
26 November/December 2021 Copublished by the IEEE Computer and Reliability Societies 1540-7993/21©2021IEEE

ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE

Dongkwan Kim and Eunsoo Kim | Korea Advanced Institute of Science and Technology
Mingeun Kim | Affiliated Institute of the Electronics and Telecommunications Research Institute
Yeongjin Jang | Oregon State University
Yongdae Kim | Korea Advanced Institute of Science and Technology

To evaluate Internet of Things device security, researchers have attempted to emulate and dynamically
analyze firmware. However, this approach cannot deal with complex hardware/environmental diversities.
We show that heuristic workarounds can enable firmware emulation and facilitate the discovery of
vulnerabilities.

Billions of Internet of Things (IoT) devices are among
 us, from smart speakers to Internet-connected

power outlets and light bulbs. Because they are always
connected to the Internet, it is critical to discover any
security vulnerabilities they might have. Although
IoT products are simple and small, recent distributed
denial-of-service (DDoS) attacks, which originate from
a massive number of the devices, have demonstrated
that malicious actions are critical threats. The attacks
can generate traffic volume of more than 1 Tb/s, which
can shut down important Internet services, such as
DynDNS (in 2016)1 and GitHub (in 2018).2

Scaling up vulnerability analysis is the key to neu-
tralize security threats in devices and convoluted IoT
ecosystems that consist of numerous manufacturers,

products, and applications, among others. Applying
recently advanced dynamic security analysis, such as
fuzzing and automated pentesting, to IoT firmware on
the elastic cloud could facilitate the approach. To do so,
particularly for running IoT firmware on the cloud, we
require an emulation framework. To this end, research
projects have approached this problem as a hardware
emulation challenge; that is, mimicking hardware and
peripheral devices of the IoT ecosystem to make the rep-
licated environment as precise as the real one. Based on
this approach, Firmadyne,3 the state-of-the-art firmware
emulation framework, was designed for large-scale anal-
ysis of Linux-based IoT devices. Specifically, it leverages
a customized Linux kernel and libraries to emulate hard-
ware peripheral devices, such as a flash memory referred
to as nonvolatile random-access memory (NVRAM).

Nonetheless, the hardware emulation approach
is not a silver bullet in practice because building an

Enabling the Large-Scale Emulation
of Internet of Things Firmware With
Heuristic Workarounds

Digital Object Identifier 10.1109/MSEC.2021.3076226
Date of current version: 14 May 2021

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 27

emulation environment for supporting numerous
IoT devices is challenging by itself. Each IoT device is
accompanied by a specific set of peripheral hardware
from a plethora of manufacturers. Further, IoT firmware
images often rely on several configuration vectors that
match specific hardware. Under such circumstances, for
successful emulation, one should enumerate and virtu-
alize specific hardware peripherals and runtime envi-
ronments to mimic device behavior correctly. However,
doing so is extremely challenging, owing to the complex
diversity in IoT hardware and the associated implemen-
tation practices. Thus, Firmadyne can emulate only 183
of 1,124 (16.3%) firmware images in wireless routers
and Internet Protocol (IP) cameras, which we collected
from the top eight vendors.

Systematizing Heuristic Workarounds
Toward Realizing Large-Scale Emulation
The low success rate of the hardware emulation
approach implies that building an environment as pre-
cise as the real one may not be the only way to run
firmware for dynamic security analysis. To counter the
hardware complexity of the IoT ecosystem, we propose
that well-systematized heuristic workarounds could
be an alternative approach to achieve a better firm-
ware emulation success rate in practice. By analyzing
the numerous Firmadyne emulation failure cases, we
observed that simple changes in device/software con-
figurations could enable firmware continue to run by
preempting failures that could arise by adopting the
hardware emulation approach. By systematizing such
heuristic workarounds and applying them as plug-ins,
the system that we developed, FirmAE,4 improved the
number of firmware emulation success cases from 183
(16.3%) to 892 (79.4%). With the increased success
rate, the system also discovered 306 (≈23 times, com-
pared to Firmadyne) more vulnerabilities by applying
dynamic security analysis techniques, such as fuzzing
and one-day exploit testing.

Enabling Large-Scale Emulation
This article 1) suggests the possibility of systematiz-
ing well-developed heuristics as an approach to enable
large-scale firmware emulation in practice and 2) sum-
marizes how we discover and systematize such heu-
ristic workarounds.

Background: IoT Firmware Analysis
An IoT device is often built for a specific purpose; exam-
ples include wireless routers, IP cameras, smart speak-
ers, and so on. Thus, these devices are composed of
specialized hardware peripherals and software to meet
their intended purposes. Such hardware is controlled by
firmware, which consists of a custom set of bootloaders,

operating system kernels, and filesystems, that consists
of tools and programs to accomplish required jobs. IoT
devices often communicate over the Internet to the
cloud and to mobile phones to provide user control,
typically via a web interface. In summary, IoT devices
are specialized embedded computer systems, and, thus,
dynamic analysis methodologies for them (as illustrated
in Figure 1) are slightly different from those for general
desktop/server programs.

Acquiring Firmware Images
Firmware images can be obtained directly from a device;
however, such an approach requires a particular inter-
face that is available only to manufacturers to prevent
unintentional firmware access. Instead, firmware can be
updated via manufacturers’ websites, and there are also
several third-party servers that archive released firmware
images. The images can also be automatically gathered
via scraping tools, such as Scrapy.5 Firmware images are
usually packed and need to be unpacked for analysis. An
image typically includes a bootloader, kernel, and file-
system that contains the applications and tools that are
necessary for a device. To unpack firmware images, one
can utilize tools such as Binwalk.6 From a given image,
this tool scans predefined signatures for diverse types of

Figure 1. The typical IoT device analysis procedure. The
colored logic indicates our focus.

IoT Device
(Embedded Device)

Dynamic
Analysis

Static
Analysis

Stop Analysis

Can Emulate
Firmware?

Search Firmware
on the Web

No

No

Yes

Yes

Yes

Yes

No

Can Obtain
Real Device?

Can Obtain
Firmware?

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

28 IEEE Security & Privacy November/December 2021

ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE

files. If it finds a match, it extracts the file from the image
and continues the scan.

Emulating Device Firmware
After obtaining the files from a firmware image, one can
apply static or dynamic analysis. Owing to the absence
of runtime information, static analysis often produces
numerous false positives. In contrast, dynamic analysis
directly runs target programs, thereby leading to fewer
false positives. To apply dynamic security analysis, one
needs to either 1) have a real device to run and con-
trol the firmware or 2) construct an emulated environ-
ment for the device runtime. The latter approach does
not require real devices, and thus it enables large-scale
dynamic analysis, preferably on elastic cloud services.
The system that conducts emulation is denoted as the
host system, and the emulated target system is referred to
as the guest system.

Figure 2 details a typical firmware emulation proce-
dure for dynamic analysis. After unpacking a firmware
image, the emulation framework attempts to boot, i.e.,
run a bootloader and kernel, from the extracted filesys-
tem. Next, the guest system boots, runs initialization
steps, and configures the network functionality. Finally,
the guest system runs applications, such as web servers
and common gateway interface programs, that interact
with libraries and device drivers in the emulated system.

Dynamically Analyzing Emulated Firmware
After successfully running all necessary programs in
firmware, dynamic analysis can be applied, particularly
for discovering potential vulnerabilities of a target IoT
device. Popular methods for such dynamic security
analysis are 1) applying advanced fuzzing techniques,
such as American fuzzy lop,7 and 2) applying manual/

automated pentesting based on known vulnerabilities
by using tools such as Metasploit8 and RouterSploit.9

Challenges to Firmware Emulation
Despite several benefits, such as the capability for
dynamic analysis and exploiting the scalability of the
elastic cloud for testing, IoT firmware emulation is
extremely challenging. The difficulty mainly origi-
nates from the inconsistencies between the real and
emulated environments. Resolving such inconsisten-
cies is not a trivial task, owing to the convoluted IoT
ecosystem. The complexity comes from having wide
diversity in device and hardware manufacturing and
from having no standardized software development
practices. For instance, each IoT device has different
hardware peripherals, such as cameras, flash memories,
and sensors, and they work closely with the kernel and
applications in the IoT firmware. Without dealing with
requests to these peripherals during emulation, the
kernel and applications in the emulated firmware may
crash, and no further emulation or dynamic analysis
can proceed.

Firmadyne (Automatic Emulation
Framework)
Research projects approach the difficulties as a hard-
ware emulation challenge, i.e., mimicking IoT ecosys-
tem hardware and its peripheral devices so that the
replicated environment becomes as precise as the
real one. Among such frameworks, Firmadyne3 is
the current state of the art (succeeded by FirmAE4),
designed for large-scale analysis of Linux-based IoT
devices. It leverages a customized Linux kernel and
libraries to emulate hardware and peripheral devices,
such the NVRAM.

Figure 2. The typical firmware emulation procedure for dynamic analysis. The colored components indicate where
emulation problems may occur. CGI: common gateway interface.

Input
Firmware

FilesystemFilesystem

Dynamic
Analysis

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot and
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Internal
Programs (Server,

CGI, and so on)

System-Level Emulation

1 2

3

4

5

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 29

Limitations of Firmadyne
Although Firmadyne’s precise hardware emulation
appears promising, its success rate, in reality, is low.
Among 1,124 IoT firmware images that we collected
from the top eight vendors of wireless routers and IP
cameras, Firmadyne can emulate only 330 (29.4%)
for networking functionality. For running the applica-
tions (e.g., web servers) in the firmware, Firmadyne
demonstrates a much worse success rate. More specifi-
cally, it can emulate web applications from only 183
(16.3%) firmware images. Such poor success can hin-
der the application of dynamic analysis to numerous
IoT devices.

Toward Enabling Large-Scale Firmware
Emulation for Security Testing
For dynamic software security testing, such as applying
human pentesting and fuzzing, perfect hardware com-
patibility at the emulation layer is not required. Instead,
the process requires only that the minimum require-
ment to properly run applications in firmware be met.
Notably, we can achieve that without having perfect
emulation of the hardware. For example, for a wire-
less router, we need to 1) boot the firmware operating
system, 2) set up the network interfaces and required
connections, and 3) run a web server to provide an
administrative interface to the router. However, there
could be several factors that might not be achievable
by general emulators, such as QEMU. These factors
include 1) the absence of correct values in the NVRAM
(e.g., boot parameters) and missing devices (e.g., some
hardware devices required for booting) to fulfill the
boot condition, 2) a lack of network interfaces (e.g., dif-
ferent network interface controllers) and connections
(missing the Internet or intranet connection) required
to communicate with the applications in the emulated
system, and 3) a lack of conditions to launch the web
server with the correct configuration, such as the server
IP address and port.

Unlike prior approaches that aim to emulate hard-
ware behaviors so that firmware applications func-
tion correctly, we take a different perspective. That is,
instead of resolving all hardware emulation dependen-
cies, we aim to build an abstraction environment that
satisfies the minimum requirements to execute booting,
initialization steps, and applications to make a device
available for dynamic security testing. Specifically, the
following two properties illustrate our abstraction emu-
lation goal for dynamic security testing on IoT devices:

1. Network reachability: The emulated network should
be reachable from the host system.

2. Service availability: An emulated program should be
available for dynamic analysis.

Achieving these goals may not address the fun-
damental emulation problem, i.e., exactly mimick-
ing device behaviors. However, we believe that learning
heuristics and systematizing such knowledge to create
an abstraction environment is sufficient to set up the
networking functionality and run applications in firm-
ware, although the environment is not identical to the
target device. The environment with various heuristics
runs core features of target IoT devices, interacts with
the applications in firmware, and facilitates dynamic
security testing. We emphasize that the key idea is to
deal with high-level properties to meet the require-
ments for firmware applications and not to accurately
emulate the underlying hardware. Since such heuristics
deal with high-level properties rather than hardware
problems, they can be transferred across devices and
may preempt failures, even with different root causes.
In the following, we present a simple example of how
heuristics can run applications in firmware by avoiding
a hardware problem that is irrelevant to dynamic secu-
rity testing.

Example: LED Failure in a Wireless Router
Consider the example of running the firmware of a wire-
less router. Wireless routers often have LEDs that indi-
cate their runtime status, and the lights are not crucial
for the dynamic security testing of functionality (i.e.,
finding remote code execution and cross-site scripting
vulnerabilities). However, the device initialization pro-
cess may crash if the process cannot set up the LEDs,
i.e., if the emulated environment does not give noner-
ror responses to the application. Owing to this, the ini-
tialization process stops and does not make progress on
configuring other critical parts, such as setting up the
network and running web servers. Consequently, the
emulation fails with the LED error, and thus dynamic
security testing cannot be applied. As a counterargu-
ment to this example, a simple heuristic, which is inde-
pendent of the stopped initialization step, can enable
the system to set up the network. By doing so, the other
nonerror-related parts of the firmware, such as the web
server, can successfully run (if the network is correctly
configured); then, one can apply dynamic security test-
ing to the web interface.

Wireless Routers as an IoT
Firmware Case Study
We run wireless router firmware for a large-scale evalu-
ation of the IoT firmware emulation capability of our
approach, making an abstraction emulation layer with
systematized heuristics. This is because 1) most wire-
less router firmware requires networking and web
server functionality, which is mandated by most IoT
devices in general; 2) wireless routers were introduced

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

30 IEEE Security & Privacy November/December 2021

ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE

in the early 2000s and are highly diversified in their
models and hardware/software configurations; and 3)
their firmware is available for large-scale analysis (we
collected 1,079 images). Furthermore, wireless routers
are crucial to IoT and home security because they are
the gateway to home networks and can manage other
devices via internal networking. Therefore, we focus on
emulating wireless routers for testing our hypothesis
about systematized heuristics for emulation.

Systematizing Heuristics From Failures
As the first step to learn and systematize heuristics that
avoid emulation failures, we investigate cases of Firma-
dyne3 firmware emulation failure. We collected 1,079
wireless router images from the websites of the top eight
vendors.10 Among the images, we emulated 526 old ver-
sions by using Firmadyne; the tool could succeed with
only 16.9%. For the results, we categorized the identi-
fied failure cases by the place where the emulation failed
(see Figure 2). In the process of analyzing the failures,
we were able to systematize several heuristics that can
address and avoid similar shortcomings. Note that
some of the heuristics have also been proposed in pre-
vious approaches.3,11 We introduce examples of such
heuristics, which are described in Table 1. For more
detailed information, please refer to the technical ver-
sion of this article.4

Heuristics for Handling Boot Failures
The booting procedure includes executing several pro-
grams that initialize the system environment, and it
may fail if the emulated environment cannot meet the
requirement for executing any (or even a part) of the

programs that are required. This would result in an emu-
lation getting stuck, such as in the case of kernel panic.
Many boot failures were observed to encounter a kernel
panic. By analyzing these cases, we identified two kinds
of problems in boot emulation. On the one hand, the
emulator kernel, which is different from the kernel that
runs on the device, failed to find the correct initializing
program, which is custom configured by the device man-
ufacturer. Although program paths can differ depending
on firmware images, the kernel image used in the emula-
tor searches only the predefined paths, such as /sbin/
init and /etc/init. As a result, programs on a dif-
ferent path, such as /etc/preinit, cannot be properly
executed. On the other hand, the boot process fails by
not having files and directories required by the init
program. If the program accesses such paths that do not
exist, it crashes and eventually halts the booting process.

To systematize heuristics, we addressed the first
problem using the original kernel in the target device
firmware. A firmware image typically consists of a kernel
image and programs/data in a filesystem. Specifically, we
searched the kernel image for the string literals accessed
by the kernel with the target kernel configuration. These
strings are predefined by the device manufacturer in
the development stage and are naturally embedded in
the kernel image. An example of these heuristics is that
we searched the string “init” in the target kernel and
obtained a string of console=ttyS0,115200 root=
31:08 rootfstype=squashfs init=/etc/preinit,
which seems to be a kernel boot argument. From this
string, we could identify that the initializing pro-
gram is located at /etc/preinit and boot the ker-
nel appropriately.

Table 1. Examples of heuristics to address emulation problems for running web services
in wireless routers.

Where Emulation problem Heuristics

 Boot Improper booting sequence Use the booting sequence of the original kernel

Missing files and directories Prepare files and directories before the emulation

 Network No support for IP aliasing and VLAN Fix routing rules and network interface settings

No network interface Forcibly set up default network interface

 Library Unknown NVRAM values Search key value pairs from the filesystem

Invalid return of NULL values Return a valid string pointer instead of NULL

 Kernel Insufficient support of kernel modules Emulate functions, such as ioctl, by using libraries

Improper kernel version Upgrade the kernel version to 4.1

 Programs Unexecuted web servers Forcibly execute the web server

No support for extra commands Add full-featured BusyBox

VLAN: virtual local area network.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 31

Similarly, we applied a string literal search strat-
egy to the firmware filesystem to address the second
problem. As a preprocessing stage to boot a firmware
image, we extracted strings that were highly likely to
indicate program/directory path names, from the pro-
grams in the firmware filesystem. More specifically,
we obtained several strings that started with general
Unix system paths, such as /var and /etc. Then, we
placed directories or files based on those path values.
As a result, we could successfully boot many firmware
images without errors.

Heuristics for Handling Network Failures
The next step is to develop heuristics for handling net-
work failures. After completing the booting procedure,
the network must be set up correctly so that the emula-
tion host can communicate with the emulation guest—
the running firmware. Any failure in the network setup
will result in a failure to run dynamic analysis, even
though internal programs, such as web services, are
functioning correctly; this is because the host system
cannot interact without networking functionality.

To this end, we observed several networking fail-
ures in emulating firmware images. First, existing emu-
lation frameworks cannot handle important network
operations widely used in wireless routers, such as IP
aliasing and virtual local area networks (VLANs). IP
aliasing enables assigning multiple IP addresses to a
single network interface, and VLANs facilitate logi-
cally grouping the network; both features are wide-
spread in modern wireless routers. To handle such
functionalities, we developed a dedicated routine that
automatically configures routing rules and interface
settings for IP aliasing and VLANs, and we applied it
to the emulation runtime.

Furthermore, we analyzed cases where the exist-
ing emulation frameworks failed to retrieve any infor-
mation about network interfaces for some firmware
images. We also deduced that these cases originated
from a failure in boot procedure before attaining the
network setup part; recall the example case of the
LEDs. To resolve this issue, we developed a heuristic
that compels the emulated system to set up a default
network interface (e.g., eth0, a Realtek device) in a
manner similar to the previous approach,11 thereby
avoiding such failure cases.

Heuristics for Handling NVRAM Failures
NVRAM is a type of flash memory, which works as
a simple key/value storage. It stores various informa-
tion for running target IoT devices, such as configu-
rations of a device as well as peripheral equipment.
The NVRAM itself is a popular peripheral device for
IoT devices, including wireless routers, because it is

equipped with various peripheral hardware. In essence,
the information stored in the NVRAM is required
to properly operate peripherals and a target device.
Because the internal programs in firmware store/fetch
configuration values to/from it, the NVRAM has to
be emulated correctly. Internal programs in IoT firm-
ware often interact with the NVRAM via libraries. To
exploit this feature, other emulation frameworks built
an additional library that mimics the interaction with
the NVRAM to run the firmware without actually hav-
ing the real NVRAM.

For example, in Firmadyne,3 a custom library,
libnvram, is implemented to emulate the NVRAM.
It is loaded on top of other libraries to make internal
programs utilize it instead of interacting with the real
NVRAM. It initializes its contents with a hard-coded list
of default files and their values; such files are common
in many IoT devices for the factory reset functionality.
For unknown keys, it naively returned the NULL value.
However, such an approach to utilize a hard-coded list
was insufficient to cover diverse devices, resulting in
many failure cases.

To resolve such issues, we developed a heuristic
strategy that automatically searches the firmware file-
system for the requested values. Specifically, we first ran
the firmware in our emulation environment to record
all fetched (required) keys during the first stage of emu-
lation, which would likely fail. Then, we scanned the
firmware filesystem to find the files that contained the
recorded keys and then fetched the corresponding val-
ues from those files. By performing this interactively, we
could fetch most of the required keys for the NVRAM
of the target device.

The heuristic may fail if we cannot successfully
find the matching values for the requested keys to
the NVRAM. To handle such unknown key/value
pairs, we extended the custom library to return a valid
pointer, which indicates to an empty string instead
of returning a NULL pointer as a value. This heuristic
is based on the fact that many programs supply the
returned value, which is most likely a configuration
value as a string, into string-related functions, such as
strcpy() and strtok(). Hence, a NULL value results
in the program crashing immediately, while return-
ing a zero-length valid string will pass such function
executions successfully. As a result, this strategy sig-
nificantly decreased NVRAM-related crashes and
enabled programs to run appropriately, even without
correct configuration values.

Heuristics for Handling Failures
in the Kernel
In addition to the NVRAM, internal programs can
cooperate with peripheral devices through kernel

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

32 IEEE Security & Privacy November/December 2021

ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE

modules, i.e., device drivers. In particular, if a kernel
or module version does not match the real device, the
programs cannot interact with peripheral equipment
and may crash, resulting in the emulation failure. We
analyzed such failures and found that Firmadyne uses
kernel version 2.6.32, which does not support recent
features used in the target device and its firmware. In
this case, upgrading the kernel version to a newer one,
e.g., v4.1.17, resolved these issues for most cases and
emulated more firmware images.

In addition to kernel version issues, firmware emula-
tion may fail if kernel drivers cannot communicate with
programs in firmware. This problem is similar to that of
the NVRAM; in other words, the device driver should
return corresponding values to specific requests. In the
case of Firmadyne, the issue was dealt in a manner simi-
lar to the NVRAM. That is, a mimicking kernel module
was implemented; it emulated the ioctl interaction
between kernel modules in firmware and peripheral
devices. However, such an approach generates many
emulation failures; the values, which are passed to and
returned from the call, significantly vary depending
on the firmware as well as the device architecture. To
resolve this, we developed a heuristic strategy that adds
functions returning predefined values, regardless of the
ioctl interface/parameter variant. This heuristic let
the programs in firmware continue the execution with-
out having system call errors.

Heuristics for Handling Application Failures
Apart from the booting, networking, NVRAM, and
kernel, application execution can be disturbed during
the emulation. Running applications is the most critical

step in dynamic security testing because applications in
firmware contain a device’s core logic, which is the actual
target of security testing. In emulating applications in
firmware, specifically for web interfaces, we discovered
several other problems that obstruct execution. First, the
web server application failed to run even with a successful
network setup in some images. We expect that the net-
work device is set up after running the web server during
emulation; hence, the web server failed to find and bind
to the network device. In such a case, forcing the web
server to run after finishing the entire initialization step
could address the problem.

Additionally, missing files required for the emula-
tion environment in the firmware filesystem can lead to
emulation failure. The emulated environment may not
contain these files because many IoT device develop-
ers remove programs that the target device would never
use so that they can reduce the storage size. However,
in the emulation environment and in applying system-
atized heuristics, we might need several configuration
tools, such as ifconfig, ip, and so on. Missing such
tools can result in emulation failures, and the applied
heuristics can be ineffective. To resolve this, we added
the latest version of BusyBox, a Swiss army knife in the
Unix box, to supply required command line tools to the
emulation environment.

FirmAE: Systematizing
Heuristics Learned
We systematize heuristics learned from the emulation
failure case analysis with FirmAE, which is an automated
emulation framework for large-scale dynamic analysis
of IoT firmware. Figure 3 presents a component-wise

Figure 3. An overview of the FirmAE architecture with dynamic analysis.

Firmware
Data Set

Vendor Servers

Input
Firmware

Filesystem

Fuzzer

Analysis Container

ConfirmDebugPrecompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot and
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization Arbitration Systematization Dynamic Analysis

Emulation
Database

Pre-Emulation Final Emulation

1 2

3

4

Checker
Emulation

5

Crash
Database

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 33

overview of FirmAE. The key difference of FirmAE is
that in addition to the techniques developed by Firma-
dyne, FirmAE applies various systematized heuristics
to increase the emulation success rate. From steps 1–5,
FirmAE applies corresponding heuristics to preempt
any detected emulation failures. In the following, we
evaluate FirmAE for its emulation and dynamic secu-
rity testing ability.

Effectiveness in IoT Firmware Emulation
To evaluate emulation effectiveness, we ran 1,079 wire-
less router firmware images from the top eight vendors
(based on device popularity) on FirmAE. With these
images, we tested two hypotheses:

 ■ H1: How successfully do well-systematized heuristics
emulate firmware images when compared to the exist-
ing framework?

 ■ H2: Are the heuristics learned from old firmware
images transferable to newer firmware versions?

We split the entire firmware set in two: Analysis-
Set and LatestSet. We used AnalysisSet, having
526 old images, to observe failures and develop heuris-
tics. Then, we evaluated those heuristics on the other
data set, consisting of 553 images, including only the
latest ones. This setup will test the hypothesis that the
heuristics learned from old images (AnalysisSet)
are transferrable to newer ones (LatestSet). Addi-
tionally, we ran IP camera firmware images to test the
third hypothesis:

 ■ H3: Are the heuristics transferrable to IoT devices
other than wireless routers?

In particular, we collected 45 of the latest images
of IP cameras (CamSet). The data sets have no inter-
section; i.e., they do not share any images. We com-
pared the number of successful emulations using
FirmAE and Firmadyne for each data set, and the final
results are in Figure 4. From AnalysisSet, FirmAE
could successfully emulate 483 images, while Firma-
dyne could emulate 89 (supporting H1). For testing
the transferability of heuristics to newer versions,
from LatestSet, FirmAE could successfully emulate
382 images, while Firmadyne could emulate 92 (sup-
porting H1 and H2). For testing the transferability
of heuristics to a different class of IoT devices, from
CamSet, FirmAE could successfully emulate 27 IP
camera images, while Firmadyne emulated two (sup-
porting H3). The results not only support our hypoth-
eses but demonstrate that the emulation success rate
(79.36%) significantly increased from that of Firma-
dyne (16.28%), supporting H1.

Dynamic Analysis Capabilities
FirmAE relies on an imperfect emulation of firmware
devices based on heuristics from empirical observation.
Therefore, its capability of applying dynamic security
analysis would be questionable, i.e., whether FirmAE
can be used for discovering security vulnerabilities or
not. To demonstrate that our heuristics-based emula-
tion approach is indeed effective, we tested the follow-
ing two hypotheses:

 ■ H4: Can known vulnerability (i.e., one-day) exploits
work against firmware running on FirmAE?

 ■ H5: Can dynamic analysis on FirmAE discover new
vulnerabilities (i.e., zero-days)?

To test H4, we launched one-day exploits from
RouterSploit9 to firmware images on FirmAE and
Firmadyne, respectively. Table 2 includes the results.
While only 14 exploits worked against Firmadyne,

Figure 4. The number of emulated firmware images obtained by running
FirmAE and Firmadyne on each data set.

526 553

45

1,124

89 92 2 183

483

382

27

892

0

200

400

600

800

1,000

1,200

AnalysisSet LatestSet CamSet All

Total Firmadyne FirmAE

16.9% 91.8% 16.6% 69.1% 4.4% 60% 16.3% 79.4%

Table 2. The number of one-days discovered on
the outdated firmware images (AnalysisSet).

Vulnerability Firmadyne FirmAE

Information leak 0 17

Command injection 10 152

Password disclosure 4 146

Authentication bypass 0 5

Total 14 320

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

34 IEEE Security & Privacy November/December 2021

ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE

320 one-day exploits worked against FirmAE (sup-
porting H4). The implication of supporting H4 is that
if one-day exploits work against the firmware image
running on FirmAE, then dynamic analysis applied
to FirmAE can discover such vulnerabilities from the
emulation; hence, the dynamic analysis applied to Fir-
mAE can discover significantly more vulnerabilities
than Firmadyne.

To test H5, we ran images from LatestSet and
CamSet, consisting of only the latest firmware images,
to check if FirmAE can help discover new vulnerabili-
ties via dynamic security testing. In this regard, we
define vulnerabilities as 1) those that are known but
unpatched on the latest device versions and different
models (one-days) and 2) new (zero-days). Table 3
lists the unique number of newly identified vulner-
abilities, affected devices, and vendors. First, we
launched one-day exploits from RouterSploit9 via the
same approach described previously and discovered
11 one-day vulnerabilities affecting 72 unique devices
(supporting H4). To discover zero-day vulnerabilities,
we implemented a simple fuzzer that injected input to
the web interface. By using the fuzzer, FirmAE success-
fully identified 12 new zero-day vulnerabilities affecting
23 unique devices (supporting H5). For more details,
please refer to the technical version of this article.4 In
summary, the dynamic analysis results demonstrate that
the heuristic-based emulation approach of FirmAE is
effective for vulnerability analysis.

Responsible Disclosure Zero-Day
Vulnerabilities
We reported all discovered zero-day vulnerabilities to
the corresponding vendors, and these were acknowl-
edged by December 2019.

Generality of the Proposed Heuristics
Although our heuristics significantly increased the
emulation success rate and facilitated the discovery of
vulnerabilities, they might not be applicable to new
types of devices and configurations because of the hard-
ware/environmental diversities in the IoT ecosystem.
Since we designed our heuristics by empirically analyz-
ing the failure cases of our firmware data set, new types
of devices may require new heuristics to deal with their
failure cases. However, as shown with H2 and H3, the
developed heuristics can be transferred to newer device
versions and similar device families. In this regard, we
believe that further empirical investigation to develop
additional heuristics is indispensable to handle the con-
voluted nature of the IoT ecosystem.

Toward Large-Scale Firmware Emulation
Recent advances in dynamic security testing, such as auto-
mated pentesting, fuzzing, symbolic execution, and their
combination, can automatically discover security vulner-
abilities in a scalable manner. Applying such dynamic
analysis to the IoT ecosystem may improve security, espe-
cially by harnessing testing scalability to deal with numer-
ous devices. However, the emulation of device firmware is
challenging owing to the convoluted nature of IoT device
hardware/software implementation practices.

Several approaches,12–14 in addition to Firmadyne,3
have attempted to precisely emulate hardware devices
by modeling memory-mapped input/output opera-
tions in peripheral communication12,13 and by building
an abstract layer to deal with hardware emulations.14
These methods are essential in the long run to achieve
better accuracy in testing; however, such frameworks
still suffer from limitations related to covering firmware
across highly diversified IoT devices.

W e believe that accumulating heuristic knowl-
edge for workaround firmware emulation

failures is the last-mile effort to overcome such limita-
tions. Systematizing the heuristics learned from failure
cases can enable large-scale firmware emulation, as such
heuristic knowledge is transferrable to newer device
versions and similar product families. We recommend
future studies to conduct more empirical investigations
and systematize and share the obtained knowledge for
scalable security analysis of IoT ecosystems.

Acknowledgments
We thank the anonymous reviewers for their thought-
ful comments. This work was supported by an Institute
of Information and Communications Technology Plan-
ning and Evaluation grant (2018-0-00831), which was
funded by the government of Korea.

Table 3. The number of new vulnerabilities discovered on the
latest firmware images (LatestSet and CamSet).

Type Vulnerability
Number of
vulnerabilities

Number
of devices

Number
of vendors

One-day Information leak 2 32 2

Command
injection

5 28 2

Backdoor 2 3 1

Path traversal 2 9 2

Zero-day Command
injection

7 16 2

Buffer overflow 5 7 4

Total 23 95 6

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 35

References
 1. L. H. Newman, “What we know about Friday’s massive

east coast internet outage,” Wired, Oct. 2016. https://
www.wired.com/2016/10/internet-outage-ddos-dns
-dyn/ (accessed Feb. 28, 2021)

 2. L. H. Newman, “GitHub survived the biggest DDoS
attack ever recorded,” Wired, Jan. 3, 2018. https://www
.wired.com/story/github-ddos-memcached/ (accessed
Feb. 28, 2021)

 3. D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards
automated dynamic analysis for linux-based embedded
firmware,” in Proc. Annu. Netw. Distrib. Syst. Security Symp.
(NDSS), San Diego, CA, Feb. 2016.

 4. M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Fir-
mAE: Towards large-scale emulation of IoT firmware for
dynamic analysis,” in Proc. Comput. Security Appl. Conf.
(ACSAC), Dec. 2020, pp. 733–745.

 5. R. Mitchell, Web Scraping with Python: Collecting More
Data from the Modern Web. O’Reilly Media Inc., 2018.

 6. C. Heffner, “Firmware analysis tool,” GitHub, San Fran-
cisco, 2010. https://github.com/ReFirmLabs/binwalk

 7. M. Zalewski, “American fuzzy lop (AFL),” lcamduf.core-
dump.cx, 2017. http://lcamtuf.coredump.cx/afl (accessed
Feb. 28, 2021).

 8. Rapid7, “Metasploit,” Rapid7, 2009. https://www.meta
sploit.com

 9. Threat9. “RouterSploit,” GitHub, San Francisco, 2016.
https://github.com/threat9/routersploit (accessed Feb.
28, 2021).

 10. M. Wilson, “Global premium wireless routers market
2019 by manufacturers, regions, type and application,
forecast to 2024,” Analytical Research Cognizance, 2019.

 11. A. Vetterl and R. Clayton, “Honware: A virtual honeypot frame-
work for capturing CPE and IoT zero days,” in Proc. APWG
Symp. Electronic Crime Research (eCrime), 2019, pp. 1–13.

 12. E. Gustafson et al., “Toward the analysis of embedded
firmware through automated re-hosting,” in Proc. 22th
Int. Symp. Res Attacks, Intrusions and Defenses (RAID),
Beijing, Sept. 2019, pp. 135–150.

 13. B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and
Hardware-independent Firmware Testing via Auto-
matic Peripheral Interface Modeling,” in Proc. 29th USE-
NIX Security Symp. (Security), Boston, Aug. 2020, pp.
1237–1254.

 14. A. A. Clements et al., “HALucinator: Firmware re-hosting
through abstraction layer emulation,” in Proc. 29th USE-
NIX Security Symp. (Security), Boston, Aug. 2020, pp.
1201–1218.

 15. Proc. 29th USENIX Security Symp. (Security), Boston,
Aug. 2020.

Dongkwan Kim is a Ph.D. candidate in the School of Elec-
trical Engineering, Korea Advanced Institute of Science

and Technology, Daejeon, 34141, South Korea. His
research interests include software, embedded/cyber-
physical systems, cellular networks, and machine
learning. Kim received an M.S. from the School of
Electrical Engineering at Korea Advanced Institute of
Science and Technology. Contact him at dkay@kaist
.ac.kr.

Eunsoo Kim is a Ph.D. candidate in the Graduate School
of Information Security, Korea Advanced Institute
of Science and Technology, Daejeon, 34141, South
Korea. His research interests include finding vulner-
abilities in various software and embedded systems.
Kim received an M.S. from the Graduate School of
Information Security, Korea Advanced Institute of
Science and Technology. Contact him at hahah@
kaist.ac.kr.

Mingeun Kim is a researcher at the Affiliated Institute
of the Electronics and Telecommunications Research
Institute, Daejeon, 34129, South Korea. His research
interests include firmware emulation and analysis
of Internet of Things devices. Kim received an M.S.
from the Graduate School of Information Security,
Korea Advanced Institute of Science and Technology.
Contact him at rla5072@nsr.re.kr.

Yeongjin Jang is an assistant professor of computer sci-
ence in the College of Engineering, Oregon State Uni-
versity, Corvallis, Oregon, 97331, USA. His research
interests include computer systems security, particu-
larly, identifying and analyzing emerging attacks for
building secure systems. Jang received a Ph.D. from
the School of Computer Science at the Georgia Insti-
tute of Technology. Contact him at yeongjin.jang@
oregonstate.edu.

Yongdae Kim is a professor in the School of Electrical
Engineering and an affiliate professor of GSIS, Korea
Advanced Institute of Science and Technology, Dae-
jeon, 34141, South Korea. His research interests
include security issues for various systems, such as
cyberphysical systems, cellular networks, peer-to-
peer systems, and embedded systems. He received a
National Science Foundation CAREER Award and
a McKnight Land-Grant Professorship Award from
the University of Minnesota. He is a former Network
and Distributed System Security Symposium Steer-
ing Committee member and associate editor of ACM
Transactions on Privacy and Security. Kim received a
Ph.D. from the Computer Science Department at the
University of Southern California. Contact him at
yongdaek@kaist.ac.kr.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 23,2022 at 05:55:56 UTC from IEEE Xplore. Restrictions apply.

