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Abstract
A video identification attack is a tangible privacy threat that
can reveal videos that victims are watching. In this paper,
we present the first study of a video identification attack in
Long Term Evolution (LTE) networks. We discovered that, by
leveraging broadcast radio signals, an unprivileged adversary
equipped with a software-defined radio can 1) identify mobile
users who are watching target videos of the adversary’s inter-
est and then 2) infer the video title that each of these users is
watching. Using 46,810 LTE traces of three video streaming
services from three cellular operators, we demonstrate that
our attack achieves an accuracy of up to 0.985. We empha-
size that this high level of accuracy stems from overcoming
the unique challenges related to the operational logic of LTE
networks and video streaming systems. Finally, we present
an end-to-end attack scenario leveraging the presented video
identification attack and propose countermeasures that are
readily applicable to current LTE networks.

1 Introduction
An increasing number of users leverage cellular networks to
watch videos on their mobile devices [18, 42]. Following this
trend, an individual’s video viewing history becomes private
information that reveals their political, financial, and personal
interests. Thus, an attacker’s ability to identify videos that an
individual watches poses a serious privacy threat.

Unfortunately, recent studies [20, 21, 34, 38, 43, 44] have
shown that an adversary can identify videos by analyzing
encrypted traffic, referred to as a video identification attack.
The attack exploits the fact that an encrypted video stream has
its own identifiable fingerprint owing to the operating logic of
HTTP adaptive streaming (HAS), the leading video streaming
protocol. In HAS, a video is segmented into smaller chunks,
whose sizes vary according to content. Thus, a series of such
chunks forms a unique pattern.

Most studies on video identification attacks have tar-
geted wired networks [20, 21, 38, 43, 44]. They assumed a
strong attack model; the adversary is required to have ei-
ther 1) direct access to a victim’s network infrastructure (e.g.,

wired/wireless routers) or 2) an ability to run malicious apps
or websites on a victim’s device. These attacks thus require a
strong privilege to monitor network traffic, which reduces the
likelihood of the attack’s success in practice.

By contrast, radio signals in wireless networks are transmit-
ted over the air, which an adversary equipped with a software-
defined radio (SDR) is able to monitor. If this adversary is
able to extract effective features from these signals that con-
tribute to identifying streamed videos, they become a strong
adversary who can carry out a video identification attack
without any privilege. Nevertheless, only a few studies have
investigated the feasibility of conducting an attack in wireless
networks [34].

In this paper, we present the first study of a video iden-
tification attack in LTE networks. We investigate whether,
for a given cell, an adversary can 1) pinpoint users who are
watching target videos of the adversary’s interest and then 2)
identify the exact title of the video that each user is watching.
Here, we assume an unprivileged adversary equipped with an
SDR, who has no access to victims’ devices or cell towers but
can sniff broadcast signals transmitted from a particular cell
tower. This scenario can be exploited, for example, to track
down users watching illegal or sensitive videos.

Conducting a successful video identification attack requires
addressing three technical challenges that arise from the dis-
tinct characteristics of LTE networks (§3). (1) The adversary
has a limited monitoring capability, which makes it challeng-
ing to determine the observed traffic type (e.g., whether the
video traffic is from YouTube or Netflix) and build precise
video fingerprints. (2) It is non-trivial to collect a specific
victim’s traffic over time because the identifier, which binds
traffic to the victim, often changes during video playback due
to the interworking between HAS and the operational logic
of LTE networks. (3) Lastly, the adversary needs to aggregate
video traffic from multiple channels due to carrier aggrega-
tion (CA) logic [2, 4], which most LTE network operators
employ to maximize network bandwidth.

To tackle these challenges, we propose a video identifi-
cation attack that takes advantage of the following contribu-



tions (§4). (1) We identify distinctive characteristics of video
streaming traffic and video service providers. These char-
acteristics enable us to identify a video title and its service
provider using convolutional neural network (CNN) and deci-
sion tree classifiers, respectively. (2) We propose to harness
unencrypted information transmitted solely to a victim over
the air to link the victim’s changing identifiers, thus capturing
the full traffic volume to each victim. (3) Instead of monitor-
ing all channels for CA, we propose a heuristic method that
estimates the volume of video traffic by monitoring only a
single channel.

To evaluate the feasibility of the attack, we collected 46,810
LTE traffic traces (§5) for three major video streaming ser-
vices (i.e., YouTube, Netflix, and Amazon) from three opera-
tional mobile network operators (MNOs); this accounts for
2,035 hours of video involving 1.79 TB of video traffic. Using
this dataset, we conducted a series of experiments considering
multiple factors: service providers and video quality, MNOs
and device types, changing identifiers, CA, network environ-
ments, class sizes, and unseen traffic. The experimental results
demonstrate a high accuracy of 0.87, 0.95, and 0.98 for the
Netflix, Amazon, and YouTube datasets, respectively.

In addition, we demonstrate an end-to-end attack scenario
that selectively locates individuals who watch one of the at-
tacker’s target videos (§6). Assuming the adversary who is
physically adjacent to victims, the attack is able to enforce the
victims’ devices to sound a loud alarm, possibly revealing the
presence of victims who are watching one of the target videos.
The attack targets only the victims’ devices without affecting
other user devices connected to a legitimate base station. To
achieve this, we extended a signal injection attack [55] and
chained it with our video identification attack.

We conclude by proposing countermeasures that are read-
ily applicable to current LTE networks (§7). In particular, we
propose a method that breaks the link between user identi-
fiers and traffic information without requiring any changes to
devices or the 3GPP specification.

In summary, our contributions are as follows:

• We present the first study of a video identification attack in
LTE networks and concretize the challenges to realize it.

• We develop (a) a new technique of inferring CA-enabled
downstream traffic volumes and (b) formulate new fea-
tures to classify video streaming service providers. We also
present a way to combine these techniques with existing
ones to launch a successful video identification attack.

• We demonstrate that the proposed attack is a practical threat
by showing a high accuracy of 0.985 using 46,810 LTE
traces for three video streaming services from three MNOs.

• We suggest practical mitigations for the presented video
identification attack.

• To encourage further research, we release our dataset and
scripts for data collection, identification, and defense [1].
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Figure 1: LTE network architecture and protocol stack

2 Background

2.1 Data Transmission in LTE
An LTE network consists of three main components: user
equipments (UEs), evolved Node B (eNB), and evolved packet
core (EPC). A UE is a device (e.g., a smartphone) that pro-
vides cellular services to end-users. An eNB is a base station
which provides a radio connection to UEs. An EPC refers to
a core network that provides data services while managing
user registration and mobility (Fig. 1).

Delivering video data from a video service provider to
a UE entails the following steps. The gateways in an EPC
first receive video packets from a streaming service provider.
Then, they flood the video packets to the eNB, to which the
UE is connected. The eNB encapsulates the received packets
and transmits them to the UE over radio channels.
Identities. For proper data delivery to the designated UE, mul-
tiple identifiers are assigned to the UE. The eNB, to which the
UE is connected, assigns the UE a Radio Network Temporary
Identifier (RNTI), and the EPC assigns the UE a Temporary
Mobile Subscriber Identity (TMSI). Using these identifiers en-
ables the EPC and eNB to deliver data to the correct recipient
as well as to manage per-user cryptographic keys for secure
data transmission. An RNTI is a temporary yet unique identi-
fier that the eNB assigns to the connected UE; the eNB thus
differentiates the user from other connected UEs. It is only
valid when the UE is connected to the serving eNB. Likewise,
a TMSI is a unique identifier managed by the EPC; it is newly
assigned when the UE is registered in the LTE network.
Radio Access Network (RAN). A RAN refers to a network
between the UE and the connected eNB across which control
messages and user data traffic are transmitted. They are deliv-
ered via an LTE protocol stack (Fig. 1). Control messages and
user data traffic are encapsulated at an eNB through multiple
layers. They are encrypted at the Packet Data Convergence
Protocol (PDCP) layer, segmented at the Radio Link Control
(RLC) layer, scheduled at the Medium Access Control (MAC)
layer, and then delivered through the physical layer (PHY).

The Radio Resource Control (RRC) protocol defines how to
generate control messages that manage all radio connections.



For example, when the UE requests a new connection to an
eNB, the eNB responds with an RRC Connection Setup message
to deliver wireless configuration information. When there is
no traffic between the eNB and UE for a specified period,
the eNB sends an RRC Connection Release message to remove
the connection and save network resources as well as the
UE’s battery. When they need to communicate thereafter, the
connection is established again.
Data acquisition. A fundamental feature of radio communi-
cation is that signals are broadcast to devices over a range of
radio frequencies, called a channel. This channel becomes an
information source from which each UE selectively retrieves
its own data from broadcast signals. The physical layer in-
structs the UEs how to retrieve control information from a
Physical Downlink Control Channel (PDCCH) and user data
from a Physical Downlink Shared Channel (PDSCH).

Note that the PDCCH delivers multiple pieces of Downlink
Control Information (DCI; plural DCIs) [5]. A DCI includes
1) assigned resource blocks in radio frames, which indicate the
frequency and timing with which the UE should retrieve data,
2) a modulation coding scheme for decoding the assigned
blocks, and 3) CRC bits masked with an RNTI. DCIs are
transmitted on every LTE subframe (i.e., 1 ms). A PDCCH is
an unencrypted channel in which the DCIs of all LTE users
on the same carrier frequency are exposed to the public. Thus,
a single UE is able to decode every DCI on the same PDCCH.
Security and privacy in data transmission. Given that any
UEs that share the same eNB can retrieve other users’ data
from the PDSCH, it is essential to provide secrecy and in-
tegrity protection that enables only legitimate users to access
their own data. LTE networks achieve this by encrypting and
checking the integrity of data at the PDCP layer. However, the
headers of all protocol layers underneath the IP layer, includ-
ing the PDCP layer, are not encrypted. Hence, anyone can still
see header contents, which we exploited in approximating the
volume of video streaming traffic.

Previous studies have addressed privacy threats in cellular
networks that allow the adversary to track user identities and
locations [22, 26, 45]. In this regard, an RNTI plays a role in
mitigating the privacy threats, as it is a temporary identifier
arbitrarily assigned to each radio connection. Because an eNB
assigns multiple RNTIs to the same user over time, it becomes
difficult for the adversary to track a particular user only based
on a given RNTI without supplementary information.
Carrier aggregation (CA). In LTE Release 10, 3GPP intro-
duced the CA technology [2], which simultaneously lever-
ages multiple carrier frequencies for data transmission. It is
designed to provide more bandwidth per user by assigning
multiple frequency bands to the same user. An eNB often
consists of multiple cells, each of which covers transmitting
radio signals within a specified frequency band. The primary
cell (PCell) is the first cell to which a UE connects to establish
a connection and exchange control messages. In the eNB that
the UE uses, all the remaining cells become secondary cells

(SCells). The basis of CA technology is to use the PCell first
for data transmission and later to leverage the SCells when
a large amount of data needs to be delivered. CA execution
is managed at the MAC layer; packets from the upper layers
are multiplexed and delivered over frames of the PCell and
SCells.

2.2 Video Identification Attack
The goal of an attacker is to precisely infer the video playing
on a victim’s device. In general, the attack targets encrypted
network traffic sent to a victim’s device [20,21,34,38,43,44].
To identify a video from the encrypted traffic, the adversary
mainly exploits information leakage stemming from the oper-
ational logic of HAS, which is the dominant streaming pro-
tocol used by popular streaming services. HAS segments a
video into smaller chunks that share an identical playback
time. Each chunk has a different size according to its content
owing to variable bitrate (VBR) encoding. Thus, a series of
such chunks can represent a unique pattern. Furthermore, the
HAS client fetches multiple video chunks periodically with
pausing, which produces so-called ON and OFF periods. By
grouping a series of chunks using these periods, the adversary
can build a concise video fingerprint for each target video.

In general, the attack consists of the following four steps:
(S1) Recording: The adversary chooses target videos for
identification, generates network traffic for those videos by
repeatedly playing the videos, and then extracts distinctive
features from the observed traffic. Prior studies [20, 21, 38,
44] have leveraged the number, volume, or arrival interval of
downlink and uplink packets as possible identifiable features.
(S2) Building a classifier: The adversary builds a classifier
that identifies a video based on a given set of features. To im-
plement and train this classifier, prior research has employed
CNN [44], support vector machine (SVM) [20], and k-nearest
neighbors using dynamic time warping (DTW) [21].
(S3) Monitoring: The adversary collects network traffic sent
to a victim. To monitor the traffic, previous studies on wired
networks assumed that an adversary can access the victim’s
device (to run their own app/website) [44] or network infras-
tructures that the victim uses [20, 21, 38, 43, 44]. In contrast,
an adversary on wireless networks is free from these assump-
tions as the adversary can utilize information broadcast over
the air [34].
(S4) Identification: Finally, the adversary queries the trained
classifier to identify a video title given the victim’s network
traffic that the adversary monitored.

3 Threat Model and Challenges
Attacker’s goal. We assume an adversary who selects a target
cell and set of target videos. The adversary’s goal is to recog-
nize the identifiers (i.e., TMSI and RNTIs) of UEs in this cell
that have watched any of the target videos. Furthermore, for
each identified UE, the adversary attempts to identify a video
title that the UE has watched.



Table 1: Summary of the technical challenges that our study addressed compared to previous studies. (©: addressed)

Challenge
Video Video App/Website Video

Our Approachon wired on Wi-Fi on LTE on LTE
[20, 21, 38, 44] [34, 43] [13, 29, 41, 49] (Ours)

C1 - Monitoring traffic without privileged access × 4† © © Utilize broadcast information (§4.2) [13, 29, 41]
C1 - Handling noisy observed traffic × × © © Leverage CNN (§4.4) [44]
C1 - Distinguishing streaming service provider × × ×‡ © Formulate new features with a decision tree (§4.4)

C2 - Frequent changes of user identifiers × × ×∗ © Exploit the identity mapping attack (§4.2) [41]

C3 - Multi-channel data transmission × × × © Estimate traffic volumes in SCell (§4.3)
† The authors partially addressed this challenge; they monitored victim’s traffic in a wireless router. We thus mark this4.
‡ The authors distinguished app types, such as web surfing or teleconferencing; this is different from distinguishing streaming service providers.
∗ The authors partially introduced this challenge; their attacks do not require to address it owing to their short period of attack time. We thus mark this ×.

Attacker’s capabilities. An adversary in our attack model
does not require direct access to victims’ UEs or the eNB.
Furthermore, the adversary does not have any information
about victims, including their usage (e.g., traffic type, or ser-
vice provider of a streaming video) and cryptographic keys
for secure data transmission. Therefore, the adversary cannot
decrypt any user data embodied in PDCP packets.

Meanwhile, the adversary can choose any target eNB and
conduct the attack on any users attached to it. Within the radio
coverage of the target eNB,1 the adversary can eavesdrop
on radio signals transmitted over the air and sniff downlink
messages by leveraging an SDR [50] and publicly available
software [12, 15]. By parsing the downlink messages, the
adversary can obtain MAC packets, DCIs, and unencrypted
PDCP header information for the attack.
Implication. The adversary determining whether specific
videos are streamed solely by observing encrypted video
traces has been considered a privacy threat [20, 21, 38, 44].

In particular, we argue that a video identification attack in
cellular networks poses a critical privacy threat; the adversary
with no privilege could affect the whole coverage area of a
cell tower (1–5 km) [39], compared to the attacks in Wi-Fi
networks [34] that target small areas (≤ 100 m).

The attack can be exploited to track down users who watch
illegal or sensitive videos in a target cell. Consider a scenario
in which a law enforcement agency in an oppressive regime
executes the attack. The agency (i.e., adversary) builds a black-
list of videos featuring anti-government content. By conduct-
ing the attack, the adversary obtains the identifiers (i.e., TMSI
and RNTIs) of users who have watched prohibited videos.
These identifiers are then linked to a personal identity with
the help of an ISP or by further conducting identifier linking
attacks [22, 25, 45]. Accordingly, the adversary can pinpoint
users who have watched videos on the blacklist. Even worse,
when the agency is able to reveal the locations of these users,
the problem becomes critical, which we describe in §6.

Despite its severity, to the best of our knowledge, the video
identification attack in cellular networks has not been stud-
ied yet. We believe that this stems from the difficulties in
addressing the distinct challenges described below.

1A location that exhibits a high signal-to-noise ratio (over 23dB) for the
eNB guarantees successful signal decoding.

3.1 Practical Challenges
Video identification attacks on LTE networks need to address
the following three technical challenges: (C1) limited mon-
itoring capability, (C2) frequent changes of user identifiers,
and (C3) multi-channel data transmission. Note that C1 and
C2 have been considered partially in different attack scenar-
ios [13, 29, 41, 49]. However, none have investigated these
challenges for the video identification attack, which demand
additional considerations. Furthermore, the video identifica-
tion attack in LTE networks introduces another unique chal-
lenge of C3 due to CA. Tab. 1 summarizes the challenges
addressed in previous studies and our study.
C1: Limited monitoring capability. The adversary cannot
decrypt encrypted user traffic delivered over the PDSCH.
Therefore, the adversary needs to utilize only public infor-
mation. By mimicking the data acquisition procedure of the
victim’s UE (§2.1), which decodes DCIs embodied in broad-
cast signals, the adversary can obtain a time series of packet
volumes [13, 29, 41, 49]. They then use this information as a
pattern for each video.

However, the size information extracted from DCIs is not
consistent even when the same video is streamed, which im-
pedes accurate video identification. The computed packet vol-
umes often account for traffic other than video content, such
as (1) retransmitted packets at the RAN layers including RLC
and PDCP, depending on the network condition; (2) LTE con-
trol plane messages; and (3) packets from other apps running
on the victim’s UE. Moreover, occasional decoding failures
of the downlink sniffer (e.g., AirScope [12] or OWL [15])
contributes to obscuring the actual size of streamed chunks.

In our dataset (i.e., YouTube100 in §5.1), we measured the
discrepancy between the estimated and actual volumes of
streamed video chunks. We compared the estimated video size
by decoding DCIs with the actual size of the streamed chunks
at the IP layer. Depending on videos and LTE traces, the
difference between the estimated and actual volumes ranged
from -1.1 to 9.6% with an average of 7%. Therefore, the
adversary has to build a robust classifier to handle inconsistent
volumes for accurate video identification.

Furthermore, for accurate identification, the adversary
should consider an underlying video service provider, which
is a dominant factor in varying streaming traffic patterns. We
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observed that service providers affect the estimation of a
traffic volume in a CA-enabled environment (§4.3). As the
TCP/IP layer is encrypted, the adversary cannot utilize known
IP addresses to identify the service providers.
C2: Frequent changes of user identifiers. DCIs are pub-
lic information, which we use to build a fingerprint for each
video. As users retrieve their own DCIs with their own RN-
TIs (§2.1), an adversary can follow the same step to collect
DCIs for each user. The challenge here lies in the operat-
ing logic of HAS video streaming, which triggers frequent
changes of these RNTIs. HAS is designed to enter a paused
period, called the OFF period, after a UE fetches each video
chunk(s) (§2.2). At the same time, the UE is supposed to
release its connection to an eNB when there is no traffic for a
certain period to save resources. Consequently, when watch-
ing a HAS video, the UE releases its connection during the
OFF period. When the UE fetches the next video chunks, it
reestablishes the connection to the eNB and is then assigned
a new RNTI. As watching a HAS video produces multiple
ON-OFF periods, the adversary must track various RNTIs for
each user to collect a non-fragmented series of user’s DCIs.

RNTIs may change differently in practice depending on
the configuration of streaming service providers and MNOs.
We investigated three major streaming services (i.e., YouTube,
Netflix, and Amazon) and three major MNOs. We observed
that the OFF period of Netflix’s HAS service is configured to
be about 40 s while the OFF periods of YouTube and Amazon
are about 5 s and 4 s, respectively. Meanwhile, in all MNOs,
we found that their eNBs disconnect UEs when they have no
traffic for 10 s. Thus, when a UE watches a Netflix video, its
RNTI changes at least once every 40 s in all MNOs.

Fig. 2 shows the time series of received traffic volume
and the changing RNTIs when a client plays a Netflix video.
We played Sherlock (Season 1, EP. 1) on a Galaxy S6 Edge
smartphone. During the 300 s playback, the client repeat-
edly released its radio connection during the OFF period and
reestablished the connection six times. For each reconnection,
a new RNTI was assigned to the device. To conduct video
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Figure 4: Overview of our video identification attack

identification for any streaming services with an OFF period
of over 10 s, the adversary should address this challenge.
C3: Multi-channel data transmission. An eNB activates
CA to deliver a large volume of data over multiple channels,
thus boosting the transmission bandwidth (§2.1). Given that
a typical video stream comprises of several chunks having
a large volume, the eNB to which a victim’s UE connects
is highly likely to activate CA when transmitting video con-
tent in practice. This means that the adversary needs to take
into account the sniffing of CA-activated traffic over multiple
channels simultaneously.

To examine the impact of CA on data transmission, we
captured cellular traffic while playing the song Despacito
on YouTube on a Galaxy S6 Edge using 2-band CA. Fig. 3
shows traffic traces that represent the size of transmitted data
over time. In the figure, the black and red bars represent data
traffic flooded through the PCell and SCell, respectively. The
amount of data from the SCell comprises approximately 14%
of the total received data. For the specific time window of
between 4 and 4.5 s, the amount of SCell data accounts for
42% of all data. Therefore, for a precise video fingerprint, the
adversary should consider both the PCell and SCell.

4 Video Identification Attack
4.1 Attack Overview
We present a video identification attack in LTE networks ad-
dressing the practical challenges (§3.1). Fig. 4 illustrates the
overall attack procedure: 1) the attacker selects target videos
and computes their fingerprints; 2) the attacker prepares the
attack by building a classifier that identifies the target videos;
3) the attacker then performs the attack on a target cell, com-
puting a tuple (a TMSI, the chain of RNTIs assigned to the
TMSI, and a video title) for each UE in the target cell.

The adversary starts by playing target videos repeatedly
on their own UE and obtains a time series of transmitted
data volumes by decoding DCIs. In this step, they retrieve
their own RNTIs from diagnostic monitoring tools [23, 54]
connected to their UE and disable CA by configuring their UE
to use only one band; thus, they are free from C2 and C3. Next,
the adversary builds their classifier that takes the collected
traces as input. As the traces from the same video differ, the
adversary should build a robust classifier against inconsistent
input traces (C1). To address this, we adopt a CNN classifier,



which is known to be robust against unsteady input patterns
with noise [30, 44] (§4.4). For accurate identification, we set
up a decision tree classifier that infers a video service provider
of which HAS operational logic differs by vendors. We use
this classifier to choose one among the CNN classifiers, each
of which is trained for a video service provider.

Subsequently, the adversary executes the attack on a target
eNB by monitoring the radio traffic of all UEs connected to
the eNB using a downlink sniffer [12]. To obtain complete
traces for each UE, the adversary tracks their frequently chang-
ing RNTIs (C2) and estimates the volume of missing packets
due to CA (C3). To address C2, we fully utilize broadcast
information delivered over the PDCCH and PDSCH (§4.2).
For C3, we propose two approaches: one that exploits unen-
crypted header information and another that exploits a vul-
nerable RAN design (§4.3). The adversary then feeds the
collected traces to the pre-trained classifiers and infers the
video titles.

4.2 Utilizing Broadcast Information
The benefits of leveraging broadcast radio signals are twofold;
the adversary can (1) extract traffic patterns from DCIs and
(2) track the frequently changing RNTIs.
Extracting traffic patterns. The adversary listens to the PD-
CCH of the target eNB to which victim UEs are connected.
They retrieve DCIs within an LTE subframe (i.e., 1ms) and
compute the volume of transmitted data for each DCI by
mimicking the data acquisition procedure of the victim UEs.
Specifically, the adversary decodes DCIs using the coding rate
of the specified modulation coding scheme and the number of
assigned resource blocks. By undertaking this over time, they
obtain a time series of packet volumes over multiple DCIs.
Finally, for each non-overlapping time window of 0.2 s, the
adversary aggregates the computed volumes and generates a
vector that encodes the downlink traffic pattern for each UE.

Although the use of DCIs has been proposed in previous
studies [13,29,41,49], none of them have explored its applica-
tion to the video identification domain. It should be noted that
leveraging DCIs alone is insufficient for accurate video identi-
fication, which necessitates tracking the frequently changing
RNTIs of UEs and addressing CA.
Identifier tracking. We propose linking the frequently chang-
ing RNTIs of each victim UE to its unified identifier, TMSI,
using an identity mapping attack [41]. The identity mapping
attack exploits the radio connection procedure of the LTE.
According to the LTE specification [7], to establish a new
radio connection to an eNB, a UE first sends a random access
request to the eNB and receives a response that contains a
temporal RNTI (T-CRNTI). Using this T-CRNTI, the UE then
decodes the RRCConnectionSetup message broadcast over the
PDSCH in plaintext; this message embodies the UE’s TMSI.

The adversary mimics this procedure to track the RN-
TIs of each victim UE with its TMSI. They monitor all the
responses from the eNB and collects all T-CRNTIs. With
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each collected T-CRNTI, the adversary decodes the sniffed
RRCConnectionSetup message and obtains the embodied TMSI.
They then match the TMSI to the RNTI used to decode the
message. After this procedure, the adversary obtains multiple
pairs of a TMSI and an RNTI. As TMSIs rarely change,2 the
adversary can map multiple RNTIs to their corresponding
TMSIs, consequently obtaining a tuple (a TMSI, the chain of
RNTIs for the TMSI). Using this information, they keep track
of each UE’s traffic.

4.3 Addressing Carrier Aggregation
CA is often activated when an eNB transmits a large number
of video chunks to a UE. This tendency necessitates that the
adversary captures traffic delivered over multiple channels.
For this, we propose two approaches: 1) adopting multiple
downlink sniffers and 2) estimating the volume of missing
traffic with one downlink sniffer.
Adopting multiple sniffers. One straightforward solution is
to deploy multiple downlink sniffers at each channel of the
PCell and SCells. To measure traffic volume over the SCells,
the adversary must know (1) the RNTI used for communica-
tion between a victim’s UE and each target SCell and (2) the
activated SCells for video streaming.

We propose leveraging the limitations of the standard CA
design and the current status of SCell deployment by MNOs.
(1) By design, the operational logic of CA uses the same
RNTI for both the PCell and SCells. Therefore, the adversary
can identify a victim’s traffic in the SCells by leveraging the
same RNTI in the PCell. (2) MNOs do not select random
SCells for CA activation. Usually, an MNO is assigned with a
limited number of available frequency bands. The information
regarding active frequency bands and CA configurations for
major MNOs is pre-defined [19] and open to the public [16].

Although this simple solution is promising, it has a limi-
tation. The proposed solution demands multiple SDRs, one
SDR for each activated SCell, thus increasing its deployment
cost. Considering that the 3GPP standard supports 31 SCells
and 5G uses more SCells, this simple solution is not scalable
for conducting the proposed attack in practice.
Estimating traffic volume. We propose a novel method that
enables the adversary to estimate the traffic volume delivered
by the PCell and SCells simultaneously with only one SDR
device. The method mainly exploits (1) sequence numbers in
PDCP packet headers, which are not encrypted during data

2A TMSI rarely changes, even when a radio connection is reestablished
after a UE reboots [45].



transmission, and (2) the fixed size of video streaming packets.
Fig. 5 illustrates an example of estimating a missing volume

of traffic. The adversary starts by monitoring a series of PDCP
sequence numbers from the PCell. By decoding transmitted
data over the PDSCH, the adversary can obtain packets at
the MAC layer and extract PDCP packets along with their
headers. When there is a missing sequence number obtained
from the PCell, the adversary knows that those packets are
delivered over one of the SCells. In general, we count each
gap between two discontinuous PDCP sequences and sum
those gaps to compute the total number of missing packets.

Now, the adversary estimates the missing traffic volume
delivered over SCells under the following two assumptions,
which we empirically confirmed via manual traffic analysis.

(1) Each missing PDCP packet is fully packed with video
data, and its packet size is fixed according to the maximum
transmission unit (MTU) configured by a streaming service
provider or an MNO. For Netflix and Amazon, we observed
that the size of PDCP packets was fixed at an MTU varying
by MNO, which is 1,440, 1,450, and 1,430 bytes for MNOs
A, B, and C, respectively. On the other hand, for YouTube,
the PDCP packet size was fixed at 1,380 bytes across all three
MNOs. This is mainly due to QUIC [32], which is a transport
layer protocol employed by YouTube for streaming. QUIC
has an MTU of 1,350 bytes, which is smaller than the MTU
configured by the MNOs. Thus, the size of PDCP packets
in YouTube streaming is fixed at 1,380 bytes, including the
30-byte header.

(2) A PDCP sequence number is a 12-bit number that all
three major MNOs use. As the MNOs adopt a fixed size and
wrap-around logic for PDCP sequence numbers, the adversary
can count the missing PDCP packets in the case that the PDCP
sequence number has a lower value than that of the previous
PDCP packet. Finally, the adversary calculates the lost traffic
volume by multiplying the number of missing PDCP packets
by the MTU size of the QUIC protocol. Note that in the case
of a video service that does not use QUIC, the adversary
calculates the size of missing packets by using the PDCP
MTU of a target MNO.

One may argue that the proposed estimation method is un-
necessary when an MNO employs a cross-carrier scheduling
policy. In this policy, DCIs from the PCell contain the re-
source allocation information for each SCell, thus rendering
obsolete the need for estimating the traffic volume over the
SCells. However, according to our investigation into three
major MNOs, none currently deploys this policy, making the
estimation step essential for accurate identification.

This estimation process can be affected by two configura-
tions: 1) the length of the PDCP sequence number, and 2) the
adoption of robust header compression (ROHC) [8, 40]. For
the former, the length of the PDCP sequence number varies
over MNOs and data radio bearers. However, the adversary
can easily obtain this length with their own UE before launch-
ing the attack by monitoring RRC Connection Reconfiguration
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Figure 6: The structure of the used CNN model

messages. In practice, we observed that all MNOs use 12 bits
for this length. For the latter, ROHC might affect the packet
size due to its header compression on the IP/UDP layer. How-
ever, we observed that three MNOs use ROHC only on voice
calls, not on video streaming.

4.4 Building a Classifier
The proposed attack involves two classifiers: one for identify-
ing the video service provider, and the other for identifying
the video title. The adversary prepares a video title classifier
for each service provider, and the service provider classifier
determines a video title classifier for a given set of traffic
features.
Video service provider classifier. The first classifier is
designed to identify the video service provider to which
given traffic features belong. This classifier plays an im-
portant role in handing CA to derive accurate traffic vol-
umes (§4.3). We leverage a decision tree with nine features
extracted empirically from the traffic analysis: the number of
chunks, the duration of the first ON/OFF period, and the aver-
age/maximum/minimum duration of ON/OFF periods. These
nine features are directly related to the HAS configuration of
each video service provider.

We observed that this HAS configuration highly affected
the shape of video traffic (See App. C): 1) an initial playback
buffer size affects the duration of the first ON/OFF period;
2) the duration of each chunk affects the OFF period dura-
tion; and 3) the logic of fetching video chunks affects the
ON period duration. These features are different from the
features of previous approaches on fingerprinting application
types [13,49] (e.g., web surfing or teleconferencing). Our fea-
tures are agnostic to traffic volumes and designed to capture
the differences in the shape of video traffic caused by HAS
configuration.
Video title classifier. We leverage a 1D-CNN 1) to capture
traffic-level commonalities in video streaming for a given
video title, even in the presence of traffic variations, and 2) to
use raw traffic metadata for the input of the classifier. CNNs
are effective for learning the commonalities of a given time
series data via a convolution filter, which ensures that the
generated model is robust to noise [30, 44].

Fig. 6 shows the structure of our CNN model. The model
consists of three convolution layers, each of which accom-
panies a maxpool and dropout layer, and two dense layers.



Table 2: Dataset summary (a total of 46,810 traces for 2,035 h)

Dataset # of # of Trace Description UsageVideos Traces Length (s)

YouTube100 100 29,715 120 YouTube Top 100 All
Netflix 22 1,001 800 Netflix Top 50 §5.2, §5.5

NetflixDT 31 298 800 Netflix (Random) §5.2, §5.5
Amazon 32 1,210 120 Prime Video (Random) §5.2
AmazonDT 36 310 120 Prime Video (Random) §5.2, §5.5
YouTubeCA 100 7,383 120 YouTube Top 100 (CA) §5.3
YouTube200 200 6,424 120 YouTube Top 101-300 §5.5

Web - 268 120 Alexa Top 50 §5.5
Teleconf - 201 120 Google Meet §5.5

As an input to the model, we feed in a vector representation
of the time series of estimated traffic volumes, obtained dur-
ing the traffic monitoring (§4.2). Each of the vector elements
represents an aggregated traffic volume for 0.2 s (i.e., 200
LTE subframes). We empirically set each convolutional layer
to use 150 filters, a ReLU activation function, and a kernel
covering 20 vector elements (i.e., 4 s of aggregated traffic
volumes), considering the size-variation tendency of video
chunks. We set the dropout rate and pool size to 0.4 and 3,
respectively (Fig. 6). The two dense layers successively out-
put 500 units and the number of video titles. For the other
hyper-parameters, we used the default values of Keras [17].

5 Evaluation
We demonstrate our video identification attack in LTE net-
works from three major MNOs. We describe our dataset and
experimental setup (§5.1) and present the attack performance
in identifying a victim’s video in a known set (§5.2), called
a closed-world setup. We then evaluate the impact of han-
dling CA for accurate identification (§5.3). We investigate
the impact of network congestion by comparing the efficacy
of our model with that of other classifiers (§5.4). We further
evaluate our methodology with unseen videos as well as vari-
ous mobile apps in an open-world setup (§5.5). In summary,
we evaluate the degree to which our attack is affected by the
following factors: (1) service provider and video quality, (2)
MNO and device, (3) changing RNTIs, (4) CA, (5) network
environment, (6) class sizes, and (7) unseen traffic.

5.1 Experimental Setup
Dataset. We constructed the dataset by sniffing LTE signals
from three major MNOs with commercial UEs, as listed
in Tab. 2. We collected a total of 46,810 data traces from
YouTube, Amazon, and Netflix including different experi-
mental settings. We also collected 469 additional traces for
websites and teleconferences to show the robustness of the
attack. The total dataset accounts for 2,035 hours of stream-
ing time and 1.79 TB of video traffic. We describe the details
of each dataset in their usage along with our experimental
results.
Data collection procedure. For collecting data, we con-
ducted the following three steps. (1) We set the UEs to connect
to a commercial LTE network operated by one of the three
MNOs. (2) We then launched a downlink sniffer, which listens

Table 3: Evaluation results on the YouTube100 dataset.

MNO
Video # of Acc. F1 AUC MNO

Video # of Acc. F1 AUCQuality Traces Quality Traces

A 480p 3,184 0.970 0.967 0.997 C 480p 3,262 0.981 0.961 0.996
A 720p 3,196 0.968 0.965 0.998 C 720p 3,218 0.967 0.965 0.997
A 1080p 3,645 0.985 0.986 0.998 C 1080p 3,293 0.957 0.954 0.997

B 480p 3,376 0.928 0.922 0.995 A mixed 10,025 0.977 0.976 0.998
B 720p 3,318 0.973 0.970 0.997 B mixed 9,917 0.958 0.958 0.997
B 1080p 3,223 0.940 0.937 0.996 C mixed 9,773 0.980 0.979 0.998

to the same cell to which the current UE is connected. For this,
we used two types of SDR: USRP B210 [50] and X310 [51],
equipped with the downlink sniffer software, AirScope [12].
AirScope enabled us to get all MAC layer packets, transmit-
ted by the cell, into a PCAP formatted file. (3) Finally, we
recorded the downlink traffic as well as the changing RNTIs
of each UE, enabling us to link fragmented traffic with the
UE’s TMSI (§4.2).
Target videos. We selected the most viewed music videos
on YouTube [1] with lengths under 6 min each. As YouTube
provides multiple streaming quality options, we set our UEs
to play 120 s of each video at three different resolutions: 480p,
720p, and 1080p. We used a premium account for all YouTube
datasets; thus, the video traces did not contain any ads. Note
that this setup is the same as that in previous studies [20, 34,
38, 43, 44]. We further discuss this issue in §8.

We also selected 22 Netflix movies from the best 50 movies
list and 32 random Amazon movies [1]. We then collected the
first 800 s and 120 s of data traces for each video from Netflix
and Amazon, respectively. Since Netflix and Amazon provide
no option for users to select the video quality, we collected
traces with the default option for each video. To examine the
effect of MNO and video quality, we mainly used YouTube
traffic, which is the largest dataset. To collect multiple traces
for each video, we played each video over 27 times. Note that
the number of traces differs because it takes a considerable
amount of time to stream videos in practice. We collected the
datasets at our best using our automated collection tool [1].
Operating networks. Each MNO may have a different oper-
ational policy for managing downlink resources and network
operations. To investigate the impact of MNOs on successful
video identification, we chose three major MNOs to construct
the YouTube100 dataset (Tab. 3). We collected traces when the
eNB cells of the MNOs had a 5.9–99% downlink utilization
and 1–113 active UEs.
UE. We used two UEs, Galaxy Note5 and Galaxy S6 Edge,
which support 3-band CA.3 To measure the degree to which
CA impedes classifying target videos, we collected two ver-
sions of data traces for each video: one with CA-deactivated
(YouTube100) and the other with CA-activated (YouTubeCA).
When collecting the other datasets, we deactivated CA for
precise evaluation in a controlled environment.
Classifier setup. We implemented two classifiers (§4.4). For

3The latest AirScope (19.09) does not support the 256QAM modulation
scheme (3GPP release 12) [36]. Thus, we choose the above two UEs that
support under 256QAM (e.g., QPSK, 64QAM) for the following experiments.



Table 4: Impact of class size on the accuracy, F1, and AUC.

Class Size 50 100 150 200 250 300

Acc. 0.994 0.986 0.985 0.980 0.978 0.978
F1 0.993 0.985 0.985 0.979 0.980 0.977

AUC. 0.998 0.998 0.998 0.998 0.999 0.999

the CNN classifier, we used Keras [17] with a TensorFlow
backend [11]. In each experiment, unless specified, we trained
this classifier for 50 epochs with the Adam optimizer [28]
and a batch size of 32. For a decision tree classifier, we lever-
aged Python scikit-learn [37]. We set the depth of the tree
to nine, which is the number of input features. The time to
train these classifiers took at most 129 s for the largest dataset
(i.e., YouTube100) using a machine equipped with an Intel Xeon
E5-2630 CPU and a GTX 1080 GPU.

5.2 Closed-world Classification
We designed the experiments to answer the following four
research questions: (1) Is our classifier indeed able to identify
target videos using broadcast information alone? (2) How
much do MNOs and devices affect the classifier’s perfor-
mance? (3) What is the degree to which class sizes affect
the classifier’s performance? (4) How much does the RNTI
changing affect the classifier’s performance? We answer these
questions by evaluating our CNN classifier. For evaluation
metrics, we conducted five-fold cross-validation and averaged
the measured accuracy, area under the curve (AUC), and F1
score for each trial.
Baseline results. For each combination of the three MNOs
(A, B, and C) and three streaming resolutions (480p, 720p, and
1080p) in the YouTube100 dataset, we conducted a separate ex-
periment. We built a separate classifier for each combination.
Tab. 3 lists the classifier’s performance for each experiment.

The accuracy of our classifier varied between 0.928 and
0.985 across the experiments, demonstrating that our attack is
effective in identifying encrypted video streaming transmitted
over LTE networks. These results are consistent with the prior
experimental results in wired networks, which yielded an
accuracy of 0.99 on 18 YouTube videos [44]. Thus, we have
confirmed that a time series of the victim’s encrypted traffic
volumes is effective when identifying videos, even in cellular
networks.

The three rows at the bottom right of Tab. 3 show the clas-
sifier’s performance on the mixed dataset in which each video
class has all three video resolutions. For all three MNOs,
the classifier achieved an accuracy between 0.958 and 0.980.
This means that the adversary does not need to accurately
infer the video resolution that a target victim uses for watch-
ing YouTube videos. The adversary can instead use a mixed
dataset to classify the victim’s videos without losing accuracy.
Impact of MNOs and devices. To investigate the impact of
MNOs, we evaluated the identification accuracy by using train
and test sets, whose traces were recorded for different MNOs.
The performance of all six train/test combinations showed an
accuracy of 0.88–0.95, meaning that the performance of the

Table 5: Identification accuracy for various sniffing times

Sniffing Time (s) Epoch 15 20 40 60 90 120

YouTube (MNO A) 50 0.78 0.87 0.95 0.96 0.97 0.98
Amazon 500 0.28 0.51 0.87 0.92 0.93 0.95

Sniffing Time (s) Epoch 40 60 120 200 400 800

Netflix 50 0.24 0.37 0.46 0.57 0.75 0.87

attack is independent of the MNOs. To confirm the impact of
devices and app versions, we compared the captured traces of
the same video title streamed by two devices and three app
versions in dataset construction (§5.1). We did not observe
any significant changes due to device/software differences.
Impact of class sizes. As the proposed attack leverages ma-
chine learning techniques for video identification, it could
lead to a trade-off between the number of video titles in the
target list and the identification accuracy. To investigate the
impact of a class size, we expanded the dataset to include 300
video titles. Specifically, we collected 10,069 traces of the
top 300 music videos on YouTube in 1080p using MNO A;
this consists of 3,645 traces from the YouTube100 dataset, and
6,424 traces from the YouTube200 dataset.

Tab. 4 shows the identification accuracy across the datasets
of class sizes ranging from 50 to 300. Considering that the
videos contain similar content (i.e., music videos), the perfor-
mance loss in accuracy is relatively small (1.6 %), demon-
strating that the attack is scalable.
Impact of changing RNTIs. We investigated the degree to
which changing RNTIs contributes to reducing the video
identification accuracy. For this, we measured the accuracy of
our classifier while varying the sniffing duration of LTE traffic.
Unless the adversary handles changing RNTIs, they only have
a short time window to sniff the victim’s radio signals before
the victim’s RNTI is changed. By contrast, if the adversary
tracks the RNTIs, they can compute a non-fragmented series
of traffic volumes for a longer time window.

For evaluation, we trained and tested the classifiers with
the first t time series of traffic volumes, where t represents the
sniffing time. We varied t from 15 to 120 s for the YouTube100

and Amazon datasets, and from 40 to 800 s for the Netflix

dataset, considering the different OFF periods of each service.
Tab. 5 shows the identification accuracy depending on the

sniffing time. In the YouTube100 dataset, we observed that the
accuracy degraded between 3% and 8% when the sniffing
time spanned less than 40 s. For example, the accuracy of
the classifier for MNO A dropped from 0.946 to 0.782 when
the sniffing time was reduced from 40 s to 15 s. Interest-
ingly, sniffing for a single minute was sufficient to achieve
a robust accuracy of over 0.958. As the RNTIs of our UEs
did not change within the first 2 min of all YouTube traces,
the adversary was able to achieve high accuracy even with
a short period of observed traffic before the victim’s RNTI
was changed. We made a similar observation regarding the
Amazon dataset. In all Amazon traces, the UE’s RNTI did not
change because the OFF period did not last over 4 s, which is
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Figure 7: Identification accuracy on the YouTubeCA dataset.

less than the duration (10 s) of the MNOs for releasing radio
connections due to no traffic.

In contrast, in the Netflix dataset, the classifier required a
monitoring window of at least 800 s to achieve an accuracy
of 0.866. During this 800 s window, we observed that RNTIs
were changed 6–37 times, which makes it essential to track
the RNTIs. In particular, 41% of traces in the dataset show
that the UE’s RNTI changed within the first 45 s. On average,
the first RNTI change occurred in 69.2 s. This implies that an
adversary without considering changing RNTIs can achieve
an accuracy of below 0.251 when using trace data in which the
RNTI is changed within the first 45 s. These results mean that
tracking RNTIs is crucial for the successful identification of
videos served with a long-lasting OFF time in LTE networks.

We further investigated the root causes of the performance
difference for a short time window between YouTube and Net-
flix. We observed that a Netflix client fetched video chunks
every 40 s and produced only two ON-OFF periods within the
first minute. Meanwhile, in the YouTube dataset, we observed
10–11 ON-OFF periods within the first 20 s. Note that our
classifier learns the series of traffic volume changes that these
ON-OFF periods generate. Therefore, the more ON-OFF pe-
riods there are, the more distinctive the fingerprint becomes.
Inevitably, the attack for Netflix videos demands a longer
sniffing time to have more ON-OFF periods.
Comparison to prior work. We achieved comparable perfor-
mance to prior work [44] on the YouTube dataset in a wired
network while we used target video titles having over five
times of the previous work. However, the performance on the
Netflix dataset was relatively low. To determine the cause,
we analyzed the working logic of Netflix clients in wired
and LTE networks. From the analysis, we observed that the
client in wired networks (i.e., Chrome) periodically fetches
video chunks every 10 s. This fetching period is much shorter
than that of the mobile application (40 s). This means that
the number of ON-OFF periods monitored in LTE networks
is much lower than that in wired networks during the same
monitoring time. Consequently, the classifier is fed only a few
occurrences of ON-OFF periods, leading to a lower chance
of extracting distinctive streaming patterns.

5.3 Handling Carrier Aggregation
We evaluate how much handling CA contributes to improving
the efficacy of the proposed attack.
Impact of CA. To demonstrate the impact of CA on the

identification accuracy, we ran experiments on the YouTubeCA

dataset collected using a CA-enabled UE. This dataset con-
sists of 1,859, 1,777, and 3,747 traces in MNO A for the
three video qualities (480p, 720p, and 1080p), respectively.
For each streaming resolution, we merged the traces in the
YouTube100 dataset and trained our CNN classifier. Then, we
evaluated the classifier on the YouTubeCA dataset.

Fig. 7a shows the identification accuracy for the three video
qualities when the adversary monitors the PCell without con-
sidering CA. When the UE received videos of 480p and 720p
resolutions, the accuracy was 0.898 and 0.777, respectively.
For both resolutions, we observed that the differences between
the actual volume of streamed video chunks and the estimated
volume calculated based on the DCIs are less than 14.4%
and 15.7%, respectively. Particularly, when the UE receives
high-quality videos (1080p) through CA, the adversary who
only listens to the PCell loses 26.1% of the data volume on
average. This results in a lower accuracy of 0.686. These
results demonstrate that handling CA becomes essential to
boost the accuracy in classifying higher resolution videos.
Improvement through our approach. We compared the
identification accuracy of two attacks: 1) monitoring only the
PCell without considering CA and 2) monitoring the PCell
with CA estimation (§4.3). As shown in Fig. 7b, the proposed
approach of estimating the lost traffic volume with one SDR
improved the accuracy by 29.4% on the 1080p dataset (0.980).

In practice, the decision to use CA for data transmission
is affected by network conditions as well as by the amount
of transmitted data. To demonstrate the effectiveness of our
solutions for handling CA, we additionally constructed two
datasets from the YouTubeCA dataset, reflecting a congested net-
work environment. Each dataset consists of the traces moni-
tored when the usage of allocated downlink Physical Resource
Block (PRB) is above 50% and 70% in the 1080p resolution
dataset, wherein a higher value represents a higher load of the
cell. The underlying assumption here is that CA is likely to
be activated when the network is already congested.

Fig. 7b shows the identification accuracy of an adversary
considering CA. The results for the dataset having a PRB
usage of over 70% show an accuracy of 0.970. In contrast,
the accuracy without considering CA for the same dataset
drops to 0.437. These results demonstrate that handling CA
with packet volume estimation becomes even more crucial for
successful video identification attacks as the underlying LTE
network becomes congested. Note that the estimated volume
using the proposed approach differs by only 1% from the
actual volume measured at the application layer, showing that
our method successfully estimated a missing traffic volume.

5.4 Impact of Network Environment
We investigate the impact of network congestion on identifi-
cation performance. For this, we evaluate our CNN classifier
with the intuitive classifier, dynamic time warping (DTW), on
the YouTube100 dataset. This is particularly because the DTW
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Figure 9: Identification accuracy of two classifiers depending
on PRB usage (1080p video dataset in MNO B)

classifier directly reflects and observes streaming traffic. After
a comparative analysis of the failure cases from the DTW and
CNN classifiers, we observed two patterns: the CNN classi-
fier effectively handles a lagged traffic shape of the network
environment, and it shows robustness in a congested network
environment compared to that of the DTW classifier.

First, we observed that the network environment signifi-
cantly affects the shape of monitored traffic and eventually
reduces the performance of the classifier. Fig. 8 shows three
traces of the same YouTube video (Despacito) captured in
various network environments with different PRB ratios (40%,
63%, and 80%). When the network becomes congested, the
monitored traffic shape lagged. For example, the traffic trans-
mission time for a chunk at an 80% PRB ratio required 3.4
times the transmission time for that at 40% (Fig. 8). Such
different traffic shapes for one video affect the performance
of classifiers. By design, DTW is not robust to accommodate
different shapes of time-series traffic from one source because
it computes the traffic similarity by direct comparison. That
is, a DTW classifier trained on a 40% PRB trace only excels
at classifying data traces at 40% PRB. On the other hand,
the CNN classifier has a convolution filter, which inherently
accounts for traffic chunks lagged over a long time window.

Second, to evaluate the robustness of the classifiers across
network environments, we counted the number of failures
in the identification of the two classifiers at various PRB ra-
tios (Fig. 9) using the 1080p traces collected for MNO B in
the YouTube100 dataset. These traces can effectively show the
congested network environment as MNO B has the largest
number of users among the three MNOs. As expected, the
DTW classifier was highly affected by the network environ-
ment, showing an accuracy lower than 0.6 when the PRB ratio
was over 60%. On the other hand, our CNN classifier has 7.6
and 5.8 times fewer failure cases for traces with 61–70% and
71–80% PRB ratios, respectively. Thus, we confirmed that the
CNN classifier is robust to the cellular network environment,
where congestion affecting a traffic shape frequently occurs.
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Figure 10: Identification accuracy for datasets in Tab. 2 (left)
and precision/recall for YouTube known traces (right)

5.5 Open-world Classification
In practice, the downlink traffic of a victim UE includes a
mixture of multiple videos from different service providers as
well as non-video data. Moreover, the victim may not watch
a video in the pre-selected list. Considering these practical
scenarios, we examine whether the proposed attack is able to
detect videos from unseen traffic of various data types.
Identifying the video service type. We demonstrate the per-
formance of the video service type classifier (i.e., decision
tree classifier) on the three major services. For a given trace,
the adversary has to know the video service type for handling
CA and properly feeding it to the pre-built video title classi-
fier. We trained a classifier on each of the three datasets (i.e.,
AmazonDT, NetflixDT, and YouTube200) and evaluated the classi-
fier on the datasets that do not have overlapping video titles;
YouTube100, Netflix, and Amazon. This implies that all test traces
are unseen to the classifier. The performance of each test set
shows an accuracy of 0.980–0.991, meaning that each service
provider employs a distinguishable HAS logic.

We further analyzed the misclassified cases. For YouTube,
we observed that most incorrect cases were misclassified as
Amazon (0.013) rather than Netflix (0.004). This is because
the traces of YouTube and those of Amazon have more fea-
tures with similar values (e.g., number of chunks or average
ON/OFF period) than those of Netflix.
Identifying the video title. We next evaluated the video title
classifier (i.e., the CNN classifier) with unseen traffic. We
prepared three types of traces recorded by 1) streaming video
titles that were not in the target list but were provided by
the same content provider (YouTube200), 2) streaming videos
from other content providers (Netflix), and 3) web-browsing
(Web) and teleconferencing (Teleconf) to reflect non-video type
traffic (Tab. 2). For the web browsing traces (Web), we ran-
domly visited one of the Alexa top 50 websites [29] every
3 s for 120 s, to generate a similar traffic shape (i.e., the
ON-OFF pattern) as video traffic. Finally, we constructed the
Teleconf dataset by using Google Meet and letting conferences
last 2 min.

We considered the 100 most viewed YouTube videos as the
known video list and trained a classifier using the 1080p video
traces of the YouTube100 dataset used in §5.3. After building the
classifier, we defined an additional “unseen” class, to which
unseen traffic was classified. We established classification
criteria as follows: if the maximum value in the softmax (i.e.,



the classifier’s output) is below a specified threshold, a given
trace in query belongs to the “unseen” class, regardless of the
video title. Here, we followed the same assumption regarding
the open-world setting used in previous studies [44, 46].

For practical deployment, the adversary may need to set a
confidence threshold. In general, the classifier successfully
filtered out the unseen traces as the confidence threshold value
increased; however, the known traces were easily misidenti-
fied as unseen at a high confidence threshold.

Fig. 10 shows the identification accuracy across various
confidence thresholds for four different types of traces along
with the known video traces (dotted line). In particular, we
observed that the classifier performed differently according
to the type of unseen traces. The identification accuracy of
each dataset reached 0.9 at the following confidence threshold;
0.91 (Netflix), 0.97 (YouTube200), 0.4 (Teleconf), and 0.76 (Web).
Meanwhile, the classifier achieved an accuracy of over 0.9 at
any confidence thresholds for the known YouTube traces.

Among the traffic types, the classifier outperformed for the
non-video type (Teleconf & Web) and video streaming traffic
from other content providers (Netflix). To explain this out-
performance, we investigated the recorded traffic for each type
and confirmed that each unseen traffic type had a distinctive
shape. Since video traffic has a distinctive ON-OFF pattern
distinguishing it from that of other service types, we observed
that the classifier successfully identified the non-video type
traffic (Teleconf & Web). For the Netflix dataset, the duration
of ON-OFF periods differs from that of the YouTube traces,
resulting in a low confidence threshold value to achieve a
high identification accuracy. For the unseen traffic from the
same content provider (YouTube200), although the classifier
requires a high confidence value to achieve a high accuracy,
the adversary benefits from a high precision.

6 End-to-End Attack Scenario
We demonstrate an end-to-end attack that chains the proposed
video identification attack with an emergency alerting attack
to disclose the physical locations of victims. In particular,
we introduce a scenario in which an adversary (e.g., a law
enforcement agency in an oppressive regime) forces the UEs
of victims (e.g., citizens) that have streamed a particular (e.g.,
anti-government) video to make a loud tone, enabling the
adversary who resides near the UEs physically to possibly
locate them.

The key idea is that the adversary selectively forces only
a target UE to move to their fake base station (FBS) without
disrupting other UEs connected to a legitimate eNB. Then,
the FBS sends presidential alerts to the target UE.

6.1 Attack Overview
Fig. 11 shows the overall procedure, which we detail below:
(1) Setting up an FBS in unused radio frequency: The ad-
versary first sets up an FBS in a radio frequency not in use by
MNOs, preventing every UE connected to a legitimate base
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Figure 11: End-to-End attack procedure

station from moving to the FBS. The adversary simply avoids
all the frequencies dedicated to MNOs, which are publicly
available. All UEs, by design [6], connect to i) the radio fre-
quency to which it is connected in prior, or ii) one in the list
of commercially used frequencies. As the FBS operates in
an unused radio frequency, all UEs ignore this FBS and do
not connect to it. Therefore, to force the target UEs to con-
nect to their FBS, the adversary is required to identify them
beforehand.
(2) Identifying victims: The adversary approaches the legit-
imate base station and tracks down UEs via the video iden-
tification attack (§4). Note that before conducting the video
identification attack, the adversary is not assumed to have
any prior knowledge of the target UEs. Given traffic collected
from a cell and a target video list, the adversary conducts the
attack and consequently obtains a tuple (a TMSI, the chain
of RNTIs assigned to the TMSI, and a video title) for each
UE. With this information, the adversary can pinpoint a set
of target UEs.
(3) Redirecting victims to FBS: The adversary now forces
each of the identified UEs to connect to their FBS by sending
a crafted RRCConnectionRelease message. Specifically, the ad-
versary injects the crafted message into the communication
between the target UE and the legitimate base station to which
the target UE is currently connected. Therefore, the target UE
is not yet connected to the FBS when it receives the crafted
message. Recall that a UE receives data only if its own RNTI
is marked in DCIs (§2.1). The adversary can selectively inject
the message to the target UE using their RNTIs obtained in
the prior step without affecting the connections of other UEs
to the legitimate base station.

Upon receiving the message, the target UE immediately
releases the existing connection to the legitimate base sta-
tion. Furthermore, by forging the redirectedCarrierInfo and
idleModeMobilityControlInfo fields in the crafted message,
which specify the next frequency to connect, the adversary
can redirect the target UE to their FBS. To successfully inject
the crafted message, the adversary is required to address the
two challenges that we describe in §6.2.
(4) Sending fake presidential alerts: Finally, the adversary
sends fake presidential alerts to the target UEs redirected to
their FBS, as presented in previous studies [24,33]. By design,
a UE, in the majority of the cases, sounds a loud alarm for



each presidential alert, thereby revealing its physical presence
at a venue. For example, in a square or large hall, by arranging
the co-workers around the space, the adversary can possibly
identify the victims with the alarm.

6.2 Details of Redirecting Target UEs
When conducting the end-to-end attack, all UEs in a target
cell are connected to a legitimate base station. To redirect
only the target UEs without disturbing other UEs (step (3)
in §6.1), the adversary has to address two challenges. The
adversary has to 1) inject a crafted message for each target
UE through the radio connection to the legitimate base station
and 2) enforce the target UE to accept the crafted message.
Injecting a crafted message. We leveraged the signal over-
shadowing attack [55], which is designed to inject a broadcast
message. Particularly, we extended it to support injecting a
unicast message, such as an RRCConnectionRelease message.
Although this seems straightforward, it requires additional
considerations that involve a) locating the message on the
resource grid properly, and b) encoding the message with
the proper eNB’s configurations (e.g., transmission mode and
generating DCI). By addressing these issues, we succeeded
in injecting a crafted RRCConnectionRelease message over the
air to a specific UE.
Enforcing the target UE to accept the crafted message.
We propose to inject an RRCConnectionRelease message during
the reconnection procedure of a target UE. When a UE con-
nects to an eNB, its security context for secure data transmis-
sion is also established. Having the security context, a UE, by
design [9], is enforced to discard plain RRCConnectionRelease

messages. Here lies the problem that the adversary can in-
ject only plain messages due to the absence of the victim’s
cryptographic keys (§3). For this, we propose to exploit the
reconnection procedure that accompanies the reestablishment
of the security context. By tracking the victim’s connection
status, the adversary can detect the moment when the secu-
rity context is released. Thus, the adversary injects a crafted
RRCConnectionRelease message before a new security context
is established.

Meanwhile, if the target UE has an implementation flaw
that it accepts plain RRCConnectionRelease messages although
having a security context, the attack becomes more efficient
and effective. Note that the 3GPP specification [9] explicitly
states that the UE shall discard plain RRCConnectionRelease

messages if it has a security context. By analyzing several
types of UEs, we indeed found such flaws in two types of
Samsung Galaxy S4/S5 devices equipped with Qualcomm
baseband chipsets. We reported the vulnerability to Qual-
comm and Samsung and received confirmation from both
vendors. This means that UEs equipped with such vulnerable
chipsets accept malicious messages. Thus, the adversary can
immediately conduct the attack.
Differences to previous studies. Other studies [24, 33] have
also presented attacks that send presidential alerts. The attacks

Table 6: Overhead of the proposed mitigation

Baseband Qualcomm Exynos MediaTek
UE Galaxy S8 Galaxy S20 Galaxy S8 Galaxy S10 LG X6

Avg. (ms) 35.70 30.20 8.19 7.38 20.2

involving presidential alerts generally consist of two phases:
1) making UEs connect to an FBS and 2) sending presidential
alerts to all UEs connected to the FBS. Our attack differs
in the first phase compared to the previous ones [24, 33]. It
selectively moves only target UEs to an FBS whereas previous
studies enforce all UEs in the target cell to move to an FBS
by increasing the FBS’s signal strength.
Verifying the feasibility of the attack. We implemented an
FBS by using an open-source LTE protocol stack [47]. It
consists of two components: a) one that broadcasts fake presi-
dential alerts, and b) the other that injects a crafted message.
The components ran on USRP B210 [50] and X310 [51],
respectively. Using the vulnerability described above, we suc-
ceeded in conducting the attack [1]. We further discuss the
practical requirements of the attack in App. E.

7 Mitigations
In this section, we first explore lightweight mitigation, which
requires no changes to UEs and the 3GPP specification. We
then discuss viable alternatives and their requirements.
Light-weight mitigation to MNOs. One mitigation is to
make the adversary unable to link observed RNTIs to the
TMSI (§4.2), thus rendering them incapable of capturing
the complete traffic volume. For this, we propose a small
modification to the operational sequence to reassign RNTIs
as confidential. When establishing a new radio connection
including its security context, a UE would use the first as-
signed RNTI, which could be tracked by the adversary. At
this point, the proposed mitigation is to make an eNB issue
a new RNTI via an encrypted RRCConnectionReconfiguration

message after establishing a security context. The proposed
approach induces a UE to use a new RNTI by handover to
the same cell. This approach requires additional transmis-
sion of RRCConnectionReconfiguration/ReconfigurationComplete
messages and the radio connection reestablishment procedure.

We implemented this mitigation on an eNB that runs on
USRP B210 by modifying an open-source LTE network [47].
We only added fewer than 70 LoC in the srsENB code, which
is mainly related to the logic of re-assigning RNTIs. We
used five UEs from three different baseband manufacturers
and confirmed that the implemented mitigation seamlessly
worked without any changes to the UEs.
Limitations. The proposed mitigation is easily applicable
to commercial networks but has limitations. It imposes per-
formance overhead. We measured the time gap between the
receipt of an RRCConnectionReconfiguration message and the
establishment of a radio connection with the new RNTI.4

4RRCConnectionReconfiguration message containing newUE-
Identity was sent after an AttachComplete message. We measured time on



This gap represents the additional processing time introduced
by the mitigation. Tab. 6 shows that the average overhead of
30 trials is 7.38–35.7 ms across five different UEs. These over-
heads are approximately 4–21% of the average latency of LTE
service establishment (168.7 ms) for major US operators [35].

Another limitation is that the mitigation only prevents the
adversary from tracking RNTIs. This partially mitigates the
threats of video identification because it does not eliminate
distinguishable traffic patterns of streaming videos.
Viable yet impractical mitigation. There have been various
mitigations to remove the root cause of the video identifica-
tion attack: 1) eliminating distinguishable traffic patterns for
each video; and 2) encrypting DCI. However, those are hard
to be adopted in cellular networks because of their limited
practicality. They require significant changes in terms of both
the implementation and design of video services and cellular
networks.

To eliminate distinguishable traffic patterns, prior works
have introduced several approaches: 1) making the bitrate
constant with a rate control [44]; 2) adding a noise or padding
to each streaming chunk [20, 60]; and 3) varying the size of
each chunk randomly [44]. However, increasing the size of
a video chunk may undermine the video quality as it would
require a larger number of chunks to play the same video.
Furthermore, users tend to be sensitive to the usage of mobile
data, which affects their payments. For instance, Zhang et
al. [60] proposed adding noises with a volume more than
twice that of an original video; this policy would deplete the
users’ monthly data allowance three times faster.

Another mitigation is to encrypt DCIs. Considering that
the proposed attack exploits a time series of traffic volumes
by decoding DCIs, encrypting DCIs eliminates the source of
exploitation. However, this approach would cause significant
overhead to both a cell tower and a UE, as DCIs are sent via
radio signals every 1 ms, already entailing a large number of
decoding and encoding processes. In addition, introducing
encryption to a non-secure protocol layer requires additional
considerations on the design choice of key encryption and
management (including the overhead), thus involving disrup-
tive changes for the LTE protocol design.
Discussion on mitigations. The fundamental cause enabling
this privacy-threatening attack is unencrypted information
broadcast over the air. However, encrypting such informa-
tion entails inevitable performance overhead, thus provoking
mundane discussions of the trade-off between privacy and
performance. We thus encourage ground-breaking research
that eliminates information-leaking public channels with neg-
ligible overhead for the next generation of cellular networks.

8 Discussion
Handling the moving target. One possible limitation of this
work is to link the identity of the victim who moves to differ-

the UE side from the reception of the RRCConnectionReconfiguration
message to the reception of the RandomAccessResponse message.

ent eNBs. Roger et al. revealed that the identifier of the victim
(i.e., RNTI) could be tracked when the UE moves to another
eNB [26] because the RRCConnectionReconfiguration message
is not encrypted and RNTI is not random. However, according
to our measurement, the RNTI values are changed to random
values through encrypted messages whenever the UE moves
to another cell. Nevertheless, due to the unique working logic
of HAS, there is still a chance to track the user. As we pointed
out in §3.1, TMSI-RNTI mapping is possible when the radio
connection is reestablished after the OFF periods. Thus, the
adversary is able to sniff the victim’s traffic continuously. Oth-
erwise, the adversary needs to handle the partially monitored
traffic. For this, it may involve 1) augmenting the training
data with LTE traces from different parts of the video, and 2)
making the classifier shift-invariant.
Identifying the traffic containing ads. Our work provides
a way to measure the complete LTE traffic volume, but it
still has room for improvement in identifying the traffic with
ads. Note that the observed video traffic becomes distorted
when the ads are inserted. For example, due to ad traffic,
fetching the remaining chunks of a target video is delayed.
Thus, the collected traffic becomes different from the shape of
its original traffic without video ads. One plausible solution
is to train the classifier along with traces in which video
ads are redacted. Therefore, a query for this classifier should
become an ad-redacted video as well. However, the starting
time and duration of ads are not deterministic, and these ads
vary by users [56, 57]. Thus, for each classifier query, the
adversary should identify time windows of playing ads and
redact traffic volumes in these windows for accurate video
identification. One alternative is to design a shift-invariant
classifier. However, designing such a classifier is known to
be challenging [59], and we believe that designing a shift-
invariant classifier is orthogonal to our attack. We leave these
additional challenges as future work.
Targeted attacks. One may extend our attack to target a spe-
cific user who is streaming a video of the adversary’s interest.
This targeted attack assumes an adversary who has the vic-
tim’s soft-identifier, such as a phone number or social media
accounts. This adversary requires addressing the following
challenges for successful video identification: they should
1) localize the victim’s physical cell location and approach
the cell coverage, 2) determine the victim’s MNO, and 3)
obtain the victim’s TMSI. The adversary may have several
options to achieve these conditions. Unfortunately, the first
challenge is known to be challenging [22, 31, 45]; thus, this
can be a promising future work. For the second challenge,
the adversary can set up multiple downlink sniffers for all
MNOs in their coverage; in most countries, there are 2-4
MNOs. Besides, scaling up the attack does not require a high
cost considering an SDR cost. For the third challenge, the
adversary can leverage several techniques that associate the
victim’s soft-identifier with the TMSI [22,25,31,45]. One rep-
resentative attack is a silent paging that exploits the relatively



unchanging nature of TMSI. The adversary makes multiple
calls to the victim and monitors a repeatedly appearing TMSI
in paging messages [22, 31, 45]. ToRPEDO [25] also pro-
posed a way to retrieve the victim’s TMSI by exploiting the
deterministic paging location.

9 Related Work
Video identification attack. There have been several stud-
ies with the same goal of exploiting the VBR-encoded con-
tent in other types of networks. Most studies on wired net-
works [20, 21, 38, 44, 52] or 802.11 [43] assumed a strong
attack model that the adversary has the ability to access the
victim’s network infrastructure or device. In contrast, the ad-
versary in our threat model only harnesses broadcast channels
over the air without any direct access, as presented in wire-
less networks [34]. We concretized practical challenges and
presented a new approach to a video identification attack in
cellular networks. The prior study on 802.11 [43] also as-
sumed a strong adversary; the authors collected data packets
in a pre-connected desktop in the same subnet of the victim,
without considering actual radio signals broadcast over the air.
Traffic analysis in cellular networks. In cellular networks,
although a few previous studies [29, 41] have presented web-
site identification attacks, no one has presented a video identi-
fication attack. Compared to the website identification attacks,
video identification attacks in cellular networks differs in two
aspects: (1) video streaming often carries a large volume of
video chunks, which triggers CA; (2) the streaming policy
of a HAS can cause a long OFF period, which triggers the
victim’s RNTI to be changed. These two characteristics even-
tually raise practical challenges, as discussed in §3.1.

10 Conclusion
This work is the first empirical study on a video identifica-
tion attack in commercial LTE networks. We show that an
adversary can pinpoint victims watching target videos of their
interest without any access to their UEs or the LTE infras-
tructure. By leveraging the proposed methods that exploit the
information embedded in broadcast radio signals, our exten-
sive evaluation of commercial LTE traffic emphasizes that the
adversary with a single SDR can achieve high accuracy in
video identification. We conclude by proposing a lightweight
countermeasure readily deployable without hardware or spec-
ification changes to MNOs and LTE networks.
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Appendix
A Experimental Setup and Ethics
Network environment. To collect the video traces for each
MNO, we connect a downlink sniffer and UE, which reside in
the same building, to the same cell. The distance between the
sniffer and the cell for MNO A, B, and C is 380m, 170m, and
300m, respectively. For all MNOs, we set the UE to use the
PCell covering a 10 MHz bandwidth. When CA is activated,
the UE connects to the two SCells that cover the 10 MHz and
20 MHz bandwidth, respectively. When collecting these CA-
activated traces, we use MNO A that exhibits a high signal to
noise ratio (over 23 dB) among the three MNOs at our site.1

Configuration of the UE. We used a legitimate applica-
tion from each video streaming service provider as follows:
Netflix (7.47.0 and 7.48.0), YouTube (15.05.54, 15.07.52,
and 14.47.50), Amazon Prime (3.0.281), and Google Meet
(43.5.3213). Particularly for YouTube traces (i.e., YouTube100
& YouTube200), we used a premium account; thus, the traces
do not contain any ads. During the data collection procedure,
we did not execute other applications, meaning that one video
application was displayed on top of the test UE.
Ethics. We collected data traces from the operating LTE net-
works. We honored the privacy of other users in the same eNB
in which our sniffer locates. We analyzed information only
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Table 7: DTW and SVM classifier result on YouTube dataset

DTW SVM
MNO 480p 720p 1080p 480p 720p 1080p

A 0.860 0.791 0.798 0.877 0.865 0.951
B 0.815 0.897 0.666 0.827 0.858 0.890
C 0.950 0.899 0.767 0.905 0.898 0.894

related to our testing UEs and computed the classifier only
with traffic from these UEs. We did not keep the remaining
information in the output from the downlink sniffer.

B Comparative Analysis of Other Classifier
We implemented two additional classifiers, DTW [14] and
SVM [48], which were used in previous studies [20, 21] to
evaluate their attacks. We performed five-fold cross-validation
on the YouTube100 dataset in Tab. 2, with the same experimen-
tal setup. That is, the classifiers received the same input as
our CNN classifier. Both classifiers exhibited relatively low
performance compared to ours (Tab. 7). The DTW classifier
yielded an accuracy of 0.666–0.950 across all MNOs and
video resolutions. The SVM classifier achieved a comparable
accuracy of 0.827–0.951 and showed a higher accuracy than
that of the DTW classifier on the 1080p dataset. As we dis-
cussed in §5.4, the classifier using DTW is highly affected by
network congestion and the quality of streamed video chunks.
This is mainly because the traffic shape is likely to lag when
the client receives a high-resolution video chunk with a larger
volume than that of the low-resolution chunk.

C Characteristics of Video Service Providers
The HAS working logic of the tested video streaming service
providers differs in three key factors: the size of an initial
playback buffer, the duration of a chunk, and the algorithm to
fetch a chunk. Based on these factors, the video traffic also
shows a distinctive pattern. As Fig. 12 illustrates, Amazon
shows a long "First ON period", which implies that it uses a
large initial buffer. In contrast, YouTube has a short "First ON
period". In addition, they show the same duration of the OFF
period, which implies that they have the same chunk duration.

D Extension to 5G
We demonstrated that our video identification attack is fea-
sible in LTE networks. Meanwhile, extending the attack to
upcoming 5G networks requires the following challenges to
be addressed: multiple 5G deployment options, sniffing 5G
downlink messages, large computation resources, and SDRs
that support 5G radio signals.

Our attack may not work in 5G-NSA networks. In 5G-NSA,
to use legacy LTE core networks, each LTE radio connection
and its security context must be established first. Then, an
eNB assigns a new 5G-RNTI and establishes a new 5G con-
nection [10]. As the 5G-RNTI is sent in an encrypted message,
an adversary cannot map the victim’s TMSI to the RNTIs.

Conversely, the root cause of the attack remains in 5G-SA
networks. Although the 5G specification introduces new se-
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Figure 12: Video traffic volumes for YouTube and Amazon

curity features, TMSIs are not affected [3]. Furthermore, a
5G-RNTI is exposed in plaintext; therefore, an adversary is
still able to link the victim’s RNTI to the TMSI and distin-
guish the victim’s traffic. As DCIs broadcast over the air
remain unencrypted, the proposed attack is still feasible.

Nevertheless, there still exist several practical challenges.
First, there is currently no downlink sniffing tool for 5G net-
works to decode data traffic on either 5G-NSA or 5G-SA
networks. Second, there is no existing commercial SDR that
is capable of sniffing 5G radio signals; existing commercial
SDRs only support up to sub-6 GHz. Furthermore, the wider
bandwidth of 5G networks increases the volume of traffic to
monitor on the PDCCH and PDSCH channels; thus, the adver-
sary has to leverage a higher computational power to capture
traffic. We believe that these challenges will be resolved soon
as the advancement of SDR technology [27, 53, 58] acceler-
ates, and downlink sniffing software is being developed.

E Requirements of End-to-End Attack
Our end-to-end attack shares two requirements with the orig-
inal signal injection attack [55]: 1) precise time/frequency
synchronization, and 2) 3 dB higher signal strength. First, the
adversary has to synchronize their FBS to a legitimate eNB,
to which a target UE is connected currently, in the time and
frequency domain. This is because the adversary has to over-
write a malicious signal over the target UE’s dedicated region
in the resource grid precisely. For a stable attack, the adver-
sary can use a high-precision clock, such as a GPS disciplined
oscillator. Second, the adversary has to transmit a malicious
signal with a 3 dB higher strength compared to the one from
the legitimate eNB. The required signal strength can be cal-

culated as follows: Pa = 10(
3+20∗log10(

Da
Db

)

10 ) ·100 W , where Da denotes
the distance between the victim and FBS, Db indicates the
distance between the victim and legitimated eNB, and 100 W
is the eNB’s signal strength; we assume a free-space path
loss.
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