disappear.

To see the effect of this problem in practice, we have obtained
1,124 wireless router and IP camera firmware images from top
eight vendors and ran them with Firmadyne. The result is alarming
as it can only emulate 183 of them (see Table 1). The majority
portion of firmware images (83.72%) left without analysis. Such

https://doi.org/10.1145/3427228.3427294
https://doi.org/10.1145/3427228.3427294

ACSAC 2020, December 7–11, 2020, Austin, USA Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae Kim

a low emulation success rate implies that, although Firmadyne
is designed to be generic by providing a full-system emulation
environment of a firmware, such an approach does not work in
practice, requiring many manual efforts to resolve inconsistencies
in emulated environment.
Motivating examples. Next, we show how we can handle the
inconsistencies manually as motivating examples. First, we ran the
firmware of D-Link DIR-505L to test CVE-2014-3936 [16] using
Firmadyne. Because the vulnerability is a stack-based buffer over-
flow in a web service running on firmware, exploitation requires
sending HTTP requests via the network interface of the emulated
environment. However, when we ran the firmware on Firmadyne,
we could not connect to the web service although the web server
is running correctly. From our analysis, we figured out that the
network configuration in the firmware does not match to the emu-
lated environment, and after we force to configure the network, we
were able to trigger the vulnerability. Second, we ran the firmware
of NETGEAR R6250 to test CVE-2017-5521 using Firmadyne. In this
case, the emulation failed with a kernel panic in the booting pro-
cedure. After we slightly modified the booting and kernel-related
configuration to match the virtual environment, we were able to
run the firmware and trigger the vulnerability.
Observations and goal. From these two examples, we observed
that a slight change in a configuration or device settings, which is
easy to apply, may let firmware emulation run without suffering
emulation discrepancy problem, which is difficult to handle. In this
regard, we believe that Firmadyne misses many chances of emulat-
ing and analyzing IoT firmware images not because of fundamental
problems in emulation but because of device setup failures, although
these can be easily handled. To address this issue, we aim at sys-
tematizing such heuristics via analyzing many emulation failure
cases, and ultimately, we aim to increase the chance of successful
firmware emulation than Firmadyne.
Our approach.We achieve this goal by investigating many emula-
tion failure cases as our first step. For the investigation, we collected
1124 firmware images from the top eight vendors [59]: 1079 wireless
routers and 45 IP cameras. For the emulation, we specifically focus
on emulating web services of wireless routers and IP cameras. This
is because the web interface is the part where remote attackers can
interact with, and numerous critical vulnerabilities have been found
in these services [5, 7, 12, 32, 51]. By using Firmadyne, we investi-
gated 437 emulation failure cases (among 527 firmware images in
AnalysisSet) and found that most cases fall into the following five
categories of problems: 1) boot-related problems, such as an incor-
rect boot sequence or absence of files, 2) network-related problems,
such as mismatches of network interface or improper configuration,
3) non-volatile RAM (NVRAM)-related problems, such as missing
library functions or customized formats, 4) kernel-related problems,
such as unsupported hardware or functions, and 5) minor problems,
such as unsupported commands or timing issues.

Our investigation resulted that failure cases in each category can
be resolved by applying simple heuristics even though they originate
from different root causes. For example, 227 images failed to set
up their network interfaces even though their web servers were
correctly running. Although the root causes of the failures may
vary, such as discrepancy in the number of available network ports,

the name of network device, etc., a heuristic that forces setting up
the network configuration that works in an emulated environment
can resolve the issue and enable dynamic analysis.

Based on this observation, we systemize those heuristics as a
technique, coined as arbitrated emulation, and develop several
arbitration techniques to bypass the failure cases. Instead of strictly
following the execution behavior of the firmware as is, arbitrated
emulation arbitrates between following the original behavior or
injecting proper interventions, i.e., intentional operations. Thereby,
it may slightly alter the original behavior of the firmware. However,
our goal is not to build an environment identical to the physical
device, but to create an environment conducive to the dynamic
analysis. In fact, our approach can emulate numerous firmware
images that previous approaches failed to emulate, and effectively
aid in finding real vulnerabilities.

After designing several arbitrations, we automate and parallelize
the entire firmware emulation procedure. Within 4h of testing 1,124
firmware images, our prototype, FirmAE, successfully emulated 892
(79.36% of total) images, which is more than four-times more than
Firmadyne (Table 1). Then, we ran exploits of previously known
vulnerabilities on the emulated images to verify whether arbitrated
emulation is useful for dynamic analysis. As a result, 320 known
vulnerabilities were successfully emulated on FirmAE which is 306
more successful cases than Firmadyne. We also built a simple fuzzer
on FirmAE, and found 23 unique vulnerabilities in 95 latest devices,
and responsibly reported them to the vendors.

In summary, the contributions of our study are as follows:
• We empirically investigate 437 firmware emulation failure
cases and systematize failure handling heuristics.

• We propose arbitrated emulation to apply those heuristics
to emulation environment. Our prototype, FirmAE, presents
a far higher emulation success rate (892 vs. 183) than the
state-of-the-art framework, Firmadyne.

• We confirm that arbitrated emulation is effective by redis-
covering 306 more known vulnerabilities than Firmadyne.
Additionally, with a simple fuzzer, FirmAE can find 23 new
vulnerabilities over 95 latest devices, out of which 12 were
0-days.

• We release the source code to encourage future studies.1

2 BACKGROUND

In this section, we explain how embedded devices are analyzed by
citing previous studies and present the state-of-the-art tool that we
employed as the basis of our approach.

2.1 Embedded device analysis process

To analyze an embedded device, the target firmware can be obtained
and analyzed with/without a physical device.
Firmware collection and unpacking. Typically, firmware can be
acquired from vendors’ websites, ftp servers, or third-party archives.
This can be done manually or by using a web crawler such as
Spider [41]. Firmware can also be directly dumped from the flash
memories in devices [46], although this requires a physical device.

1http://github.com/pr0v3rbs/FirmAE

FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis ACSAC 2020, December 7–11, 2020, Austin, USA

A firmware image is then unpacked for later analysis. A single
image can include multiple contents. For example, Linux-based
firmware may have a bootloader, kernel, and filesystem. This image
is often compressed in various ways, such as LZMA, ZIP, or Gzip,
to save storage. To unpack an image, tools such as Binwalk [26],
Firmware-Mod-Kit [27], or FRAK [13] are often employed. In a
given image, these tools scan pre-defined signatures of various file
headers. When a signature matches, they extract the file from the
image, and continue to scan it to the end. Encrypted or customized
images also exist, for which signature matching cannot be used;
analyzing them is out of the scope of this study.
Analysis with physical devices. The unpacked firmware can be
analyzed with real devices. Zaddach et al. [62] and Marius et al. [44]
relayed process execution and peripheral access to real devices and
partially emulated target code using a JTAG interface. Similarly,
Kammerstetter et al. [28, 29] developed a proxy environment using
real devices and forwarded character device access to them. Cui et
al. [14, 15] and Kumar et al. [33] conducted a quantitative study of
embedded devices connected to the public Internet.
Analysis w/o devices. Another stream of studies have focused
on analyzing firmware without physical devices to scale up the
analysis. Researchers adopted static approaches on firmware [11,
52]; however, they often produce numerous false positives due to
the absence of runtime information. Nevertheless, Costin et al. [11]
showed statistics of vulnerable devices that have easily crackable
passwords or backdoor strings. Shoshitaishvili et al. [52] found
authentication bypass vulnerabilities using symbolic execution.

In contrast, dynamic analysis can identify vulnerabilities without
false positives as it runs the target program directly. However,
performing dynamic analysis is not a simple task, as the device
firmware has to be emulated. Recent studies [12, 17, 23–25, 57, 60,
64] focused on firmware emulation to overcome the difficulty in
obtaining the real hardware, and we further describe these studies
in details in the following subsection (§2.2).

2.2 Emulation-based analysis

Firmware emulation has attracted attention, as it does not require
real devices and provides useful interfaces for dynamic analysis.
The system where the emulation takes place is denoted as the host
system, and the emulated system is referred to as the guest system.
Typically, there are two levels of emulation: user- and system-level.
User-level emulation. User-level emulation only emulates the
target program inside the firmware and makes the best use of
the host system. An example is emulating a web interface. A web
interface is a representative service in embedded devices for device
administration or maintenance. It serves multiple static contents,
such as HTML, or dynamic contents generated by CGI programs.
Although static contents can be served with the host environment,
dynamic contents may not. This is because they may collide with
the host system or depend on custom libraries and device drivers
that do not exist in the host system.
System-level emulation. System-level emulation fully emulates
the guest system, including the kernel. Because it provides an in-
dividual execution environment, various features in kernel and
device drivers can be emulated as well. Nevertheless, firmware em-
ulation is extremely difficult, as vendor-specific hardware issues

or memory-mapped peripherals should be considered. Without
handling them, programs in the emulated firmware often crash.

Consequently, studies have recently struggled to address these
issues [12, 17, 23, 25, 57], by creating an emulation environment as
similar as possible to the real device. Popular emulators, such as
QEMU [6], have been supporting more hardware types, including
their peripherals. Costin et al. [12] presented a scalable dynamic
analysis framework along with several case-studies on various
embedded web interfaces. Chen et al. [17] emulated non-volatile
RAM (NVRAM), which stores various configuration values for pro-
grams in the emulated firmware. Gustafson et al. [25] modeled
memory-mapped I/O (MMIO) operations in peripheral communi-
cation. Feng et al. [23] attempted to resolve the same issue with
machine learning. Recently, Clements et al. [10] proposed decou-
pling the hardware from the firmware.
Analysis. After emulation, vulnerabilities can be checked by us-
ing a previously known PoC code [17] or a fuzzer [24, 60, 64].
TriforceAFL [24] is a popular fuzzer targeting a QEMU image, lever-
aging the American fuzzy lop (AFL) [63]. It is also adopted by Hu et
al. [60]. In their follow-up study, Zheng et al. [64] proposed an op-
timized emulation approach for dynamic analysis, which switches
the context between system- and user-level emulation.

2.3 Challenges in firmware emulation

Emulation-based analysis is advantageous; however, there are nu-
merous challenges when emulating firmware images from diverse
vendors, which stem from the non-standardized development pro-
cess and the discrepancy between the emulated and physical envi-
ronments. For example, libraries, device drivers, and even kernels
in devices differ across vendors; unless these are properly emulated,
internal programs cannot be executed.

Devices that access hardware interfaces, such as LED sensors or
cameras, have more diversity, as noted in previous studies [23, 25].
Communication between the main device and its peripherals often
utilizes memory-mapped IO (MMIO) operations, with pre-defined
memory addresses. However, the range of such addresses differs
significantly across devices. Consequently, it is difficult to scale this
approach to various devices. Chen et al. [17] attempted to emulate
one such hardware, namely NVRAM, on a large scale. Muench et
al. [45] underlined device-specific challenges when conducting a
dynamic analysis to identify memory corruption vulnerabilities.

Addressing these challenges may be infeasible, unless functions
are implemented perfectly as in physical devices. Nevertheless,
investigating emulation failure cases and resolving identified issues
helps gradually increase the emulation rate, and enable dynamic
analysis to improve the security of IoT ecosystem. Therefore, we
adopt the state-of-the-art emulation framework, Firmadyne [17],
and investigate the failure cases.

2.4 Firmadyne framework

Firmadyne [17] is a state-of-the-art firmware emulation frame-
work, originally designed for a large-scale analysis. Numerous
studies [24, 60, 64] have adopted it for dynamic analysis. We also
utilized Firmadyne for failure investigation.

After unpacking a firmware image, Firmadyne emulates it with
a customized Linux kernel and libraries, which are pre-built to

ACSAC 2020, December 7–11, 2020, Austin, USA Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae Kim

support various hardware features such as NVRAM. For emulation,
Firmadyne emulates the target image twice: the first emulation
logs useful information, whereas the second utilizes the logged
information. Thus, the customized kernel includes a driver that
hooks major system calls to record useful information. For example,
they hook inet_ioctl() and inet_bind() to obtain the name and
IP address of the network interface used in the emulated firmware.
The custom libraries of Firmadyne also address hardware issues.
For example, a library, libnvram, stores and returns NVRAM values
based on the hard-coded default values.

Although Firmadyne is promising, its emulation rate of network
reachability and web service availability is considerably low at
29.4% and 16.3%, respectively. To this end, we carefully investigate
the failure cases and propose a technique to address them.

3 DESIGN

3.1 Goal and scope

Goal. Our goal is to successfully emulate the firmware image of
embedded devices, specifically running their web services because
the web interface of such devices is a critical target for remote
attackers. [5, 12, 17, 32, 60, 64]. We do not aim to resolve all the
discrepancies in emulated environment. Instead, we aim at a con-
cise emulation for dynamic testing, and our emulation goal can be
illustrated with the following properties: 1) booting without any
kernel panic, 2) network reachability from the host, and 3) web
service availability for dynamic analysis. We are aiming at holding
these properties as they are the minimum requirements for run-
ning web services without suffering issues in firmware emulation.
Thus, we check the emulation success rate by checking the network
reachability and web service availability of the target firmware.
Scope.Among various embedded devices, we select wireless routers
and IP cameras as our analysis targets because of their presence
in our daily lives and as they often become attack targets. In fact,
many botnets [5, 32] target them to launch large-scale DDoS attacks.
Note that other embedded devices that share similar characteristics
can be addressed with our approach as well.

3.2 Arbitrated emulation

To achieve this goal, we propose a technique, which we refer to as
arbitrated emulation. Whereas previous approaches [12, 17, 23, 25,
57] have striven to ensure that the target firmware operates alike
the physical device, which is a difficult goal, arbitrated emulation
does not completely follow the original execution procedure of
the target firmware. The key idea behind arbitrated emulation is
that ensuring high-level behavior is sufficient to perform dynamic
analysis on internal programs, which is relatively easy to do, rather
than finding and fixing the exact root causes of emulation failures.
The high-level behavior mentioned here can be readily modeled by
skilled analysts based on their target and emulation goal. In this
study, we use the model defined in §3.1.

One key feature of arbitrated emulation is that it employs inter-
vention. The intervention indicates an intentionally added action,
which may differ from the behavior of the physical device. This
action makes it possible to bypass unaddressed issues assuming
that they do not strongly influence the behavior of the target pro-
gram inside the emulated firmware. The procedure that arbitrates

Firmware
Dataset

Vendor Servers

Input
Firmware

Filesystem

Fuzzer

Analysis Container

Crash DB

ConfirmDebugPrecompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization Arbitration Systemization Dynamic Analysis

Emulation
DBPre-Emulation Final Emulation

1 2

3

4

Checker

5

Figure 1: FirmAE architecture overview

between following the firmware as is and applying an intervention
is called arbitration. An intervention can be implemented in various
ways, as needed, and it can be injected into the appropriate steps
of the emulation procedure, namely the arbitration point. Proper
arbitration points can be noted by analyzing violation cases of the
given high-level behavioral model. Then, interventions are injected
in these arbitration points. As interventions focus on high-level
behaviors, those obtained from a small set of firmware images can
be widely applied to other firmware images that suffer from similar
failure cases, even though they have different root causes.

Our interventions take advantages of the abstract design of
Linux-based firmware. We conducted a preliminary study on our
dataset and discovered that appropriate interventions can aid the
emulator to bypass numerous unsolved issues. For example, when a
network setting procedure is stopped due to an unknown peripheral
access or insufficient NVRAM support, an intervention that forces
the configuration of a fixed network setting can resolve the issue
regardless of the root cause. Although the arbitrated emulation may
violate the main concept of the full-system emulation, we hypoth-
esized that small discrepancies introduced by interventions only
have a slight effect on the behavior of the target program. In fact,
we support this hypothesis by successfully running emulated web
services in 892 firmware images from 1,124 images, and we found
12 0-day vulnerabilities by conducting dynamic security analysis.

3.3 FirmAE

We implemented our prototype of arbitrated emulation, FirmAE,
based on Firmadyne [17]. The overall architecture of FirmAE is
illustrated in Figure 1. FirmAE emulates a firmware image similar
to Firmadyne on a pre-built customized Linux kernel and libraries,
as described in §2.4. It also emulates a target image twice to collect
various system logs and utilize the information for further emula-
tion. We refer to the former emulation step as pre-emulation and
the latter as final emulation. The arbitrations applied in FirmAE
can be categorized into five, which are derived by our failure case
investigation on AnalysisSet. We describe the details of each ar-
bitration in §4, and compare the emulation results with those of
Firmadyne in §5.1. We built additional interfaces for dynamic anal-
ysis on FirmAE (§5.3), and the analysis results is described in §5.4.
Automation. For a large-scale analysis, FirmAE needs to be fully
automated. Naturally, numerous steps of Firmadyne are automated;
however, it still requires some user interaction. For example, users
must first extract the filesystem of the target firmware with specific
options. Then, they evaluate whether the filesystem is successfully
extracted and retrieve the architecture information. Subsequently,
they make a firmware image for QEMU and collect information

FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis ACSAC 2020, December 7–11, 2020, Austin, USA

in pre-emulation. Finally, they run a script for final emulation and
perform dynamic analysis. We automated all such interactions and
added an automated evaluation procedure for network reachability
and web service availability. For this, we built a module in FirmAE
that periodically runs ping and curl commands.
Parallelization.We also parallelized emulation to effectively eval-
uate numerous firmware images, leveraging containerization with
Docker [40]. Each firmware image is emulated independently in
each container, which is equipped with all required packages and
dependencies. This enables the quick and reliable emulation of a
target image. FirmAE emulates firmware in parallel, by running
multiple container instances.

With containerization, we can take advantages of abstracting
the network connection between the host and the guest systems.
QEMU [6], which FirmAE utilizes for the emulation, creates an
additional network interface, TAP, in the host system. This interface
is linked to one of the guest network interfaces. Thus, each emulated
firmware should have an independent TAP interface with a unique
IP address in the host system, otherwise a network collision will
take place. Containerization isolates the network environment of
each container. Consequently, packets from the host system can be
properly routed to the guest even in parallel emulation. We also
place the checker and analysis engine inside each container.

3.4 Experimental setup

Dataset. Our dataset comprises the top eight vendors in the wire-
less home router market [59]. We collected 1306 firmware images
from the vendors’ websites and extracted filesystems from the col-
lected images by unpacking them with Binwalk [26], as described
in §2.1. Then, we filtered them by verifying whether the operating
system of each image has one of the three architectures: ARM little
endian (ARMel), MIPS little endian (MIPSel), and MIPS big endian
(MIPSeb). These architectures occupy more than 97% of our initial
collection. We prepared IP camera firmware in the same manner.

Our final dataset includes total 1124 firmware images, 1079
of which are wireless routers, and 45 are IP cameras. We divide
them into three datasets: AnalysisSet, LatestSet, and CamSet. Their
brief summary is presented in Table 1 along with the emulation
result, and its detailed version is shown in Table 4 in Appendix.
The AnalysisSet consists of 526 outdated images from 3 vendors,
whereas the LatestSet and CamSet only contain the latest firmware
images as of Dec. 2018. The LatestSet has 553 latest images from
8 vendors including the vendors covered by the AnalysisSet, and
the CamSet includes 45 latest images from 3 vendors. Accordingly,
the AnalysisSetmay include multiple firmware versions per device,
whereas the LatestSet and CamSet have only one image per device.
There is no intersection among the datasets, i.e., they do not share
any identical image. We used the AnalysisSet to analyze emula-
tion failure cases. By analyzing them, we found several arbitration
points that can help increase the emulation rate (§4). We applied
those arbitrations in FirmAE, and evaluated it with the LatestSet

and CamSet (§5).
Environment. All our experiments were conducted on a server
equipped with four Intel Xeon E7-8867v4 2.40 GHz CPUs, 896 GB
DDR4 RAM, and 4 TB SSD. We installed Ubuntu 16.04 with Post-
greSQL v9.5.14 [42] and Docker v18.09.4 [40] on the server.

4 ARBITRATION OF FAILURE CASES

The key of arbitrated emulation is to depict arbitration points that
can help the emulator to bypass the failure. Therefore, we first
analyzed the failure cases on AnalysisSet based on the high-level
behavioral model. For a large-scale analysis, we applied FirmAE’s
automation and parallelization without any arbitration, such that
the emulation part is the same as that of Firmadyne. Notably, web
servers of only 16.9% images were emulated (§5.1). For a neat expla-
nation, we categorized the failure cases by their arbitration points:
boot (§4.1), network (§4.2), NVRAM (§4.3), kernel (§4.4), and others
(§4.5). In this section, we explain them in details.
Note. Identifying arbitration points and devising appropriate inter-
ventions require empirical investigation, and we believe that our
study can contribute to future research in this field.

4.1 Boot arbitrations

We encountered the first issues at the early stage of the booting
procedure, which made the emulation fail with kernel panic.
Improper booting sequence. The main cause of an improper
booting sequence is that the program used for system initialization
is not properly executed. Generally, most systems require initial-
ization in the booting procedure. In the Linux kernel, initialization
is often performed by a program called init, and the kernel at-
tempts to find this program by checking pre-defined paths, such
as /sbin/init, /etc/init, and /bin/init. However, some firmware
images have customized paths for initializing programs, such that
the kernel fails to execute the programs and crashes.

This failure often happens in NETGEAR firmware images. After
analyzing them, we found that they use the name preinit, which
is often used by an open-source embedded device project Open-
Wrt [22], and we verified that they are indeed implemented upon
it. We also found that some TP-Link images utilize preinit as well.
To address this problem, Firmadyne built a script that searches and
executes a hard-coded list of files frequently accessed for initializing
programs. However, these candidates are not sufficient to account
for the diverse paths of initializing programs in the wild.

We propose another approach that utilizes information from the
kernel of the target firmware. Specifically, we created an interven-
tion at the beginning of the booting process, which extracts useful
information in the kernel of the image. Specifically, we utilize a
kernel’s command line string, which is used for default configu-
ration of the kernel in the booting procedure. Note that such a
string is pre-defined in the development stage, so it is naturally
embedded in the kernel image. This information may include an ini-
tializing program path, console type, root directory, root filesystem
type, or memory size. For example, from one kernel image in NET-
GEAR firmware, we could obtain a string of console=ttyS0,115200
root=31:08 rootfstype=squashfs init=/etc/preinit. We can rec-
ognize the initializing program path of /etc/preinit, console type
of ttyS0 having the 115200 baud rate, and root filesystem type of
squashfs. By configuring the emulated environment with the infor-
mation obtained from the original kernel, the guest system could
be properly initialized without failure, even if initializing programs
have unusual paths. If we fail to extract any information, we find
the initialization program such as preinit or preinitMT from the
extracted filesystem.

ACSAC 2020, December 7–11, 2020, Austin, USA Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae Kim

Missingfilesystem structure.Other failure cases occur due to the
absence of files or directories. When internal programs access such
paths, they crash, and the emulation stops. Firmadyne attempted
to address this by creating and mounting hard-coded paths such as
proc, dev, sys, or root at the beginning of the custom booting script.
Some hard-coded paths certainly worked; for example, making
/etc/TZ or /etc/hosts helped several cases of this failure. However,
this approach cannot account for diverse cases. Furthermore, as it
forcibly creates files and directories before the firmware initializes
itself, it collides with internal programs, which create and mount
other files or directories in the same paths.

We arbitrated this by inserting an intervention, which is simi-
lar to that of the previous case, but retrieves information from a
filesystem rather than a kernel. Before emulating a given image,
we extracted all strings from executable binaries in its filesystem.
Then, we filtered them to obtain strings that are highly likely to
indicate paths and prepared the file structure based on the paths.
In particular, we chose strings that start with general Unix paths,
such as /var, or /etc.

4.2 Network arbitrations

After completion of the booting procedure, the network should be
configured such that the host system can communicate with the
guest system, and eventually dynamic analysis can be performed.
For network communication, QEMU requires the host to create an
additional network interface, TAP. This TAP interface is connected
to a network interface in the guest system. Then, the host and guest
communicate through it.

However, properly configuring a TAP interface is not trivial, as
it should be set up with specific options that correspond to the type
of the target network interface. This network interface type could
be Ethernet, wireless LAN (WLAN), network bridge, or virtual LAN
(VLAN). As statically distinguishing the interface type in the guest
system is not easy, a target image needs to be emulated once.

Firmadyne emulates a given image twice (§2.4). In the first em-
ulation, namely pre-emulation, Firmadyne collects kernel logs by
hooking the system calls. Since the collected logs include the names
and IP addresses of the network interfaces accessed during the em-
ulation, they could be utilized for network configuration in the final
emulation. Nevertheless, numerous images still suffered failure.

Invalid IP alias handling. Assigning multiple IP addresses to a
single network interface is termed IP aliasing [58]. It is prevalent in
routers, as it enables the management of services separately by IP
address. In IP aliasing, a network interface makes multiple instances
of itself, and each instance is assigned a unique IP address. For
example, a bridge interface, br0, with an IP address of 192.168.1.1,
can have IP aliases of 169.254.39.3 and 1.1.1.1, which are assigned
to its instances br0:0 and br0:1, respectively. Then, br0 is linked to
an Ethernet interface, eth0. Here, br0 can be accessed with any of
these IP addresses.

Failure cases related to this IP aliasing are often found in D-Link
images. After investigating them, we found that they are caused by
the fact that Firmadyne does not properly handle IP aliasing. The
problem occurs during the Firmadyne network configuration in the
host system. At the pre-emulation step, IP aliases are logged by the
kernel. Then, Firmadyne parses the log and tries to assign all the

logged IP addresses to a corresponding interface in the guest. Then,
it adds static routing rules for those IP addresses to link them to a
TAP interface in the host. Here, multiple routing rules are added to
a single TAP interface, which makes the network collide.

With the knowledge of IP aliasing, FirmAE arbitrates this by
letting the host system use its default routing rule. In particular,
even though IP aliasing is used, once the guest’s network interfaces
are linked to the host’s TAP interfaces, all packets are automatically
routed between the host and guest. Thus, these cases require no
intervention, demonstrating the importance of placing an interven-
tion for the right situation.

No network information. Some firmware images do not contain
any information on connectable network interfaces, such as eth,
in their kernel logs. Those images only configure the loopback
interface (lo) without setting other network interfaces. Due to
the lack of connectable network interface, these images cannot be
accessed from the host system. Moreover, some images attempt to
bind their web servers to a network interface, which does not exist,
and consequently crash.

After analyzing the cases, we found that some images use the dy-
namic host configuration protocol (DHCP) to retrieve IP addresses
from a DHCP server, for their WAN interface. The DHCP is a popu-
lar protocol to set up a network interface in endpoint devices, as it
does not require any user interaction. In general, wireless routers
act as DHCP servers themselves to assign IP addresses to their LAN
interfaces to which their clients are connected. However, they can
also retrieve an IP address from external DHCP servers to connect
their WAN interface to the Internet, unless a user manually con-
figured it. Indeed, our analyzed images attempted to retrieve an
IP address with the DHCP through the connection between their
WAN interface and the TAP interface of the host system. However,
as a DHCP server is not present in the emulated environment, the
emulated firmware fails to obtain an IP address and configure a net-
work interface. Furthermore, as no network interface is configured,
a bridge interface, which groups multiple network interfaces, could
not be arranged. Consequently, internal programs that are bound
to these network interfaces cannot run properly.

We first attempted to address this with QEMU’s internal DHCP
server, such that guest’s network interfaces can retrieve IP addresses
from the server. However, some images still do not have network
interfaces, even after setting the DHCP server. This may arise from
insufficient support of peripherals. If any program during the net-
work configuration accesses such peripherals, it crashes or acts
abnormally and eventually fails to configure the network.

FirmAE arbitrates these cases with an intervention that forcibly
configures the network with a default setting. Specifically, we set an
Ethernet interface, eth0, with an IP address of 192.168.0.1. After
the Ethernet interface is set up, it is linked with a default bridge
interface, br0, for those images whose kernel log contains bridge
interface information. This simple intervention significantly helps
emulate web services (§5.1).

Multiple network interfaces in ARM. To support multiple net-
work interfaces, an appropriate machine, onto which the target
firmware will be loaded, must be chosen. We selected virt, one
of the machines supported by QEMU, by following the approach
employed in a previous study [17]. This performs well for several

FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis ACSAC 2020, December 7–11, 2020, Austin, USA

firmware images; however, it fails to emulate ARM firmware images
with multiple network interfaces. Firmadyne attempts to address
this multi-interface problem by preparing a fixed number (four)
of dummy interfaces. Its basic assumption is that the number of
interfaces should be more than or equal to the suffix of the interface
name, which is extracted from kernel logs. For example, if eth1 is
logged, it is highly likely that eth0 exists as well. However, almost
all ARM images are still not emulated.

We carefully investigated these cases, but we could not identify
the exact cause. Nevertheless, we could address the failure with
a high-level intervention that forcibly sets up only one Ethernet
interface. More specifically, our intervention forcibly sets up an
Ethernet interface, eth0, and avoids setting the other interfaces.
Thus, we set a bridge network interface and link it to the host if
necessary. With this intervention, a large portion of ARM firmware
images could be emulated.
Insufficient VLAN setup. VLAN is a typical feature of routers, as
it provides an isolated network environment, logically grouping sub
networks. A VLAN interface has different characteristics compared
to other network interfaces, such as Ethernet or WLAN, and thus
it must be set with additional options. To support VLAN, the type
of TAP interface should be set to VLAN, and an appropriate VLAN
id should be assigned to it.

Another failure occurs in firmware images with VLAN interfaces.
When emulating these images, even though Ethernet interfaces
were properly configured with independent IP addresses, the guest
network was unreachable. Firmadyne attempts to address this by
running a command when setting the host TAP interface; however,
their configuration is insufficient to handle it. In particular, the
VLAN should be set to group the host and guest networks with
the same VLAN id. However, Firmadyne dismissed setting the host
network. FirmAE arbitrates this by properly configuring the VLAN.
Filtering rules in iptables.Numerous routers set a firewall to pre-
vent unauthorized remote access by design. Otherwise, an attacker
could access administration interfaces. Some firmware images in
our dataset also implement this policy by using iptables. Conse-
quently, the guest kernel drops all packets from the host. We found
most of these cases in TP-Link, where the guest is not reachable,
even though host and guest networks are configured properly.

This does not represent an emulation failure, since setting ipta-
bles mimics the original behavior of real devices. However, such
filtering prevents the analysis of their potential vulnerabilities and
threats. Evidently, identified vulnerabilities during the analysis
might not be remotely exploitable. Nevertheless, numerous device
owners or administrators mistakenly change these rules, making
the device publicly accessible [14, 15, 51].

FirmAE arbitrates this by checking filtering rules in the guest
system and removing them if they exist. This could be done simply
by flushing all policies in the iptables and setting the default policy
to accept all incoming packets. Then, the guest network becomes
reachable from the host, and dynamic analysis can be conducted.

4.3 NVRAM arbitrations

Emulating peripherals similar to the real environment is one of the
most challenging parts in firmware emulation (§2.3). An NVRAM,
which is essentially a flash memory, is one of the peripherals widely

used in embedded devices to store configuration data. Internal pro-
grams in embedded devices often store/fetch necessary information
in/from it. These programs often crash unless NVRAM is supported.

Firmadyne implements a custom NVRAM library to emulate
NVRAM-related functions. This custom library is loaded in advance
to include other libraries by setting the environmental variable
called LD_PRELOAD. This intercepts NVRAM-related functions such
as nvram_get() and nvram_set(), and emulates an NVRAM without
physical access. Specifically, when nvram_set() is called, a key-value
pair is stored in a file, and it is later fetched when nvram_get() is
called. For these cases, where nvram_get() is called before the call
of nvram_set(), Firmadyne initializes key-value pairs using default
files in the given firmware, which typically exist for the factory
reset functionality of a device. Firmadyne has a list of few hard-
coded paths of default files to extract key-value pairs. However,
many firmware images in our dataset are still not emulated.

Supporting custom NVRAM default files.We found numerous
cases, where the paths of default file differ depending on each device,
and even their key-value pairs have different patterns. For example,
in someD-Link images, default files are located at /etc/nvram.default
or /mnt/nvram_rt.default. Furthermore, default files in some NET-
GEAR images are found at /usr/etc/default. The key-value pairs in
these files are separated with a diverse delimiter, such as a carriage
return or NULL byte. Some default files even have vendor specific
formats, such as OBJ or ELM.

To develop a scalable approach, FirmAE prepares arbitration
during the pre-emulation. Specifically, FirmAE records all the key-
value pairs accessed with the nvram_get() and nvram_set() func-
tions during the pre-emulation. Then, it scans the filesystem of the
target firmware and searches files that contain multiple instances
of the recorded key names, whose values are unknown. FirmAE
extracts the key-value pairs from the files (if they exist) and utilizes
them in the final emulation.

No NVRAM default file. Unfortunately, not all firmware images
have default NVRAM files. Even if a default file exists, it may not
contain the requested key-value pairs. One simple approach to
address this issue is to return the NULL value for uninitialized keys,
as Firmadyne does. However, we observed many cases that crash
with a segmentation fault after nvram_get() returns NULL. By reverse
engineering the crashed programs, we found that, surprisingly,
many programs do not verify the return value of nvram_get(). They
just pass the return value into string-related functions, such as
strcpy() or strtok() and crash with a NULL pointer dereference.

FirmAE handles this by arbitrating the behavior of the nvram_get()
function. Instead of returning the NULL value when accessing unini-
tialized keys, FirmAE returns a pointer to an empty string. This
simple change significantly decreases crashes, particularly in NET-
GEAR images. Because we cannot obtain real key-value pairs with-
out physical devices, this would be one of the most optimal ap-
proaches to avoid crashes caused by deficient error handling in
many internal programs.

4.4 Kernel arbitrations

Many programs in an embedded device co-operate with peripherals
through device drivers in the kernel. Typically, they communicate

ACSAC 2020, December 7–11, 2020, Austin, USA Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae Kim

with peripherals using ioctl commands. Unfortunately, emulat-
ing this procedure is not a simple task, as each device driver has
distinctive characteristics depending on its developers and a corre-
sponding device. Although Firmadyne implemented a few dummy
kernel modules, which support /dev/nvram and /dev/acos_nat_cli,
it could not cover diverse characteristics of firmware images in
practical scenarios. Many firmware images in our dataset also crash
due to this problem.
Insufficient support of kernel module. Since Firmadyne imple-
mented dummy modules with hard-coded device names and ioctl

commands, some programs fail when accessing kernel modules
with a different configuration. For example, numerous NETGEAR
images utilize a module called acos_nat, which is used to commu-
nicate with a peripheral device mounted on /dev/acos_nat_cli. In
those images, a Firmadyne module returns incorrect values and
causes an infinite loop on the web services of httpd. Furthermore,
we found that ioctl commands vary depending on firmware archi-
tectures, thus this should be considered as well.

FirmAE’s high-level approach takes advantage of emulating a
specific kernel module. The key intuition here is that numerous
kernel modules are accessed through shared libraries, which have
functions that send corresponding ioctl commands. Thus, FirmAE
intercepts library function calls similarly to handling NVRAM is-
sues (§4.3). When a program calls library functions, FirmAE returns
a pre-defined value. Hence, each ioctl command does not need to
be emulated depending on the device architecture. In this example,
we only focused on acos_nat, whereas other peripheral accesses
via shared libraries can be handled in the same manner.
Improper kernel version.We found some firmware images fac-
ing issues with the kernel version. Firmadyne customized Linux
kernel v2.6.32 in the firmware emulation. However, recent embed-
ded devices use a newer version of the kernel. Upgrading the kernel
version seems like a trivial solution to this problem. Indeed, we
experimentally tested Linux kernel v4.1.17 and successfully em-
ulated more firmware images. However, some firmware images,
particularly older ones, were not emulated with the new version of
the kernel. These images failed with a crash in the libc library.

We investigated these cases and determined that the address
space layout randomization of Linux kernel v4.1.17 is not com-
patible with the old versions of libc. To resolve this, we used the
compatibility option when compiling the new kernel. Specifically,
we set the CONFIG_COMPAT_BRK option, which excludes randomizing
brk area in heap memory. With this new kernel, FirmAE was able
to handle the above cases. Other compatibility issues may exist that
were not detected in our experiment. To address these, multiple
kernel versions with various compiling options should be tested
further, which is one of the aims of our future studies.

4.5 Other arbitrations

Some failure cases are addressed by other minor interventions.
Unexecuted web servers. For the dynamic analysis of the web
service, we need to achieve both network reachability and web
service availability. In some images, a web server does not run even
after the network is configured successfully. We could not find the
exact root cause of this phenomenon. However, an intervention that
forcibly executes a web server could address the issue. Specifically,

it searches a widely used web server such as httpd, lighttpd, boa,
or goahead in the filesystem of the target firmware, along with their
corresponding configuration files, and executes it.
Timeout issues. Emulating firmware images that do not respond
for a long time should be forcibly stopped. Thus, setting a suitable
timeout is necessary. Firmadyne applied use a 60 s timeout; however,
firmware images, particularly from NETGEAR, take a long time
to complete their booting procedure, whereby their emulation is
eventually blocked. We investigated such cases and empirically
found a suitable timeout of 240 s. Although this change was simple,
more than 60 firmware images were successfully emulated.
Lack of tools for emulation. Embedded device developers often
omit unnecessary functionalities to save storage. Thus, a firmware
image may not have the appropriate tools to emulate itself. As the
emulated environment does not have any storage limitation, we
can add several required tools. For successful emulation, several
Linux commands such as mount or ln should be prepared in the
filesystem. We resolve this by adding the latest version of busybox
into the filesystem of the target firmware. This simple addition
enables essential commands, and leads to successful emulation.

5 EVALUATION

From the investigation on AnalysisSet, we found several arbitration
points (§4). In this section, we evaluate each arbitration with our
prototype FirmAE (§3.3) on our datasets. For this, we implement a
total of 3671 LoC in Python and shell scripts. We also introduce the
vulnerabilities identified during the dynamic analysis with FirmAE.

5.1 Firmware emulation result

We compare the emulation rates of FirmAE and Firmadyne on each
dataset (§3.4). The total emulation time of all datasets was less
than four hours (14289 s), as FirmAE supports full automation and
parallelization (§3.3).
Overall result. As our goal is to emulate the web services for dy-
namic analysis (§3.1), we verify the network reachability and web
service availability of each emulated firmware. Henceforth, we re-
fer to the web service availability as the emulation rate. The final
results are listed in Table 1. Overall, the emulation rate significantly
increased from 16.28% to 79.36% (by 487%). Because our investiga-
tion is based on AnalysisSet, it shows the highest rate of 91.83%.
The rates of LatestSet and CamSet also show a large improvement
compared to those obtained by Firmadyne, and we could identify
vulnerabilities in them (§5.3). In AnalysisSet, the emulation rate
of NETGEAR images increased the most, from 10.95% to 93.80%
(by 857%), owing to the intervention that addresses ARM network
issues, as majority of the NETGEAR images are ARM-based. The
emulation rates of TRENDnet, ASUS, Belkin, and Zyxel in LatestSet

are under 60%; these lower rates are attributed to the larger number
of kernel modules in these images and the use of custom hardware
interfaces. We describe this in detail in §5.2.

The emulation rates of CamSet indicate that addressing failure
issues of wireless routers can also help emulate IP cameras. In par-
ticular, none of the D-Link images were emulated with Firmadyne,
whereas FirmAE could emulate more than 65% of the images. Never-
theless, FirmAE fails to emulate all TP-Link images.We investigated
these failed cases and found that they do not contain web servers.

FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis ACSAC 2020, December 7–11, 2020, Austin, USA

Table 1: Emulation rate of network and web services

Firmadyne FirmAE

Dataset Vendor Images Net Web Net Web

AnalysisSet
D-Link 179 55 54 (30.17%) 177 167 (93.30%)
TP-Link 73 26 5 (6.85%) 73 59 (80.82%)
NETGEAR 274 86 30 (10.95%) 259 257 (93.80%)

Sub Total 526 167 89 (16.92%) 509 483 (91.83%)

LatestSet

D-Link 58 18 17 (29.31%) 54 48 (82.76%)
TP-Link 69 33 10 (14.49%) 69 54 (78.26%)
NETGEAR 101 30 7 (6.93%) 92 79 (78.22%)
TRENDnet 106 35 23 (21.70%) 91 63 (59.43%)
ASUS 107 27 25 (23.36%) 63 62 (57.94%)
Belkin 37 2 2 (5.41%) 30 22 (59.46%)
Linksys 55 13 8 (14.55%) 48 44 (80.00%)
Zyxel 20 3 0 (0.00%) 18 10 (50.00%)

Sub Total 553 161 92 (16.64%) 465 382 (69.08%)

CamSet
D-Link 26 0 0 (0.00%) 19 17 (65.38%)
TP-Link 6 0 0 (0.00%) 6 0 (0.00%)
TRENDnet 13 2 2 (15.38%) 10 10 (76.92%)

Sub Total 45 2 2 (4.44%) 35 27 (60.00%)
Total 1124 330 183 (16.28%) 1009 892 (79.36%)

The result of CamSet demonstrates that many IP cameras share sim-
ilar characteristics with wireless routers, such that arbitrations of
wireless routers can also be applied to IP cameras.
Impact of each arbitration.We also investigate the effectiveness
of each arbitration by omitting a specific arbitration from the final
version of FirmAE, to which all arbitrations are applied. This is
because numerous arbitration points should co-operate to address
the failure, and deducting a specific arbitration directly affects the
emulation rate. Figure 2 illustrates these results, and a detailed
version is provided in Table 5 in Appendix.

NVRAM arbitration appears to be the most effective, decreas-
ing the emulation rate by 35% on average across all datasets. This
coincides with the Firmadyne approach to focus on emulating the
NVRAM. Removing the boot and network arbitrations also signifi-
cantly lowers the emulation rate by ~30%. Only 4.88% of firmware
images across all datasets were affected without the kernel arbitra-
tion. The other arbitrations affected 22.35% of the firmware images.
These results demonstrate that the proposed arbitrations are indeed
effective and scalable for successful firmware emulation.

5.2 Post-emulation analysis

Following a large-scale emulation, we investigate unhandled failure
issues that cannot be easily addressed by simple arbitrations, but
require a more complicated virtualization.
Kernel modules. As discussed in previous studies [12, 17, 23, 25,
57], emulating kernel modules is challenging because 1) different
kernel versions often produce compatibility problems, and 2) some
firmware images may not have a kernel, such that no useful in-
formation can be obtained. In a few cases, web servers and other
programs access kernel modules under the /proc directory. Because
such files do not exist in the emulated environment, those programs
often crash. For example, web servers in TP-Link firmware images
access a kernel module at /proc/simple_config/system_code for
configuration and subsequently crash, as the module does not exist.
Hardware interfaces. Some internal programs of the firmware
use their own dedicated interfaces for peripheral communication,
hardening the emulating peripheral interfaces. For example, we
hooked popular library calls to emulate a NVRAM. However, some

AnalysisSet LatestSet CamSet0

20

40

60

80

100

W
eb

 S
er

vi
ce

 E
m

ul
at

io
n

R
at

e

Firmadyne
FirmAE
w/o Boot Arbitrations ($4.1)
w/o Network Arbitrations ($4.2)
w/o NVRAM Arbitrations ($4.3)
w/o Kernel Arbitrations ($4.4)
w/o Other Arbitrations ($4.5)

Figure 2: Effectiveness of applied arbitrations

programs of D-Link firmware call /bin/flash to directly access
/dev/nvram. Similarly, httpd servers in a few TP-Link firmware
images access a flash memory, /dev/ar7100_flash_chrdev, to re-
trieve information for device configuration.Meanwhile, web servers
named webs in Linksys firmware directly manipulate the /dev/mtd

interface. They even verify the integrity of the device and verify
the signatures and versions of the given firmware.
CGI errors. Even though web servers are accessible, some of them
rarely respond with a server error, i.e, 500 Internal Server Error.
There are several causes for this error, such as syntax/code errors in
CGI programs, invalid web interface configuration, and PHP errors.
However, most error cases are derived by crashes of backend CGI
programs. We analyzed the CGI programs with reverse engineering
and found that they share the same issues of hardware interfaces.
Hence, they attempt to access entries under /proc or /dev to obtain
configuration values and stop abnormally if they fail.

The aforementioned cases present the difficulty of emulating
peripheral communication without physical devices. Addressing
those issues requires a more complicated emulation environment,
which is to be addressed in future research.

5.3 Applying Dynamic Analysis – Fuzzing

After having a successful emulation of firmware images, we apply
dynamic analysis, fuzzing, to their web services. With this evalua-
tion, we 1) verify that the arbitrated emulation is indeed practical
for applying dynamic security analysis of embedded devices, and 2)
evaluate the current status of the security of embedded devices in
the wild. We target LatestSet and CamSet with the latest firmware.
Dynamic analysis engine. For a large-scale analysis, we focus on
the scalability. So our dynamic analysis tool need to be applicable
to diverse emulated firmware images with little user interaction.
With these criteria, we first searched existing tools [9, 19, 21, 34,
39, 43, 53, 55, 56, 64] and checked if they are applicable to FirmAE.

However, the existing tools do not satisfy our criteria, as they
are 1) not publicly available, 2) not scalable for a large-scale anal-
ysis, and 3) incapable of finding new vulnerabilities. For example,
Firmadyne [17] utilizes Metasploit [43], which checks known vul-
nerabilities. Other web scanners, such as Burp Suite [55], Arachni
[34], or Commix [53] only check a combination of pre-defined
HTTP patterns. Thus, they are insufficient for diverse firmware
web services in practical scenarios. Furthermore, they are not de-
signed to find memory corruption vulnerabilities, such as buffer

ACSAC 2020, December 7–11, 2020, Austin, USA Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae Kim

overflow or use-after-free. Meanwhile, the state-of-the-art fuzzer,
Firm-AFL [64] is a promising tool to detect memory corruption
vulnerabilities. However, it is not applicable to a large-scale anal-
ysis, since it requires individual environment setting for a target
program. Because of these limitations, we built our own analysis
engine. Developing an analysis engine itself is an orthogonal re-
search area, and here we only propose a conceptual design. Our
concept may also be applied to the aforementioned tools.

Our analysis engine consists of two parts: it automatically initial-
izes and logs into web pages if necessary, and identifies vulnerabili-
ties including memory corruption bugs. To find 1-day vulnerabili-
ties, we leveraged RouterSploit [56], which has proof-of-concept
(PoC) codes of previously known vulnerabilities. We also added
several customized PoC codes to it. To analyze 0-day vulnerabilities,
we developed a simple web fuzzer with 880 LoC in Python.

Initializing web services. The primary step in dynamic analysis
is to initialize web services unless they do not receive any other
requests. A large portion of the web services in our dataset require
a network and security configuration (e.g., admin or AP password)
in the admin pages. However, this initialization procedure also
differs in each firmware. Web servers in most firmware images in D-
Link, TP-Link, Belkin, Linksys, and ZyXEL automatically initialize
themselves after successful emulation, whereas those of ASUS and
TRENDnet in particular must be initialized in person. Fortunately,
many of them have a skip button to configure default options.
Some web services do not explicitly have a skip button, but have
internal JavaScript functions that behave identically. Meanwhile,
some require a manual admin password.

To automatically process the initialization, we analyzed the ini-
tializing process of web services, and extracted representative pat-
terns including buttons and menus from them. Then, we utilize
these patterns to automate the process. Here, we leveraged Se-
lenium [50], which is an open-sourced tool that can provide an
interface alike a real browser.

Evaluating vulnerability discovery performance. After suc-
cessfully running the firmware image and its web services, the
engine first checks 1-day vulnerabilities utilizing RouterSploit [56]
and our customized PoC codes. Because RouterSploit consists of
multiple exploits of known vulnerabilities, in this evaluation, we
can 1) check if a target device is patched and 2) find a new vulnerable
device that is previously unknown, but has the same vulnerability.

To find 0-day vulnerabilities, our engine first searches the filesys-
tem of the target firmware and generates a list of web page can-
didates by checking the extension of files such as .html, .aspx, or
.xml. Then, it extracts possible parameters from the candidates and
generates requests to detect vulnerabilities. For example, for the
.htm and .html candidates, our engine parses the HTML tags, such
as script, form, and input, to extract target URLs, methods, and
parameter information. This approach is particularly helpful when
building requests for fuzzing devices that use the home network
administration protocol (HNAP); the HNAP request is based on the
XML format and the default value is set up in the javascript code of
.html page. By utilizing the extracted information, we could con-
struct a valid request template for fuzzing. Because we search for
candidates from the filesystem, we could also check web services
that are not reachable by crawling.

Table 2: 1-day analysis result on AnalysisSet

Vulnerability Firmadyne FirmAE

Category # of PoC # of Images (Unique) # of Images (Unique)

Information leak 2 0 (0) 17 (17)
Command injection 9 10 (6) 152 (65)
Password disclosure 2 4 (3) 146 (99)
Authentication bypass 2 0 (0) 5 (5)

Total 15 14 (9) 320 (128)

Table 3: New vulnerabilities found on LatestSet and CamSet

Type Vulnerability Category # of Vulns # of Devices

1-day

Information leak in PHP 1 19
Information leak in CGI 1 13
Command injection in UPnP 2 13
Command injection in SOAP CGI 2 12
Command injection in HNAP 1 3
Command injection with backdoor (32764) 2 3
Path traversal 2 9

Sub Total 11 72

0-day
Command injection in HNAP 6 13
Command injection in CGI 1 3
Buffer overflow in HNAP 1 1
Buffer overflow in CGI 4 6

Sub Total 12 23
Total 23 95

Among the various types of vulnerability, we focus on command
injection and buffer overflow as they are often found in embedded
devices. To detect command injection vulnerabilities, our engine
sends payloads, which are essentially a combination of candidate
characters, such as ’‘’, ’"’, or ’&’, followed by a shell command
executing our executable binary. We place this binary to log use-
ful information, such as time and environment variables, thereby
checking if the vulnerability is triggered. We also hook the execve

system call, to easily detect if our inputs are injected in the com-
mand. For buffer overflow detection, FirmAE provides a feedback
when a crash occurs. Note that we must wait after sending a request
to a target web service because of the time required to process the
request; we empirically determined that 10 to 15 s is sufficient. We
also utilize the boundary values, such as a large-sized buffer for
fuzzing inputs, as they are more likely to trigger vulnerabilities.

Any bugs reported by our analysis engine must be verified.
For this, we added debugging programs such as strace, gdb, and
gdbserver to the filesystem of target firmware. Note we could utilize
the ptrace system call for debugging as we upgraded the kernel
version (§4.4). We also added netcat and telnetd to access the guest
shell. With these tools, we manually verified the identified bugs.

5.4 Dynamic analysis result

To evaluate the effectiveness of arbitrated emulation, we performed
a dynamic analysis on each emulated firmware image, of which
web services are already initialized by our engine. In particular,
after the web service of the target firmware image is initialized
by each of FirmAE and Firmadyne, we ran the previously known
PoC exploits. We first tested known vulnerabilities using Router-
Sploit [56] on the emulated images in AnalysisSet with FirmAE
and Firmadyne each, and the results are listed in Table 2. With-
out using any arbitration (i.e., Firmadyne), we could only check
vulnerabilities in 14 images, of which 9 are unique devices. By ap-
plying all the proposed arbitrations (i.e., FirmAE), we could check

FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis ACSAC 2020, December 7–11, 2020, Austin, USA

vulnerabilities in 320 images, of which 128 are unique. As FirmAE
aims to emulate web services (§3.1), all the identified vulnerabilities
are located in web services such as SOAP CGI, UPnP, and HNAP.
This result shows that FirmAE’s successful emulation is helpful to
outperform Firmadyne in dynamically analyzing firmware images.

Additionally, we conducted a dynamic analysis including a fuzzer
on the latest images in LatestSet and CamSet. As a result, we found
a total of 23 unique vulnerabilities across 95 unique devices. These
include 11 1-day and 12 0-day vulnerabilities as listed in Table 3.
For the fuzzer, each fuzzing request took an average of 10–15 s
when running 50 images in parallel, and the average time spent
for finding each vulnerability was 70 min, with the maximum of
150 min. The fuzzing throughput can vary according to the system
spec and the number of parallel emulation instances.

An interesting point is that some vendors share the same vulner-
abilities. For example, some devices in D-Link and TRENDnet have
the same vulnerabilities of information leak, as well as command
injection in UPnP and SOAP CGI programs. On the contrary, some
NETGEAR devices share a path traversal vulnerability with Xiong-
mai’s. Another point is that the analysis of a target web service may
reveal vulnerabilities of other programs related to it. Specifically,
when we sent a long payload to detect buffer overflow, a target
CGI program stored the payload in a file. Then, another program
that reads the written file crashed due to the overflowed payload.
Such vulnerability can be only found in the full-system emulation
environment, as the user-mode emulation does not consider the
filesystem relationship.

In sum, the results demonstrate that FirmAE is practical for
vulnerability analysis. We believe that undiscovered vulnerabilities
still exist, which should be investigated in future research.
Responsible disclosure. The detected 0-day vulnerabilities were
spread across four vendors. We reported all 12 vulnerabilities to the
vendors by December 2019, and it took a maximum of nine months
to receive their response.

6 DISCUSSIONS

Emulation discrepancy in arbitrated emulation. FirmAE does
not aim to eliminate the discrepancy between the real and emu-
lated environment but aim to run the firmware’s web server and
correctly serve the web interfaces. This may result in a different
behavior than running firmware on hardware. However, for apply-
ing dynamic security analysis, what we need to check is whether
the 1) vulnerable program runs and 2) accepts a malicious input,
and 3) triggering the vulnerability in the program. Although the
emulation may be incorrect, these three items can be checkable if
1) we can run the web service of the firmware, 2) send an exploit
packet via network, and 3) verify if the exploit has been executed
successfully or not. Because our arbitrated emulation can support
these, the vulnerability discovered by FirmAE is legitimate and also
working in the real device.
Generality of arbitration intervention.Although our heuristics
for arbitrated emulation performs better than other works for cur-
rent firmware images, because we develop the heuristics to handle
failure cases empirically, our systematized arbitrated emulation can
only handle observed cases and may not applicable to new devices
and new configurations. In this regard, we believe that an empirical

investigation to find such interventions seems indispensable to han-
dle the convoluted nature of IoT devices and their configurations.
To encourage future research, we release our code, in the belief that
our empirical findings can serve as a reference.
Applying other dynamic analysis techniques. In this study, we
developed a simple analysis engine that automatically initializes,
logs into, and analyzes web services for dynamic analysis. However,
each step can be further improved by applying other promising
techniques. For example, the login procedure may be analyzed and
bypassed by using symbolic execution [52]. Moreover, adopting
other fuzzing strategies [8, 48], hybrid analysis approaches [54, 61],
or similarity techniques [18, 20], may discover even more vulner-
abilities. We leave such promising improvements on the dynamic
analysis engine as a future work.
Applying emulation to build an IoT honeypot. Arbitrated em-
ulation can also be useful to build a honeypot for analyzing numer-
ous attacks targeting IoT devices. In fact, there have been several
honeypot studies utilizing emulation [35, 47, 49, 57]. Particularly,
Vetterl et al. [57] proposed a honeypot named Honware based on
firmware emulation similarly to FirmAE’s approach. As a honeypot
should interact with an attacker outside the network, the authors
focused on increasing the network reachability rate by investigating
emulation failure cases. Accordingly, FirmAE’s network interven-
tion that configures a default network setting is fairly similar to
Honware’s approach. However, FirmAE includes additional inter-
ventions to run web services for actively analyzing vulnerabilities
in them, and such interventions even more increased the emulation
rate (Table 5). Thus, we believe that arbitrated emulation can be
useful to build an IoT honeypot as well.2

7 CONCLUSION

Analysis of embedded device security has received considerable at-
tention. In this study, we investigated a large-scale firmware dataset
and discovered that firmware emulation can substantially benefit
from simple interventions. We proposed arbitrated emulation and
interventions that can address high-level failure problems. With a
prototype, FirmAE, we demonstrated that the proposed approach
can boost the emulation rate of the state-of-the-art framework
by 487%. We also performed dynamic analysis on the emulated
firmware and found 23 unique vulnerabilities, including 12 0-days.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feedback, and
Minkyo Seo for developing the containerization. This work was
supported by Institute of Information & communications Tech-
nology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2018-0-00831, a study on physical layer
security for heterogeneous wireless network, and No.2019-0-01343,
regional strategic industry convergence security core talent training
business)

REFERENCES

[1] 2014. Proceedings of the 23rd USENIX Security Symposium (Security). San Diego,
CA.

2We could not find public source code for Honware for evaluation.

ACSAC 2020, December 7–11, 2020, Austin, USA Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae Kim

[2] 2016. Proceedings of the 2016 Annual Network and Distributed System Security
Symposium (NDSS). San Diego, CA.

[3] 2019. Proceedings of the 28th USENIX Security Symposium (Security). Santa Clara,
CA.

[4] 2020. Proceedings of the 29th USENIX Security Symposium (Security). Boston, MA.
[5] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,

Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In Proceedings of the 26th USENIX Security Symposium (Security).
Vancouver, BC, Canada.

[6] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the FREENIX Track: 2005 USENIX Annual Technical Conference, April
10-15, 2005, Anaheim, CA, USA.

[7] Roland Bodenheim, Jonathan Butts, Stephen Dunlap, and Barry Mullins. 2014.
Evaluation of the ability of the Shodan search engine to identify Internet-facing
industrial control devices. International Journal of Critical Infrastructure Protection
7, 2 (2014), 114–123.

[8] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive
mutational fuzzing. In Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland). San Jose, CA, 725–741.

[9] Wang Chunlei, Liu Li, and Liu Qiang. 2014. Automatic fuzz testing of web service
vulnerability. In Proceedings of the International Conference on Information and
Communications Technologies (ICT 2014). IET, Nanjing, China.

[10] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David
Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.
2020. HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation,
See [4].

[11] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014.
A Large-Scale Analysis of the Security of Embedded Firmwares, See [1].

[12] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated
Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Inter-
faces. In Proceedings of the 11th ACM Symposium on Information, Computer and
Communications Security (ASIACCS). Xi’an, China.

[13] A Cui. 2012. Embedded Device Firmware Vulnerability Hunting Using FRAK. In
Black Hat USA Briefings (Black Hat USA). Las Vegas, NV.

[14] Ang Cui, Michael Costello, and Salvatore J Stolfo. 2013. When Firmware Modi-
fications Attack: A Case Study of Embedded Exploitation. In Proceedings of the
2013 Annual Network and Distributed System Security Symposium (NDSS). San
Diego, CA.

[15] Ang Cui and Salvatore J Stolfo. 2010. A quantitative analysis of the insecurity
of embedded network devices: results of a wide-area scan. In Proceedings of the
Annual Computer Security Applications Conference (ACSAC).

[16] CVE 2014. CVE-2014-3936. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-3936.

[17] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brumley. 2016. To-
wards Automated Dynamic Analysis for Linux-based Embedded Firmware, See
[2].

[18] Yaniv David, Nimrod Partush, and Eran Yahav. 2018. FirmUp: Precise Static Detec-
tion of Common Vulnerabilities in Firmware. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems. 392–404.

[19] R Dawes. 2011. OWASP WebScarab Project.
[20] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2Vec:

Boosting Static Representation Robustness for Binary Clone Search against Code
Obfuscation and Compiler Optimization. In Proceedings of the 40th IEEE Sympo-
sium on Security and Privacy (Oakland). San Francisco, CA.

[21] Michael Eddington. 2011. Peach fuzzing platform. Peach Fuzzer 34 (2011).
[22] Florian Fainelli. 2008. The OpenWrt embedded development framework. In

Proceedings of the Free and Open Source Software Developers European Meeting.
[23] Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM: Scalable and Hardware-

independent Firmware Testing via Automatic Peripheral Interface Modeling, See
[4].

[24] NCC Group et al. 2017. A linux system call fuzzer using TriforceAFL. https:
//github.com/nccgroup/TriforceAFL.

[25] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry,
Yanick Fratantonio, Davide Balzarotti, Aurelien Francillon, Yung Ryn Choe,
Christophe Kruegel, and Giovanni Vigna. 2019. Toward the Analysis of Em-
bedded Firmware through Automated Re-hosting. In Proceedings of the 22th
International Symposium on Research in Attacks, Intrusions and Defenses (RAID).
Beijing, China.

[26] Craig Heffner. 2010. Firmware Analysis Tool. https://github.com/ReFirmLabs/
binwalk.

[27] Craig Heffner, Jeremy Collake, et al. 2011. Firmware Mod Kit. https://github.
com/rampageX/firmware-mod-kit.

[28] Markus Kammerstetter, Daniel Burian, and Wolfgang Kastner. 2016. Embedded
security testing with peripheral device caching and runtime program state ap-
proximation. In 10th International Conference on Emerging Security Information,

Systems and Technologies (SECUWARE).
[29] Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner. 2014. Prospect:

peripheral proxying supported embedded code testing. In Proceedings of the
9th ACM Symposium on Information, Computer and Communications Security
(ASIACCS). Kyoto, Japan.

[30] Swati Khandelwal. 2016. Multiple Backdoors found in D-Link DWR-932 B
LTE Router. http://thehackernews.com/2016/09/hacking-d-link-wireless-router.
html?m=1.

[31] Swati Khandelwal. 2017. Satori IoT Botnet Exploits Zero-Day to Zombify Huawei
Routers. https://thehackernews.com/2017/12/satori-mirai-iot-botnet.html.

[32] Brian Krebs. 2016. Source Code for IoT Botnet ’Mirai’ Released. https:
//krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released.

[33] Deepak Kumar, Kelly Shen, BentonCase, Deepali Garg, Galina Alperovich, Dmitry
Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. 2019. All things considered:
an analysis of IoT devices on home networks, See [3].

[34] Tasos Laskos. 2010. Arachni. http://www.arachni-scanner.com.
[35] Samuel Litchfield, David Formby, Jonathan Rogers, Sakis Meliopoulos, and Ra-

heem Beyah. 2016. Rethinking the honeypot for cyber-physical systems. IEEE
Internet Computing 20, 5 (2016), 9–17.

[36] Knud Lasse Lueth. 2018. State of the IoT 2018: Number of IoT devices now at 7B
– Market accelerating.

[37] David Maciejak. 2018. Yet Another Crypto Mining Botnet? https://www.fortinet.
com/blog/threat-research/yet-another-crypto-mining-botnet.html.

[38] Denis Makrushin. 2018. Backdoors in D-Link’s backyard. https://securelist.com/
backdoors-in-d-links-backyard/85530.

[39] Xavi Mendez. 2014. wfuzz. https://github.com/xmendez/wfuzz.
[40] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-

ment and deployment. Linux Journal 2014, 239 (2014), 2.
[41] Ryan Mitchell. 2018. Web Scraping with Python: Collecting More Data from the

Modern Web. "O’Reilly Media, Inc.".
[42] Bruce Momjian. 2001. PostgreSQL: introduction and concepts. Vol. 192. Addison-

Wesley New York.
[43] HD Moore et al. 2009. The Metasploit project. https://www.metasploit.com.
[44] Marius Muench, Aurélien Francillon, and Davide Balzarotti. 2018. Avatar2: A

multi-target orchestration platform. In Workshop on Binary Analysis Research
(BAR).

[45] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. 2018. What You Corrupt Is NotWhat You Crash: Challenges in Fuzzing
Embedded Devices. In Proceedings of the 2018 Annual Network and Distributed
System Security Symposium (NDSS). San Diego, CA.

[46] Jeong Wook Oh. 2014. Reverse engineering flash memory for fun and benefit. In
Black Hat USA Briefings (Black Hat USA). Las Vegas, NV.

[47] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. 2015. IoTPOT: analysing the rise of IoT
compromises. In Proceedings of the USENIX Workshop on Offensive Technologies
(WOOT). Washington, DC.

[48] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing seed selection
for fuzzing, See [1].

[49] Lukas Rist, Johnny Vestergaard, Daniel Haslinger, Andrea Pasquale, and John
Smith. 2013. Conpot ics/scada honeypot. http://conpot.org.

[50] Selenium 2004. Selenium. https://www.seleniumhq.org.
[51] Shodan. 2016. D-Link Internet Report. https://dlink-report.shodan.io/.
[52] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and

Giovanni Vigna. 2015. Firmalice-automatic detection of authentication bypass
vulnerabilities in binary firmware. In Proceedings of the 2015 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA.

[53] Anastasios Stasinopoulos, Christoforos Ntantogian, and Christos Xenakis. 2015.
Commix: Detecting and exploiting command injection flaws. In Black Hat USA
Briefings (Black Hat USA). Las Vegas, NV.

[54] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution., See
[2].

[55] Dafydd Stuttard. 2008. Burp Suite. https://portswigger.net/burp.
[56] Threat9. 2016. RouterSploit. https://github.com/threat9/routersploit.
[57] Alexander Vetterl and Richard Clayton. 2019. Honware: A virtual honeypot

framework for capturing CPE and IoT zero days. In 2019 APWG Symposium on
Electronic Crime Research (eCrime). IEEE, 1–13.

[58] Wikipedia contributors. 2018. IP aliasing — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=IP_aliasing&oldid=871887325.
[Online; accessed 13-August-2019].

[59] Matt Wilson. 2019. Premium Wireless Routers Market Size, Share, Statistics,
Trends, Types, Applications, Analysis and Forecast| Global Industry Research
and Forecast 2019-2024. https://marketersmedia.com/premium-wireless-routers-
market-size-share-statistics-trends-types-applications-analysis-and-forecast-
global-industry-research-and-forecast-2019-2024/520294.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3936
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3936
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://github.com/rampageX/firmware-mod-kit
https://github.com/rampageX/firmware-mod-kit
http://thehackernews.com/2016/09/hacking-d-link-wireless-router.html?m=1
http://thehackernews.com/2016/09/hacking-d-link-wireless-router.html?m=1
https://thehackernews.com/2017/12/satori-mirai-iot-botnet.html
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released
http://www.arachni-scanner.com
https://www.fortinet.com/blog/threat-research/yet-another-crypto-mining-botnet.html
https://www.fortinet.com/blog/threat-research/yet-another-crypto-mining-botnet.html
https://securelist.com/backdoors-in-d-links-backyard/85530
https://securelist.com/backdoors-in-d-links-backyard/85530
https://github.com/xmendez/wfuzz
https://www.metasploit.com
http://conpot.org
https://www.seleniumhq.org
https://dlink-report.shodan.io/
https://portswigger.net/burp
https://github.com/threat9/routersploit
https://en.wikipedia.org/w/index.php?title=IP_aliasing&oldid=871887325
https://marketersmedia.com/premium-wireless-routers-market-size-share-statistics-trends-types-applications-analysis-and-forecast-global-industry-research-and-forecast-2019-2024/520294
https://marketersmedia.com/premium-wireless-routers-market-size-share-statistics-trends-types-applications-analysis-and-forecast-global-industry-research-and-forecast-2019-2024/520294
https://marketersmedia.com/premium-wireless-routers-market-size-share-statistics-trends-types-applications-analysis-and-forecast-global-industry-research-and-forecast-2019-2024/520294

FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis ACSAC 2020, December 7–11, 2020, Austin, USA

[60] Heng Yin Xunchao Hu, Yaowen Zheng. 2018. An Extensible Dynamic Analysis
Framework for IoT Devices. In Black Hat USA Briefings (Black Hat USA). Las
Vegas, NV.

[61] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A
practical concolic execution engine tailored for hybrid fuzzing. In Proceedings of
the 27th USENIX Security Symposium (Security). Baltimore, MD, 745–761.

[62] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. 2014.
Avatar: A Framework to Support Dynamic Security Analysis of Embedded Sys-
tems’ Firmwares. In Proceedings of the 2014 Annual Network and Distributed

System Security Symposium (NDSS). San Diego, CA.
[63] Michal Zalewski. 2017. American fuzzy lop (AFL). http://lcamtuf.coredump.cx/afl.

(2017).
[64] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and

Limin Sun. 2019. FIRM-AFL: high-throughput greybox fuzzing of iot firmware
via augmented process emulation, See [3], 1099–1114.

Table 4: Full statistics of firmware dataset

of # of Architecture # of Web Services

Dataset Vendor Images arm32el mips32el mips32eb etc httpd uhttpd mini_httpd lighttpd alphapd goahead boa jjhttpd etc

AnalysisSet
D-Link 179 22 (12.29%) 82 (45.81%) 75 (41.90%) 0 (0.00%) 102 (56.98%) 0 (0.00%) 0 (0.00%) 9 (5.03%) 39 (21.79%) 10 (5.59%) 2 (1.12%) 14 (7.82%) 5 (2.79%)
TP-Link 73 10 (13.70%) 15 (20.55%) 48 (65.75%) 0 (0.00%) 64 (87.67%) 9 (12.33%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
NETGEAR 274 105 (38.32%) 56 (20.44%) 113 (41.24%) 0 (0.00%) 125 (45.62%) 77 (28.10%) 69 (25.18%) 5 (1.82%) 0 (0.00%) 0 (0.00%) 3 (1.09%) 0 (0.00%) 0 (0.00%)

Sub Total 526 137 (26.05%) 153 (29.09%) 236 (44.87%) 0 (0.00%) 291 (55.32%) 86 (16.35%) 69 (13.12%) 14 (2.66%) 39 (7.41%) 10 (1.90%) 5 (0.95%) 14 (2.66%) 5 (0.95%)

LatestSet

D-Link 58 9 (15.52%) 17 (29.31%) 32 (55.17%) 6 (10.34%) 39 (67.24%) 0 (0.00%) 8 (13.79%) 12 (20.69%) 0 (0.00%) 1 (1.72%) 4 (6.90%) 3 (5.17%) 0 (0.00%)
TP-Link 69 13 (18.84%) 22 (31.88%) 34 (49.28%) 0 (0.00%) 53 (76.81%) 16 (23.19%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
NETGEAR 101 32 (31.68%) 44 (43.56%) 25 (24.75%) 1 (0.99%) 46 (45.54%) 36 (35.64%) 19 (18.81%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 2 (1.98%) 0 (0.00%) 0 (0.00%)
TRENDnet 106 18 (16.98%) 29 (27.36%) 59 (55.66%) 0 (0.00%) 28 (26.42%) 9 (8.49%) 13 (12.26%) 6 (5.66%) 0 (0.00%) 11 (10.38%) 11 (10.38%) 3 (2.83%) 21 (19.81%)
ASUS 107 28 (26.17%) 72 (67.29%) 2 (1.87%) 0 (0.00%) 106 (99.07%) 0 (0.00%) 0 (0.00%) 51 (47.66%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (0.93%)
Belkin 37 2 (5.41%) 20 (54.05%) 15 (40.54%) 0 (0.00%) 25 (67.57%) 0 (0.00%) 11 (29.73%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 4 (10.81%)
Linksys 55 15 (27.27%) 30 (54.55%) 10 (18.18%) 1 (1.82%) 23 (41.82%) 1 (1.82%) 6 (10.91%) 26 (47.27%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Zyxel 20 5 (25.00%) 10 (50.00%) 5 (25.00%) 0 (0.00%) 2 (10.00%) 0 (0.00%) 2 (10.00%) 7 (35.00%) 0 (0.00%) 2 (10.00%) 5 (25.00%) 0 (0.00%) 3 (15.00%)

Sub Total 553 122 (22.06%) 244 (44.12%) 182 (32.91%) 8 (1.45%) 322 (58.23%) 62 (11.21%) 59 (10.67%) 102 (18.44%) 0 (0.00%) 14 (2.53%) 22 (3.98%) 6 (1.08%) 29 (5.24%)

CamSet
D-Link 26 8 (30.77%) 15 (57.69%) 3 (11.54%) 0 (0.00%) 6 (23.08%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 13 (50.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 6 (23.08%)
TP-Link 6 6 (100.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 6 (100.00%)
TRENDnet 13 1 (7.69%) 10 (76.92%) 2 (15.38%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 6 (46.15%) 0 (0.00%) 2 (15.38%) 0 (0.00%) 2 (15.38%)

Sub Total 45 15 (33.33%) 25 (55.56%) 5 (11.11%) 0 (0.00%) 6 (13.33%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 19 (42.22%) 0 (0.00%) 2 (4.44%) 0 (0.00%) 14 (31.11%)

Total 1124 274 (24.38%) 422 (37.54%) 423 (37.63%) 8 (0.71%) 619 (55.07%) 148 (13.17%) 128 (11.39%) 116 (10.32%) 58 (5.16%) 24 (2.14%) 29 (2.58%) 20 (1.78%) 48 (4.27%)

Table 5: Full result of FirmAE removing each arbitration

of FirmAE w/o Boot Arbitrations w/o Network Arbitrations w/o NVRAM Arbitrations w/o Kernel Arbitrations w/o Other Arbitrations

Dataset Vendor Images Network Web Service Network Web Service Network Web Service Network Web Service Network Web Service Network Web Service

AnalysisSet
D-Link 179 177 (98.88%) 167 (93.30%) 162 (90.50%) 145 (81.01%) 100 (55.87%) 90 (50.28%) 176 (98.32%) 129 (72.07%) 154 (86.03%) 144 (80.45%) 173 (96.65%) 146 (81.56%)
TP-Link 73 73 (100.00%) 59 (80.82%) 53 (72.60%) 36 (49.32%) 27 (36.99%) 13 (17.81%) 73 (100.00%) 56 (76.71%) 73 (100.00%) 60 (82.19%) 55 (75.34%) 31 (42.47%)
NETGEAR 274 259 (94.53%) 257 (93.80%) 110 (40.15%) 110 (40.15%) 191 (69.71%) 191 (69.71%) 239 (87.23%) 86 (31.39%) 259 (94.53%) 250 (91.24%) 252 (91.97%) 185 (67.52%)

Sub Total 526 509 (96.77%) 483 (91.83%) 325 (61.79%) 291 (55.32%) 318 (60.46%) 294 (55.89%) 488 (92.78%) 271 (51.52%) 486 (92.40%) 454 (86.31%) 480 (91.25%) 362 (68.82%)

LatestSet

D-Link 58 54 (93.10%) 48 (82.76%) 46 (79.31%) 41 (70.69%) 19 (32.76%) 18 (31.03%) 54 (93.10%) 48 (82.76%) 54 (93.10%) 40 (68.97%) 51 (87.93%) 45 (77.59%)
TP-Link 69 69 (100.00%) 54 (78.26%) 54 (78.26%) 32 (46.38%) 39 (56.52%) 23 (33.33%) 69 (100.00%) 53 (76.81%) 69 (100.00%) 57 (82.61%) 57 (82.61%) 23 (33.33%)
NETGEAR 101 92 (91.09%) 79 (78.22%) 49 (48.51%) 41 (40.59%) 68 (67.33%) 60 (59.41%) 92 (91.09%) 25 (24.75%) 92 (91.09%) 82 (81.19%) 87 (86.14%) 54 (53.47%)
TRENDnet 106 91 (85.85%) 63 (59.43%) 55 (51.89%) 41 (38.68%) 49 (46.23%) 37 (34.91%) 91 (85.85%) 56 (52.83%) 87 (82.08%) 52 (49.06%) 84 (79.25%) 44 (41.51%)
ASUS 107 63 (58.88%) 62 (57.94%) 31 (28.97%) 31 (28.97%) 34 (31.78%) 32 (29.91%) 63 (58.88%) 45 (42.06%) 62 (57.94%) 61 (57.01%) 58 (54.21%) 25 (23.36%)
Belkin 37 30 (81.08%) 22 (59.46%) 3 (8.11%) 3 (8.11%) 14 (37.84%) 14 (37.84%) 30 (81.08%) 19 (51.35%) 30 (81.08%) 22 (59.46%) 29 (78.38%) 5 (13.51%)
Linksys 55 48 (87.27%) 44 (80.00%) 34 (61.82%) 34 (61.82%) 31 (56.36%) 31 (56.36%) 47 (85.45%) 42 (76.36%) 48 (87.27%) 44 (80.00%) 44 (80.00%) 27 (49.09%)
Zyxel 20 18 (90.00%) 10 (50.00%) 7 (35.00%) 2 (10.00%) 8 (40.00%) 2 (10.00%) 18 (90.00%) 6 (30.00%) 18 (90.00%) 10 (50.00%) 18 (90.00%) 1 (5.00%)

Sub Total 553 465 (84.09%) 382 (69.08%) 279 (50.45%) 225 (40.69%) 262 (47.38%) 217 (39.24%) 464 (83.91%) 294 (53.16%) 460 (83.18%) 368 (66.55%) 428 (77.40%) 224 (40.51%)

CamSet
D-Link 26 19 (73.08%) 17 (65.38%) 13 (50.00%) 12 (46.15%) 13 (50.00%) 11 (42.31%) 18 (69.23%) 3 (11.54%) 18 (69.23%) 16 (61.54%) 18 (69.23%) 14 (53.85%)
TP-Link 6 6 (100.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 6 (100.00%) 0 (0.00%) 6 (100.00%) 0 (0.00%) 6 (100.00%) 0 (0.00%)
TRENDnet 13 10 (76.92%) 10 (76.92%) 10 (76.92%) 4 (30.77%) 10 (76.92%) 9 (69.23%) 10 (76.92%) 2 (15.38%) 10 (76.92%) 8 (61.54%) 10 (76.92%) 6 (46.15%)

Sub Total 45 35 (77.78%) 27 (60.00%) 23 (51.11%) 16 (35.56%) 23 (51.11%) 20 (44.44%) 34 (75.56%) 5 (11.11%) 34 (75.56%) 24 (53.33%) 34 (75.56%) 20 (44.44%)

Total 1124 1009 (89.77%) 892 (79.36%) 627 (55.78%) 532 (47.33%) 603 (53.65%) 531 (47.24%) 986 (87.72%) 570 (50.71%) 980 (87.19%) 846 (75.27%) 942 (83.81%) 606 (53.91%)

http://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Background
	2.1 Embedded device analysis process
	2.2 Emulation-based analysis
	2.3 Challenges in firmware emulation
	2.4 Firmadyne framework

	3 Design
	3.1 Goal and scope
	3.2 Arbitrated emulation
	3.3 FirmAE
	3.4 Experimental setup

	4 Arbitration of Failure Cases
	4.1 Boot arbitrations
	4.2 Network arbitrations
	4.3 NVRAM arbitrations
	4.4 Kernel arbitrations
	4.5 Other arbitrations

	5 Evaluation
	5.1 Firmware emulation result
	5.2 Post-emulation analysis
	5.3 Applying Dynamic Analysis – Fuzzing
	5.4 Dynamic analysis result

	6 Discussions
	7 Conclusion
	Acknowledgments
	References

