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ABSTRACT
The proliferation of IoT devices has created risks of their abuse for
unauthorized sensing/monitoring of our daily activities. Especially,
the leakage of images taken by wireless spy cameras in sensitive
spaces, such as hotel rooms, Airbnb rentals, public restrooms, and
shower rooms, has become a serious privacy concern/threat. To
mitigate/address this pressing concern, we propose a Spy Camera
Finder (SCamF) that uses ubiquitous smartphones to detect and
locate wireless spy cameras by analyzing encrypted Wi-Fi network
traffic. Not only by characterizing the network traffic patterns of
wireless cameras but also by reconstructing encoded video frame
sizes from encrypted traffic, SCamF effectively determines the exis-
tence of wireless cameras on the Wi-Fi networks, and accurately
verifies whether the thus-detected cameras are indeed recording
users’ activities. SCamF also accurately locates spy cameras by
analyzing reconstructed video frame sizes. We have implemented
SCamF on Android smartphones and evaluated its performance on
a real testbed across 20 types of wireless cameras. Our experimental
results show SCamF to: (1) classify wireless cameras with an accu-
racy of 0.98; (2) detect spy cameras among the classified wireless
cameras with a true positive rate (TPR) of 0.97; (3) incur low false
positive rates (FPRs) of 0 and 0.031 for non-camera devices and
cameras not recording the users’ activities, respectively; (4) locate
spy cameras with centimeter-level distance errors.

CCS CONCEPTS
• Networks → Network privacy and anonymity; • Security
and privacy→Mobile and wireless security.
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1 INTRODUCTION
In recent years, camera-enabled devices (surveillance camera, baby
monitor, IP camera, etc.) have been widely deployed to facilitate
a variety of protection functions ranging from personal security
to public safety. For user convenience, most of these devices pro-
vide capabilities of streaming live videos from the camera to the
cloud via wireless networks. On the other hand, there have been
increasing incidents of streaming live videos of individuals’ activ-
ities in sensitive spaces like living rooms and hotels via wireless
spy cameras [6, 7, 39, 43] that are easy to deploy (without requiring
additional wiring) and provide Internet connection through per-
vasively available Wi-Fi access points (APs). These have created
a serious privacy threat and become a social problem. Our goal is
to detect a "spy camera" which (1) is Wi-Fi-based and placed in
the same space as victims who do not want to be spied on, and (2)
continuously records and streams victims’ activities.

Most commercialized spy camera detectors [34, 36, 38] such as RF
signal detectors and camera lens detectors are not easy to use and
suffer from poor detection accuracy [5]. Even worse, users should
carry separate dedicated-purpose devices. In order to overcome
these shortcomings, academic researchers have proposed the use of
smartphones to detect wireless spy cameras. One of the promising
approaches is to analyzeWi-Fi network traffic to detect spy cameras
recording and streaming users’ activities over Wi-Fi networks in
real time [4, 5, 18, 21, 37]. They use the characteristics of camera
traffic patterns and video encoding, where the data rate of encoded
video frames depends on the changes in a recorded video scene.
A user’s movement in front of a camera causes an increase in the
encoded video frame sizes, and prior work exploits this phenomenal
feature. Due to the network encryption, most of the prior work uses
only limited information in network packet levels such as packet
length, the number of packets, and data rate, to infer the presence
of a wireless camera streaming the user’s activity. However, in a
packet flow generated by a wireless camera, there are not only
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video packets but also other types of (such as control and audio)
packets. Sometimes, network congestion causes packet loss. These
conditions make the precise identification of wireless camera traffic
harder. Therefore, most existing spy camera detection schemes
[4, 5, 21] using a network packet level analysis suffer from accuracy
degradation depending on the network condition and the type
of camera, and also cannot localize spy cameras which requires
accurate detection of changes of video frame size according to the
user’s movement.

To overcome prior work’s limitations, we propose a fine-grained
analysis of encrypted traffic, SCamF, which uses both network
packet and video frame level information inferred from the en-
cryptedWi-Fi traffic. By using the nature of video encoding, SCamF
reconstructs and extracts the video frame sizes from the encrypted
Wi-Fi traffic being generated and transmitted by wireless spy cam-
eras. With this information, SCamF detects the presence of a wire-
less camera’s traffic and whether or not that traffic is transmitted
by a spy camera, and also determines the location of the spy camera
more accurately than other approaches that use network packet
level information only.

This paper makes the following main contributions:
• We propose a fine-grained encrypted traffic analysis approach,
SCamF, to extract encoded video frame-size information from
encryptedWi-Fi traffic by utilizing the characteristics of wireless
camera traffic patterns and Wi-Fi packet transmission patterns.
SCamF uses only limited information available in the Wi-Fi
MAC header.

• SCamF determines both the presence and the location of spy
cameras by analyzing video frame-size changes in accordance
with a user’s position and movement. It achieves high accuracy
with low false positives by analyzing the correlation between
video frame-size changes and smartphone sensor values which
represent the smartphone owner’s movement.

• We design and implement SCamF on commodity Android smart-
phones without requiring any dedicated device. By enabling the
Wi-Fi monitor mode with custom firmware, SCamF does not
have to be connected to the same Wi-Fi AP as spy cameras. In
addition, we demonstrate SCamF’s robustness through exten-
sive experiments on a real testbed across 20 types of wireless
cameras.
The remainder of this paper is structured as follows. §2 discusses

related work while §3 reviews our system and adversary model.
In §4, we describe how SCamF detects and localizes wireless spy
cameras. In §5, we describe our testbed and experimentally evaluate
the performance of SCamF for various types of wireless cameras.
Finally, we discuss deployment considerations and limitations in
§6, and conclude the paper in §7.

2 RELATEDWORK
Most existing spy camera detection products and solutions try to
detect intrinsic hardware features, such as lens’ light reflection [10],
electromagnetic wave [15], and RF signals (2.4/5 GHz radio fre-
quency) [36] emitted by wireless cameras. These approaches have
been widely used in specific products [34, 38] and commercialized
in applications [10, 15] on Android/iOS platforms. However, they
all suffer two practical limitations: i) poor detection accuracy due
to the interference from nearby electronic devices; ii) poor usability
due to the requirement of significant user’s effort during detection,
and poor information embedded in detection results.

Spy Camera

Private
Video

Streaming

Wi-Fi
AP

Sensitive Spaces (Airbnb, Hotel, etc.)

Illegal 
streaming 

service

Spy Camera
Installer/Operator

Financial
gain

SCamF
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Traffic 
Monitoring 

and Analysis

Figure 1: System Model.

To address these limitations, researchers proposed numerous
ways to detect spy cameras and also identify their location.

Spy camera detection: DeWiCam [4, 5] and Blink [21] statisti-
cally analyze network characteristics, such as traffic volume and
packet length distribution, to detect spy camera traffic on wireless
networks. In addition, for in-room camera inference which deter-
mines if the thus-found wireless camera is monitoring the room,
[4, 5, 21, 37] observe the changes in a packet flow according to the
user’s movement or changes in the lighting condition. Although
these techniques work well to detect the wireless camera traffic in a
limited environment, they do not generalize to a variety of wireless
cameras and practical environments in private spaces because they
only utilize indirect information from a network packet level anal-
ysis. Furthermore, most of them do not provide any mechanism to
identify the exact locations of spy cameras.

Spy camera localization: LAPD [32] localizes a spy camera
by utilizing ToF sensors that emit laser signals in a smartphone.
LAPD detects unique reflections from the camera lens to localize
a spy camera. However, it is inconvenient to use LAPD. In partic-
ular, users should scan only one suspicious object at a time at an
ideal distance to find a spy camera. SNOOPDOG [37] detects and
localizes Wi-Fi-based sensors, like wireless cameras, monitoring a
user’s activity. It determines the location of a wireless camera by
showing a laptop screen whose color continues to change in various
locations and directions. It gradually eliminates a fraction of a space
where no bitrate changes are detected. This trial-based approach
takes a long time to localize a camera since it needs 30 seconds for
every different location and direction, and requires the user to try
many times. MotionCompass [18] localizes a wireless camera with
a motion sensor by observing the network traffic. A wireless camera
equipped with a motion sensor generates a large amount of traffic
when it detects motion. It determines when a user enters or exits
a camera’s field of view by detecting the duration of high traffic
generation to localize the camera. However, MotionCompass only
deals with cameras that provide motion detection and cannot be
used if a camera covers the entire detection area, which is common
in small spaces. It does not handle a time delay, either. The distance
error increases when the user’s movement speed increases. It also
requires users to follow a precise route, which is inconvenient and
difficult for the users to do.

3 SYSTEM AND ADVERSARY MODEL
3.1 System Model
In the target scenario of wireless spy camera detection and localiza-
tion, there are four major entities as shown in Fig. 1: spy camera(s),
an installer/operator of spy camera(s), victims, and SCamF (Spy
Camera Finder). The installer/operator installs one or more hidden
cameras to spy on victims, collects and abuses the victims’ video
contents to get financial gain (e.g., online video streaming service)
[6, 7, 39, 43]. We assume that spy cameras are Wi-Fi-based and
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Figure 2: Overview of SCamF’s operation and function.

hidden due to their easy installation (no wiring is needed) and easy
Internet connection for collecting andmonitoring victims’ activities.
The spy camera installer can connect hidden cameras to pervasively
available Wi-Fi APs in sensitive spaces such as hotels, Airbnb with
only a single visit. Victims are individuals visiting hotels or Airbnb
for personal or business trips. A victim uses SCamF which col-
lects Wi-Fi packets around him/her via the Wi-Fi monitor mode
(Appendix §A) integrated with custom firmware on an Android
smartphone that supports multiple bandwidths (20/40/80 MHz) for
real-time packet capture across 2.4 & 5 GHz Wi-Fi channels. By
using the monitor mode, SCamF can collect Wi-Fi traffic without
connecting to the same Wi-Fi AP as the target spy cameras and
determines whether suspicious camera traffic exists or not. The
victim performs a simple motion to detect if the camera traffic is
indeed spying on his/her activities and to localize the spy camera.

3.2 Adversary Model
SCamF is designed under the following three assumptions of ad-
versaries.

A1. Unrecognizable camera: an adversary can hide a spy camera
anywhere in the space of interest. Due to the advances in
microelectronics technology, spy cameras have become small
enough to be invisible to human eyes, where the diameter of
the camera lens is less than 1𝑚𝑚 [7]. So, it is very difficult for
ordinary users to find a spy camera [30].

A2. Real-time streaming: the target devices are wireless spy cam-
eras which record and send/upload the victim’s video in real
time via a Wi-Fi network.

A3. Standard Video Codec: Wireless spy cameras commonly use
standard video codecs such as H.264 [33][40] and H.265 [25]
[23], and the codecs are usually integrated in a systems-on-
chip (SoC) in the cameras [4]. The adversaries are assumed to
use the integrated standard video codec without modifying it.

4 DESIGN OF SCAMF ALGORITHM
4.1 Design considerations
Any preventive solution must meet the following requirements and
constraints.

R1. Access to any portion of network packet data aside from
PHY/MAC headers is not guaranteed because of potential
network encryption. Therefore, the information required to

Sequence number

Time

n 1500 n+1 1500 n+2 1500 n+4 1500 n+5 300

Packet Length
Time interval (θ)

Figure 3: Reconstruction example from packet loss.

identify a wireless spy camera should be extracted solely from
the Wi-Fi MAC headers.

R2. Spy cameras are designed and manufactured by various ven-
dors [8, 13]. From our experiments, we found different con-
figurations and packet transmission patterns. Therefore, the
solution should identify the common characteristics of wireless
traffic from a variety of spy cameras.

R3. As the level of congestion on the target Wi-Fi network rises,
packet loss increases [29], thus impeding the ability to analyze
encrypted network traffic [9, 20, 22]. Therefore, the solution
should be robust to loss of wireless packets.

R4. It should be easy to use. It should not require any special tools
or prior actions, such as connecting to a Wi-Fi AP.

4.2 Workflow of SCamF
Fig. 2 illustrates SCamF’s pipelined workflow. It operates in 3 steps:
(a) Camera traffic classification (§4.4), (b) Spy camera detection
(§4.5), and (c) Spy camera localization (§4.6). To achieve high accu-
racy in each step, SCamF reconstructs and utilizes the video frame
sizes through network packet analysis from each encrypted Wi-Fi
traffic as described in §4.3.

(a) Camera traffic classification: SCamF first classifies camera
and non-camera traffic by using network packet level information
such as traffic volume, inter-packet time interval, fragmentation
unit (FU) rate, and frame per second (FPS).

(b) Spy camera detection: SCamF verifies if the thus-identified
devices are indeed spy cameras recording the user’s movements and
live streaming the recorded videos by calculating the correlation
between inter-frame size changes and the usermovement. To reduce
the false positive rate, SCamF utilizes smartphone sensors, such as
gyroscope to track the user’s movement pattern.

(c) Spy camera localization: SCamF localizes the detected spy
cameras by observing the video frame size pattern according to the
distance between a spy camera and a user.

4.3 Video frame size reconstruction
Due to the nature of video encoding and transmission, the wireless
camera’s traffic has unique characteristics. Most video compression
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Table 1: Traffic features for classification between camera traffic and non-camera traffic.

Traffic type Minimum traffic volume (kbps) Minimum FPS Average inter-packet time interval (msec) FU rate
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Camera 5.2 241.0 52.5 1 75.3 26.4 4.5 62.3 15.3 0.09 0.91 0.51
VOD 0 1585.8 175.4 0 2.33 0.2 0.3 41.2 2.1 0 1 0.95

Download 614.0 2043.9 1450.9 0 1 0.1 0.4 0.8 0.5 1 1 1
Picture 0 897.3 28.4 0 16.7 1.5 0.6 111.7 5.8 0 0.99 0.83
Game 0 4.0 1.3 0 12 4.3 8.1 73.0 50.2 0 0.62 0.05
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Figure 4: Inter-frame extraction procedures: ◦ indicates data removed in each procedure.

standards, such as H.264 [33][40], and H.265 [25][23], use inter-
frame prediction to achieve a high compression rate [31]. Inter-
frames such as P-/B-frames encode the residuals after frame pre-
diction using motion compensation referencing Intra-coded frame
(I-frame). Inter-frame sizes increase according to the movement in
a scene, which results in an increase of overall traffic. Most existing
techniques for detecting spy cameras with network traffic analysis
use network packet level information such as bitrates [4, 5, 21].
However, since a flow is mixed with video and other packets, and
packet loss is caused by network congestion [26, 35, 44], it is difficult
to accurately identify wireless camera transmission characteristics
with raw packet information or basic statistics of packets.

For more accurate detection, we use not only network packet
level information, but also information of the video frames being
transmitted over the network. We propose a novel method to recon-
struct video frame sizes from encrypted Wi-Fi packets and extract
the sizes of inter-frames. Even though the payloads of packets are
encrypted, SCamF reconstructs video frames by using a few pieces
of available information, such as packet directions, packet length,
and the sequence numbers obtained from the MAC headers.

Fragmentation unit size estimation:We separate the received
packets into packet flows with the same transmitter/receiver pair,
and infer the size of the fragmentation unit (FU) [42] of each packet
flow since it depends on the type of spy camera. To transmit video
frames over a Wi-Fi network, a frame greater than the FU size is
divided into multiple FU-sized packets and then transmitted. The
FU size can be found by analyzing the time interval between pack-
ets. Since wireless cameras transmit a video in frames, there is a
difference in the time interval between different frames and within
the same frame. Fig. 5 shows inter-packet intervals between con-
secutive packets within the same frame, and belonging to different
frames of 534 packets from a wireless camera. Error bars represent
95% confidence intervals. The inter-packet interval in the same
frame is much shorter than that in different frames. Thus, if the
sizes of two consecutive packets are the same and the inter-packet
interval is ≪ \ (≈ 10𝑚𝑠), we determine it as the FU size.

Packet loss recovery: After finding the FU size of a packet flow,
we can obtain the size of an original video frame by combining
consecutive FU-sized packets and a subsequent small size packet.
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Figure 5: Comparison of inter-packet intervals between
consecutive packets within the same frame, and belonging
to different frames.
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Inter-frame extraction result of SCamF.

Also, to compensate for the packet loss, we use sequence numbers
of packets and the inter-packet time interval. For example, suppose
we receive three FU-sized packets (FU size: 1500B) with sequence
numbers 𝑛, 𝑛 + 1, and 𝑛 + 2, followed by an FU-sized packet and a
300B packet with sequence number 𝑛 + 4 and 𝑛 + 5, respectively, as
shown in Fig. 3. If the time intervals before and after the lost packet
with sequence number 𝑛+3 satisfy≪ \ , then the packet is regarded
as belonging to the same frame as other packets. Therefore, packets
from 𝑛 to 𝑛 + 5 are reconstructed into a 7.8 KB frame.

Inter-frame extraction:After reconstructing video frame sizes,
we extract inter-frame sizes which reflect the change in the sur-
rounding environment. Our goal is not to make an accurate infer-
ence of all video frame sizes, but to effectively observe the inter-
frame size changes according to user movements. Therefore, in this
section, we remove video frame sizes that affect the observation of
the inter-frame size pattern. Fig. 4 summarizes the inter-frame ex-
traction procedures. First, SCamF removes outliers that have large
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differences in size from inter-frames as shown in Fig. 4a. In par-
ticular, since I-frames are much larger than inter-frames, SCamF
efficiently eliminates I-frames by removing outliers. In order to
remove the outliers, SCamF utilizes the interquartile range (IQR)
which is usually used to find outliers. The IQR is the first quartile,
𝑄1 subtracted from the third quartile, 𝑄3 (i.e., = 𝑄3 −𝑄1). Assum-
ing that the frame size follows a normal distribution, about 95% of
frame sizes fall within the range between𝑚𝑒𝑑𝑖𝑎𝑛 − 1.5 × 𝐼𝑄𝑅 and
𝑚𝑒𝑑𝑖𝑎𝑛+1.5×𝐼𝑄𝑅. SCamF eliminates outliers by removing the data
outside this range. Second, SCamF removes periodic frames (called
noise frames) of the same size among the reconstructed frames
(Fig. 4b), which are inferred to be non-video frames, such as audio
or control frames. Third, a set of frames that is not related to the
change of a scene remaining after the noise frame removal, is ob-
served by several spy cameras. Since the remaining noise frames
have a different pattern from video inter-frames, if there are re-
maining noise frames, the distribution of frame sizes appears to
follow a bimodal distribution [19], which is a combination of an
inter-frame set and the noise frame set. Fig. 4c shows the removal
of the remaining noise frames. The final result is depicted in Fig. 4d.
Compared to Fig. 4a, one can clearly observe the changes in data
according to the user’s movements after extracting the inter-frames
(the user’s movement periods are indicated by blue boxes). Fig. 6
shows that the size of the inter-frames reconstructed by SCamF and
that extracted from the actual video is very similar, corroborating
SCamF’s ability to extract inter-frames.

4.4 Camera traffic classification
Since there are a number of connected devices on Wi-Fi networks
[27], it is inefficient to investigate all connected devices nearby a
smartphone user to detect spy cameras. Therefore, SCamF first iden-
tifies the traffic with wireless camera characteristics via a network
traffic analysis. We call the traffic (SCamF’s detection target) camera
traffic and the other traffic non-camera traffic. From experimental
observations, we find four features: traffic volume, inter-packet
time interval, FU rate, and frame per second (FPS) that effectively
differentiate between the camera and non-camera traffic. We have
collected and analyzed a total of 1000 traffic traces from 20 cam-
eras and a total of 450 traffic traces from 9 non-cameras to observe
camera traffic features (detailed in §5.1).

Table 1 shows the measured values of the above four features
across different traffic types. First, the periodicity of camera traffic
ensures a certain amount of traffic volume all the time.Wemeasured
the traffic volumes per unit time (3 seconds in our measurements)
and in each traffic we found the minimum traffic volume over the
whole measurement time. We observe that camera traffic mostly
shows a higher minimum traffic volume than non-camera traffic
except for download traffic. Even though Video on demand (VOD)
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Figure 8: Changes of inter-frame size and sensor data
according to the user’s movements.

services have large traffic volumes, they exhibit fluctuations and
low traffic periods because of the buffering [3].

Second, like traffic volumes, most non-camera traffic traces show
lower minimum FPS than the camera traffic due to the irregular
packet transmission. SCamF calculates the average FPS per unit
time with the video frame size reconstruction method (§4.3) by
assuming each target traffic as camera traffic. When it comes to
download traffic, it constantly generates a high volume of traffic,
but the number of combined frames is small because the FU rate is
high in download traffic. This results in low FPS.

In addition, camera traffic shows different inter-packet intervals
from non-camera traffic. As shown in Fig. 5, the inter-packet in-
terval between different frames is much larger than that within
the same frame, which results in a high average inter-packet inter-
val. Table 1 shows that VOD, download, and picture traffic traces
have much smaller average inter-packet time intervals than camera
traffic traces.

The FU rate, which indicates the ratio of FU-sized packets to the
total received packets, is also useful for camera traffic classification.
As shown in Table 1, VOD and download services have high FU
rates since they usually generate burst traffic. Unlike burst traffic,
the FU rate is relatively low in camera traffic because it is composed
of not only video packets of various sizes but also other kinds of data
such as audio and control which have lower data rates. Therefore,
we can distinguish camera traffic by observing the FU rate per unit
time.

SCamF classifies traffic as camera traffic when it shows all of the
four feature characteristics. Discarding non-camera traffic in the
following steps greatly reduces the user effort and time overhead
to detect spy cameras.

4.5 Spy camera detection
In §4.4, we detect devices generating camera traffic, but not all of
them are spy cameras recording the users’ movements. For example,
wireless cameras outside of the user space can also generate camera
traffic. As depicted in Fig. 7, our goal is to detect spy cameras in the
same space as the user (TS1) and remove potential false positives
like two FP scenarios (FS1 and FS2). To verify the presence of spy
cameras within the detection area while minimizing false positives,
SCamF observes the change of inter-frame sizes according to the
user’s movement which is measured by smartphone sensors. If the
pattern of the user’s movement and the change in inter-frame size
coincide, the device is deemed to be recording and streaming the
user’s movement in real-time. The details of user movements are
described in Appendix §B.

We define two modes of user movement — active mode in which
the user takes movement, and stationary mode in which the user is
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standing still — and calculate the correlation between the change
of movement modes and the pattern of inter-frame size change.
We call this process FP prevention. First, SCamF determines the
stationary mode period and active mode period by measuring the
smartphone sensor values as shown in Fig. 8a (The active mode
periods are represented as blue boxes). The gyroscope sensor is used
to measure the user’s movement. After determining the movement
mode period sequence, SCamF verifies whether the inter-frame size
changes match with it. SCamF performs both a threshold-based
matching algorithm and a Kendall rank correlation test [1].

In the threshold-based algorithm, SCamF measures the number
of inter-frame of which size is higher than the threshold in each
period. If more than 10% of inter-frames’ sizes are higher than the
threshold𝑇ℎ𝐷 in an active mode period, SCamF regards the camera
traffic data matches with the active mode period. Likewise, if less
than 10% of inter-frames’ sizes are higher than the threshold in
a stationary mode period, SCamF regards the camera traffic data
match with the stationary mode period. If the camera traffic data
matches with all the sequences of the periods, SCamF concludes the
video traffic is recording the user. The threshold 𝑇ℎ𝐷 is set using
the stationary data. Since the user remains stationary during the
detection of camera traffic in §4.4, we reuse the data collected in §4.4
for the calculation of the threshold. Since the threshold is calculated
using the data collected from each device, SCamF provides adaptive
detection for each device.𝑇ℎ𝐷 is calculated as 𝑋 + 3.09𝜎 , indicating
that 99.9% of inter-frame sizes are less than 𝑇ℎ𝐷 when the inter-
frame size follows the normal distribution. 𝑋 is the average and 𝜎
is the standard deviation of the collected inter-frame sizes.

From observation of many types of wireless cameras, we have
found that in some cameras, the inter-frame sizes are not suffi-
ciently reduced in a short time after the period change from active
mode to stationary mode. The threshold-based detection fails to
detect such camera devices. To detect such cameras, we propose a
correlation test. We calculate the correlation between inter-frame
sizes and a mode indicating data sequence which has a sequence of
1’s during the active mode period and 0’s for the stationary mode
period. As described above, the mode period is determined by the
sensor data. Since Kendall rank correlation [1] is suitable for com-
paring two data with different scales, SCamF uses it to measure
the similarity between mode indicating data and inter-frame sizes.
The Kendall correlation coefficient ranges between -1.0 and 1.0, and
when the value is close to 1.0, the similarity between the two data is
high. Across 20 types of wireless cameras, we measure correlation
coefficients when cameras are in and outside the detection area. As
shown in Fig. 9, when a camera is streaming a user’s movement,
the mode indicating data and the frame size are highly correlated,
while external cameras show low correlation, thus corroborating
the suitability of our correlation test for detecting the user’s move-
ment.
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Figure 10: Inter-frame size pattern according to a user
movement which causes a distance change between a spy
camera and a user.

Camera

(a) Blind spot occurrence

Camera

(b) Camera’s field of view covers
the entire user path

Figure 11: Camera’s field of view and blind spot example:
The dotted line and blue colored part each represent the user’s
movement path and the camera’s field of view.

In addition, we perform the threshold-based matching algorithm
and a Kendall rank correlation test by applying a time shift of up to
3 seconds to the sensor data to compensate for the delay between
the camera’s recording and network transmission.

4.6 Spy camera localization
Lastly, we determine the location of the spy camera which is de-
tected in §4.5, via inter-frame size patterns according to the distance
between the spy camera and a user while the user walks along the
walls in the room. The video frame reconstruction makes it possible
to find the exact location of spy cameras.
4.6.1 Basic Idea. By exploiting the nature of video encoding where
inter-frame sizes become larger as there are larger movements in
the scene, we localize a spy camera recording a user’s movements.
The size of an object in a video scene varies with the distance
between the object and a camera. Therefore, an object moving near
a camera causes larger changes in the video scenes than when it
moves from far away. That is, the encoded inter-frames have larger
sizes when a user moves near the camera.

Assuming that a spy camera is installed on the walls or close to
the walls, SCamF guides the user to walk along the wall in the room
to find the location of the spy camera. Fig. 10 shows an example of
reconstructed inter-frame sizes as a user passing by a spy camera.
As the figure shows, the frame sizes increase as the user moves
closer to the camera and the inter-frame size shows a distinct peak
when the user passes through the position closest to a spy camera.
Therefore, the localization of spy cameras can be simplified to the
peak-finding problem.
4.6.2 Practical considerations. Some practical issues need to be ad-
dressed to maximize the localization accuracy. First, some wireless
cameras transmit other frames of similar sizes to those of inter-
frames and these may remain after inter-frame extraction. We refer
to these frames as noise values which are assumed to be uniformly
distributed. Because of the noise values, finding a peak by detect-
ing the maximum value or observing the inter-frame size change
ratio is not suitable. Second, obstacles such as furniture, and the
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Figure 12: Inter-frame size pattern with blind spots.

𝑝1

(a) First round

𝑝2

(b) Second round

𝑝𝑑

(c) Final result

Figure 13: Delay cancellation.

camera’s field of view can affect the inter-frame sizes regardless
of the distance between a user and a spy camera. Depending on
the position and angle of a spy camera, the visibility of the camera
covers a user’s entire movement path (Fig. 11b), or blind spots exist
(Fig. 11a). Obstacles can also make blind spots. If there are blind
spots in the user’s moving path, significant changes will occur in a
scene when the user enters or exits the camera’s field of view. Also,
there is no change in a scene when the user is out of the camera’s
field of view. This causes sudden increases and decreases in inter-
frame sizes and generates several local maxima of inter-frame sizes
as shown in Fig. 12.

Considering these phenomena, we propose a peak-finding algo-
rithm with an adaptive threshold,𝑇ℎ𝑙𝑜𝑐 . SCamF calculates𝑇ℎ𝑙𝑜𝑐 as
𝑋 + 1.28𝜎 by default, where 𝑋 is the average and 𝜎 is the standard
deviation of the inter-frame sizes.𝑋 +1.28𝜎 indicates that 10% of the
inter-frame sizes exceed 𝑇ℎ𝑙𝑜𝑐 when the inter-frame size follows
a normal distribution. SCamF finds all positions with at least one
inter-frame size exceeding𝑇ℎ𝑙𝑜𝑐 per unit time as local maxima and
counts the number of inter-frames whose size exceeds 𝑇ℎ𝑙𝑜𝑐 for
each position. If there is more than one local maximum, SCamF
increases𝑇ℎ𝑙𝑜𝑐 until only one peak remains. Conversely, if no peak
is detected, SCamF lowers𝑇ℎ𝑙𝑜𝑐 . After adjusting𝑇ℎ𝑙𝑜𝑐 a predefined
number of times, the local maximum with the largest number of
inter-frames exceeding 𝑇ℎ𝑙𝑜𝑐 is determined as a peak. Since we
assume the uniform distribution of noise values, our peak-finding
algorithm effectively detects the most distinct peak even in noisy
data.

We also consider time delays. There are the measurement delay
as well as the delay that changes in a scene are actually reflected in

SCamF

Spy 
Camera

AP

7.2 m

7.2m

Figure 14: Testbed setup (space size: 7.2𝑚 × 7.2𝑚).

inter-frame sizes. The delay may vary with the type of camera or
measurement device. In order to accurately localize a spy camera,
we ask a user to walk in the opposite direction after s/he walked
along the detection area once. For example, if the user walks around
the detection area clockwise in the first round, SCamF asks the
user to walk around counterclockwise in the second round. As
illustrated in Fig. 13, a user starts at the red circle, walks along the
dotted line, and arrives at the blue square. SCamF finds peaks at 𝑝1
and 𝑝2 in each round, respectively, and finally detects the midpoint
of the peaks found in each round as the position of the spy camera,
𝑝𝑑 . This way, the delay can be canceled out.

The location of the detected spy camera on the user’s movement
path can be displayed as the UI example in Fig. 24b (Appendix §B).
Since SCamF automatically tracks a user’s movement with sensor
data, SCamF localizes a spy camera regardless of the shape of a room
or a user’s moving path. Furthermore, SCamF can simultaneously
detect and localize multiple cameras on the same channel since it
separates the received packets into each packet flow through MAC
addresses as described in §4.3.

5 PERFORMANCE EVALUATION
5.1 Experimental setup
To detect and localize spy cameras conveniently with mobile de-
vices, such as smartphones and tablets, which are ubiquitous in
modern life, we have implemented SCamF on commodity Android
smartphones. The details of our implementation are described in
Appendix §A. Also, We set up a testbed to mimic a real hotel or
Airbnb room as shown in Fig. 14 where spy cameras and a Wi-Fi
AP to which they are connected are installed. In the testbed, we
conduct experiments across 20 different types of wireless cameras
and 9 types of non-camera network traffic. We selected 14 wireless
cameras from best-selling cameras on Amazon and Spy Gadget
[16], and 6 from DeWiCam [4, 5]. There are 31 other APs and 18
devices installed in the testbed. All of these devices are connected
to the network through APs. The bandwidth of the AP to which
the experimental cameras are connected is 20𝑀𝑏𝑝𝑠 . The average
uplink bandwidth utilization is 74.58%, which is considered a lightly
congested network. Table 4 (Appendix §C) lists 20 wireless cameras
and their specifications used for experiments in our testbed. Nine
types of non-camera traffic are generated and transmitted through
the AP in the testbed room. Non-camera traffic is categorized into
four types of traffic: VOD, download, picture, and game. VOD traffic
includes YouTube, Netflix, and Naver TV which transmits stored
videos. Download traffic is collected from downloading apps (e.g.,
Call of Duty [2]), and picture traffic is collected from news, blog,
webtoon, and a shopping mall app that mainly consist of pictures.
Game traffic is collected while running the mobile game Fortress
[24]. We collect the traffic by capturing wireless packets sent and
received by mobile phones or laptops.

Five volunteers conduct experiments in spy camera detection
and localization that require user interaction with SCamF. We mea-
sure and/or calculate true-positive (TP), false-positive (FP), false-
negative (FN), and true-negative (TN) rates, precision, recall, accu-
racy as well as F1 score.

5.2 Effectiveness of video frame level analysis
To the best of our knowledge, all previous works for detecting
spy/hidden cameras by analyzing wireless traffic use only network
packet level information such as bitrates. The previous spy camera
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Figure 15: Comparison of traffic analysis techniques: network packet level vs. video frame level analysis (SCamF).
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Figure 16: Detection accuracy with/without FP prevention.

detection approaches [4, 5, 21, 37] detect a spy camera streaming a
user by observing bitrate changes according to the user’s movement
or changes in the lighting condition. As a result of analyzing the
traffic of various types of cameras, we found that this method works
only for a few types of cameras. Fig. 15 shows an example of bitrate
changes based on network packet level analysis, which are used in
previous spy camera detection approaches, and the inter-frame size
change obtained by our frame reconstruction according to a user’s
movement. As shown in Fig. 15a, it is difficult to infer the user’s
movement from the bitrate pattern. Even after the periodic peaks
are removed to reduce the influence of I-frames [21], the bitrate
changes are still not noticeable due to the noise frames as shown
in Fig. 15b. On the other hand, the reconstructed frame size change
is clearly observed according to the user’s movement as shown
in Fig. 15c. Therefore, video frame size reconstruction of SCamF
enables effective detection and localization of spy cameras.

5.3 Performance of camera traffic classification
As described in §4.4, we use four features to differentiate camera
traffic from non-camera traffic: traffic volume, inter-packet time
interval, FU rate, and FPS. Based on the analysis results in §4.4,
we set the threshold for each feature. We classify traffic as non-
camera traffic when the minimum traffic volume is less than 5000
𝑏𝑝𝑠 , the average inter-packet interval is less than 2𝑚𝑠 , the FU rate
is greater than 0.98, or the minimum FPS is less than 0.5. SCamF
observes each traffic for 10 seconds to detect camera traffic. Tests
are repeated 50 times for each traffic. Table 2 shows the performance
of distinguishing camera traffic from non-camera traffic. SCamF is
shown to differentiate the camera traffic from non-camera traffic
with a precision of 0.94 and recall of 1.0.

In addition, we investigate the performance of SCamF to classify
the network traffic of multiple simultaneous cameras. We test 10
times across 20 types of wireless cameras. When the number of
cameras is one or two, SCamF perfectly classify the camera traffic
in all tests with the performance of TPR = 1, and when the number
of cameras is three, the three cameras are classified with the simul-
taneous detection probability of 0.99. The decrease in camera traffic
classification accuracy as the number of cameras increases is con-
jectured to be caused by network congestion due to an increase of
traffic. In order to analyze this result in detail, we evaluate SCamF
further in §5.6 while accounting for network congestion.

Table 2: Camera traffic classification performance.

Precision Recall Accuracy F1 score

0.935 1 0.978 0.966

5.4 Performance of spy camera detection
We study the performance of detecting spy cameras with user
movements. The distance between a camera and a user, and the
direction of the user affect the detection performance of SCamF.
In order to investigate these effects, we measure the TPRs of spy
camera detection according to the distance between a camera and a
user across three types of motions: waving a hand facing a camera,
with the user’s back toward a camera, or while turning at the same
spot. Cameras 3, 8, and 9 are used for the test. We test 5 times
for each position and motion. As shown in Fig. 19, as the distance
between a camera and a user increases, TPRs decrease because the
size of the user on the camera screen becomes smaller. If the user has
his/her back to the camera, the TPR is the lowest because the user’s
body blocks the movement from the camera. In the case of hand
waving while turning in place, it shows the highest TPR because the
user’s motion size is the largest and the user’s direction becomes
irrelevant to the detection. Therefore, in subsequent experiments,
waving a hand while turning in place is used as a user motion. Since
SCamF asks a user to take a motion in the center of the detection
area, this user motion is valid even in a space of 15 meters wide.

The overall spy camera detection performance is measured with
20 cameras. For each experiment, we repeat tests 10 times and
average the results. Fig. 17 shows the TPRs for each camera and
the average TPR which is 0.97. To investigate the performance of
SCamF’s FP prevention, we analyze the FPRs for non-camera and
external camera traffic. External camera traffic comes from wireless
cameras outside the detection area as shown in FS1 and FS2 in Fig. 7.
To mimic external camera traffic, we deploy cameras in a real office
where 5 engineers work. They move around the office as usual, and
do not make any artificial movements during the recording.

We compare the performance of our detection (with FP preven-
tion) with that of a detection method without FP prevention which
determines the target device as a spy camera when the inter-frame
sizes are higher than the threshold when a user moves once.

In our testing, each experiment starts in the active mode and
changes the mode twice. Nine types of non-camera traffic and ex-
ternal camera traffic from 20 types of wireless cameras are collected.
For each test, traffic data is collected for 1 hour and tested 50 times.
Fig. 16 plots SCamF’s performance with and without FP prevention.
For non-camera traffic, SCamF achieves an FPR of 0 by eliminating
even a few false positives from the camera traffic classification. The
FPR for external camera traffic is 0.149 without FP prevention. With
FP prevention, the FPR for external camera traffic decreases to 0.031,
indicating that FP prevention effectively minimizes potential false
positives.
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Figure 17: SCamF’s spy camera detection performance for each wireless camera.
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Figure 18: SCamF’s spy camera localization performance for each wireless camera.

5.5 Performance of spy camera localization
In order to evaluate SCamF’s localization performance, we measure
the distance error. We install a camera at two positions, the middle
point of a wall and a corner of the room, as depicted in Fig. 11,
and measure SCamF’s performance with each camera installation
position. The moving path of an experimenter is approximately
30 𝑐𝑚 away from the walls and the experimenter moves at about
1.4 m/s, which is the average walking speed of people. Twenty
cameras are tested 5 times for each installation location. After
finding the location of a spy camera, SCamF displays the detected
location on the experimenter’s moving path. The distance error is
calculated as a difference between the detected position and the
projection of a camera’s location on the user’s moving path. Fig. 18
shows the distance error in detecting each camera according to each
installation location. The average distance error is 9.1 𝑐𝑚 when a
camera is at the center of a wall and is 27.7 𝑐𝑚 when a camera is at
the corner of the room. As described in §4.6, blind spots may occur
depending on the installation position and angle of a camera, and
a camera’s angle of view. When the camera is at the center of a
wall, blind spots occurred as shown in Fig. 11a in most cameras. On
the other hand, when a camera is installed in a corner of the room,
most cameras’ field of view covers the experimenter’s entire moving
path. Due to blind spots, a distinct peak is observed for a short time,
resulting in a smaller distance error when a camera is installed
in the middle of a wall. For all cameras and installation positions,
SCamF accurately localizes spy cameras with only centimeter-level
distance errors.

5.6 Impact of network congestion
To evaluate the robustness of SCamF under network congestion,
we evaluate SCamF’s camera traffic classification and spy cam-
era detection while changing network congestion level. Since it is
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Figure 19: Spy camera detection performance of SCamF
according to the distance between a camera and a user, and
different motions.
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Figure 20: Performance impact of network congestion.

difficult to actually generate a harsh network environment, we ad-
just the network congestion level by artificially applying sequence
number drops to the packets captured through the monitor mode.
As described in §4.3, SCamF reconstructs video frames based on
sequence numbers. Therefore, the performance of SCamF is ana-
lyzed according to the sequence number loss rate, not the packet
loss rate. Since the network retransmits packets to recover a lost
packet, a sequence number loss implies more packet losses. The
sequence number loss rate is calculated as (the number of lost se-
quence numbers) / (the last received sequence number − the first
received sequence number).

Fig. 20 shows the average TPR performance of SCamF when
additional sequence number losses are added to the natural losses.
The natural sequence number loss rate in our experimental envi-
ronment is about 5%. All 20 cameras are tested and 5 random seeds
are used to generate sequence number drops. In the case of camera
traffic classification, all TPRs are 100% until the additional sequence
number drop rate is 40%, and even at a 50% drop rate, it shows 95%
TPR. This result shows that our features used for camera traffic
classification are robust against network congestion. For spy cam-
era detection, performance slightly degrades with higher network
congestion, but achieves a TPR of over 80% even at an additional
loss rate of 50%.

5.7 Comparison with prior work
Table 3 shows a comparison of SCamF’s overall functionality with
prior work. Since the terminologies used in each work are different,
we classify the functionalities according to terminologies defined
in §4. For example, camera localization in DeWiCam [4, 5] is the
same as spy camera detection of SCamF.

As shown in Table 3, only SCamF and MotionCompass [18]
provide all functions of camera traffic classification, spy camera
detection, and localization. However, MotionCompass targets to
detect and localize only wireless cameras equipped with motion
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Table 3: Functionality comparison with prior work.

Packet loss recovery Camera traffic classification Spy camera detection Spy camera localization Method of encrypted traffic analysis
SCamF ✓ ✓ ✓ ✓ Network packet & video frame level
SNOOPDOG [37] # # ✓ ✓ Network packet level
MotionCompass [18] # ✓ ✓† ✓† Network packet level
DeWiCam [4, 5] # ✓ ✓ # Network packet level
Blink [21] ✓ ✓ ✓ # Network packet level
† It only detects and localizes wireless spy cameras with motion sensors.

sensors and localizes a wireless camera only in the situation where
users can cross the video recording boundaries as described in §2.
The main strength of SCamF is that SCamF detects and localizes
wireless spy cameras by inferring video frame information from
encrypted network traffic, whereas prior work uses only network
packet level information which can be obtained directly from en-
crypted network traffic. This allows SCamF to accurately observe
changes in spy camera traffic according to user movements.

To validate the effectiveness of video frame level analysis, we
compare the spy camera detection performance of SCamF with
two state-of-the-art wireless camera detection methods that uti-
lize network packet level analysis, DeWiCam [4, 5] and SNOOP-
DOG [37]. In order to detect a spy camera according to a user’s
motion, both methods observe changes in the entire size of a traffic
flow while SCamF extracts and observes only inter-frame sizes.
Since the performance of each method can be affected by the sur-
rounding environment, camera type, user movement, etc., the spy
camera detection methods of DeWiCam and SNOOPDOG were
implemented and tested under the same conditions as SCamF as
described in §5.1 and §5.4. The motion duration of DeWiCam is
set to 15 seconds. To evaluate spy camera detection performance,
DeWiCam authors conducted experiments with 3 out of 20 cam-
eras, and SNOOPDOG tested TPR with 7 cameras and FPR with
1 camera. In our experiment, we used all 20 cameras to test the
spy camera detection performance of DeWiCam, SNOOPDOG, and
SCamF as described in §5.4. Fig. 21 shows the average TPRs and
FPRs of SCamF, DeWiCam, and SNOOPDOG. The error bars in-
dicate the minimum and maximum TPRs and FPRs. As shown in
Fig. 21, SCamF achieves the highest TPR and significantly lowers
the FPR compared to the prior work. In addition, SCamF shows
stable TPR and FPR performance regardless of the type of camera,
whereas the TPRs and FPRs of the prior work vary greatly with the
type of camera.

6 DISCUSSION
6.1 Deployment Considerations
One can consider two factors for SCamF’s wide deployments.
First, SCamF uses the MAC address to separate different net-
work traffic flows. Though mobile devices have recently adopted
MAC address randomization [41], it does not affect SCamF’s de-
tection/localization because even if MAC address randomization is
applied, devices use consistent MAC addresses after establishing a
network flow.

Second, SCamF utilizes the Wi-Fi monitor mode to sniff Wi-Fi
traffic across 2.4 & 5 GHz Wi-Fi channels. Though this enables
SCamF’s users to detect/localize wireless spy devices without any
technical background, which SCamF does not require users to
be associated with the same Wi-Fi AP as the target spy cameras,
a limitation is that the mobile device during SCamF’s operation
cannot perform normal Wi-Fi communication under the Wi-Fi
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Figure 21: Performance comparison of spy camera detection.

monitor mode. This inconvenience can be minimized via automati-
cally switching from the legacy mode to the monitor mode during
SCamF’s operation only, vice versa.

6.2 Limitations
By the nature of the underlying detection logic, SCamF can only
detect live streaming spy cameras on Wi-Fi networks. Other types
of cameras that store the recorded video in the local storage or
transmit the stored video later are not in the scope of SCamF.
However, recently, most crime cases [6, 7, 39] have occurred by
wireless spy cameras because they are easy to deploy and manage,
and their proportion is rapidly increasing in the commercial market
[16]. Therefore, SCamF is applicable to most prevalent scenarios. To
cover a wider spectrum of spy cameras, it might be helpful to utilize
other types of solutions using RF signals [15] or visual properties
of the camera lens [10] in addition to SCamF.

SCamF does not consider highly-skilled attackers who figure
out the underlying detection algorithms and actively modify traffic
(traffic padding, traffic injection, traffic delay, etc. [11, 12, 28, 45],
which need firmware modification of a spy camera) to evade our
detection. Countermeasures against such active attacks are part of
our future inquiry.

7 CONCLUSION
We proposed SCamF, a fine-grained encrypted traffic analysis ap-
proach to detect and localize wireless spy cameras by using both
network packet and video frame level information inferred from
the encrypted Wi-Fi traffic, which is robust to network congestion.
As a result, SCamF classifies camera traffic and non-camera traf-
fic, determines if a suspicious device is actually recording a user’s
movements, and localizes it. To further reduce the false positive rate,
i.e., ignoring legal cameras outside the user space, SCamF utilizes
smartphone sensors to track the user’s activity pattern and exploits
the sensor readings to calculate the exact correlation between a
video frame size change and the user’s movement. Moreover, we
implemented SCamF as an Android app in commodity smartphones.
Using the extensive experimentation on a real testbed across 20
types of wireless cameras, we showed SCamF to detect wireless spy
cameras with an average TPR of 0.97 and FPR of 0.031, and localize
spy cameras with only centimeter-level distance errors.
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Figure 22: Software architecture of SCamF.

APPENDIX
A IMPLEMENTATION
We have implemented SCamF algorithms (§4) on an Android smart-
phone (Galaxy S21+). Fig. 22 shows the software architecture that
consists of three independent subsystems each of which operates as
a process: (1) SCamF application and SCamF core library in the ap-
plication layer, (2) Wi-Fi Controller and Packet Receiver in Android
framework layer, and (3)Wi-Fi Monitor Mode in kernel layer. Our
SCamF application is written in JAVA. To facilitate reproducibility
of our results and to make our solutions portable to other platforms
such as Raspberry PI [14] and Odroid [17], SCamF core library is
written in C++.

Application Layer. This layer contains SCamF application and
SCamF core library. SCamF core library includes the core algo-
rithms described in §4. SCamF core library needs to communicate
with SCamF application and Packet Receiver to analyze received
packets and notify the user of the result. In particular, while the
SCamF core library analyzes packets, Packet Receiver continuously
captures packets without delay to communicate asynchronously
with each other. SCamF core library analyzes raw packets received
from Packet Receiver, internally goes through Camera Traffic Detec-
tion, Spy Camera Detection, and Spy Camera Localization modules
to structure a spy camera and send it to SCamF application. In
addition, for increasing the accuracy of detection, Action Analysis
analyzes user’s activities using values collected by Sensor Manager.

Android Framework Layer. This layer contains Wi-Fi Con-
troller and Packet Receiver. First, SCamF core library activatesWi-Fi
Controller and Packet Receiver and requests Wi-Fi Controller to en-
able monitor mode for a specific channel. In order to detect a spy
camera, each Wi-Fi channel must be traversed. Therefore, Wi-Fi
Controller enables monitor mode and change channels at run-time.

Kernel Layer. As described in §4, SCamF requires the Wi-Fi
device driver and firmware to monitorWi-Fi packets. Unfortunately,
no device drivers and firmware support Wi-Fi traffic monitoring
in commodity smartphones. We have customized the Wi-Fi traffic

monitor mode, where the Wi-Fi driver provides a control interface
to switch between monitor mode and legacy mode. When SCamF
application is launched, Wi-Fi Controller tries to switch to monitor
mode through the interface. After completing all activities, when
our application is terminated, Wi-Fi Controller returns to legacy
mode through the interface as well.

B USER INTERFACE AND OPERATION
This section describes the user interface (UI) of SCamF and the
operations that SCamF requires from a user to detect spy cameras.
Fig. 23 shows the user operation flow in each step of SCamF.

First, when a user launches SCamF APP and presses the search
button, SCamF guides the user to wait without moving while it
detects camera traffic. If SCamF detects camera traffic in the detec-
tion environment, the list of detected devices generating camera
traffic is displayed. The user can exclude the known devices and
select the devices he/she wants to detect if the devices are recording
and streaming the user, which means if they are spy cameras. The
detected devices on the same wireless channel can be selected and
detected at the same time.

After the user selects the devices and presses the detection button,
SCamF confirms that the selected devices are streaming the user
as in §4.5. SCamF guides the user to move to the center of the
detection area and wave a hand right to left while turning in place.

Camera Traffic Classification Spy Camera Detection Spy Camera Localization

After pressing the search 
button and wait

Waving a hand right to left 
while turning in place

Grab your phone and walk 
around the room

Figure 23: User operation flow.

(a) Result of spy camera detection (b) Result of spy camera localization

Figure 24: An example of spy camera detection and
localization results in SCamF Application (Sample UI).
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Table 4: List and functions of wireless cameras for performance evaluation on our testbed.

No. Brand Model Video/Audio Encoding Resolution Other Supported Functions
Default High Middle Low Sound Motion Night Vision

1 Yi YYS.2016 H.264, AAC 1080p ✓ - ✓ ✓ - ✓
2 Yi YHS.2116 H.264, AAC 1080p ✓ - ✓ ✓ ✓ ✓
3 Xiaomi SXJ01ZM H.264, AAC 1080p ✓ - ✓ ✓ ✓ ✓
4 360 D606 H.264, AAC 1080p ✓ - ✓ ✓ - ✓
5 TP-Link TL-IPC20-2.8 H.264 720p - ✓ - - - ✓
6 Amcrest IP2M-841B-V3 H.264 1080p ✓ ✓ ✓ - ✓ ✓
7 goospy S64 H.264, AAC 720p ✓ ✓ ✓ ✓ ✓ ✓
8 ieGeek 2.0 megapixels ip camera H.264, AAC 720p - ✓ ✓ ✓ ✓ ✓
9 Xiaomi MJSXJ05CM H.265, AAC 1080p ✓ - - ✓ - ✓
10 Egloo TSC-221A H.264, AAC 1080p ✓ ✓ - ✓ ✓ ✓
11 Hej GKW-IC052 H.264, AAC 1080p ✓ ✓ - ✓ ✓ ✓
12 Green PE204 H.264, AAC 480p - - ✓ ✓ ✓ ✓
13 JWC JCURI-HOME2 H.264, AAC 1080p ✓ - - ✓ ✓ ✓
14 Wisenet SNH-P6410BN MPEG-4, AAC 480p ✓ ✓ ✓ ✓ - ✓
15 Relohas S93 H.264, AAC 720p ✓ ✓ ✓ ✓ ✓ ✓
16 luhoe C-TOP H.264 720p ✓ ✓ - - ✓ -
17 YINEW U21 H.264 720p - ✓ ✓ - - ✓
18 Geagle Wi-Fi mini camera H.264, AAC 720p - ✓ ✓ ✓ - ✓
19 Xiaomi MJSXJ09CM H.265, AAC 1080p ✓ - ✓ ✓ ✓ ✓
20 Wisenet HNO-E60 H.264, AAC 1080p ✓ - ✓ ✓ ✓ ✓

SCamF guides the user to repeat the movement (5 seconds) and
then the stop (10 seconds) twice. SCamF notifies the user of the
beginning and end of the movement with vibrations and sounds.
Through the spy camera detection step (§4.5), SCamF detects the
spy cameras and shows the list of them as shown in Fig. 24a.

Finally, the user can find the location of each spy camera via
SCamF. The user holds the phone and walks around the detection
area along the wall, and then he/she walks around once again in the
opposite direction. As explained in §4.6, SCamF detects the frame
size peak in each round and determines the middle position of the
peaks as the final spy camera position. SCamF uses smartphone
sensors to track the user’s walking path and displays the position
of detected peaks and the final location of the detected spy cameras
on the user’s walking path as shown in Fig. 24b.

C OPERATION TIME OF SCAMF
We have evaluated the time required at each step of SCamF. For
the camera traffic classification, SCamF first detects 𝑐1 channels
through which APs communicate by collecting packets for 0.3 sec-
onds per channel. Among the 𝑐1 channels, SCamF detects channels
with a data rate of more than 5000 bps by collecting packets in 𝑐1
channels for 1.5 seconds per channel. If 𝑐2 channels are detected,

SCamF observes each channel for 10 seconds to detect channels in
which camera traffic exists.

The spy camera detection requires a total of 30 seconds to detect
cameras per channel because there are two 10 second stationary
mode periods and two 5 second active mode periods for user move-
ments as described in §4.5. Because spy cameras on the same chan-
nel can be detected at the same time, the time to detect all cameras
in the detection step is 30 × 𝑐𝑑 seconds, where 𝑐𝑑 is the number
of channels detected in camera traffic classification. In the case of
localization, the required time varies depending on the size of the
detection area and the walking speed of a user. Similar to the spy
camera detection, SCamF can simultaneously detect the location of
spy cameras in the same network channel, and sequentially localize
spy cameras in different channels. Therefore, the time required for
localization is 𝑙𝑝𝑎𝑡ℎ×2

𝑣𝑢𝑠𝑒𝑟
×𝑐𝑑 , where 𝑙𝑝𝑎𝑡ℎ is the length of the walking

path of a user to walk around the detection area once, and 𝑣𝑢𝑠𝑒𝑟 is
the walking speed of the user.

For example, if SCamF scans all channels in IEEE 802.11n 2.4GHz
band, and there are APs on 10 channels and 2 spy cameras on one
channel, The camera traffic classification requires 28.9 seconds
(13 × 0.3 + 10 × 1.5 + 10) and the spy camera detection requires 30
seconds. If the user walks at 1.4𝑚/𝑠 in a square room of 3𝑚 × 3𝑚,
the localization requires 17 seconds.
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