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ABSTRACT

In South Korea, voice phishing has been proliferating with the ad-

vent of voice phishing apps: the number of annual victims had risen

to 34,527 in 2020, representing financial losses of approximately

598 million USD. However, the voice phishing functionalities that

these abusive apps implement are largely understudied. To this

end, we analyze 1,017 voice phishing apps and reveal new phish-

ing functionalities: outgoing call redirection, call screen overlay,

and fake call voice. We find that call redirection that changes the

intended recipients of victims’ outgoing calls plays a critical role

in facilitating voice phishing; our user study shows that 87% of

the participants did not notice that their intended recipients were

changed when call redirection occurred. We further investigate

implementations of these fatal functionalities to distinguish their

malicious behaviors from their corresponding behaviors in benign

apps. We then propose HearMeOut, an Android system-level ser-

vice that detects phishing behaviors that phishing apps conduct in

runtime and blocks the detected behaviors. HearMeOut achieves

high accuracy with no false positives or negatives in classifying

phishing behaviors while exhibiting an unnoticeable latency of 0.36

ms on average. Our user study demonstrates that HearMeOut is

able to prevent 100% of participants from being phished by provid-

ing active warnings. Our work facilitates a better understanding

of recent voice phishing and proposes practical mitigation with

recommendations for Android system changes.
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• Security and privacy → Mobile and wireless security; Mal-

ware and its mitigation; Intrusion/anomaly detection and

malware mitigation; Domain-specific security and privacy

architectures.
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1 INTRODUCTION

Voice phishing is a notorious scam in which fraudsters contact

victims via phone calls and exploit their personal information, de-

ceiving these victims into transferring their money to the fraudsters.

The Federal Trade Commission (FTC) reports that financial losses

due to voice phishing have amounted to more than 450 million

USD since 2014 [45]. Especially in South Korea, voice phishing

has been traumatizing a growing segment of the general public.

From 2016 to 2020, the number of annual victims rose from 17,516

to 34,527 [2, 24]. The annual financial losses in 2020 increased to

approximately 598 million USD [69].

Unfortunately, as the voice phishing business has become more

lucrative, phishing techniques have evolved. Fraudsters have im-

personated the voices of representatives of known organizations or

familiar personal contacts [50, 81, 91, 108] and have changed the

area code displayed [44, 108, 109]; they have manipulated victims’

incoming calls [44, 50, 81, 91, 108, 109]. However, with the advent

of voice phishing apps, fraudsters have changed their scamming

strategies.

One recent and notable trend in voice phishing involves the

redirection of victims’ outgoing calls. Fraudsters entice a victim

to install an Android phishing app by offering loan opportunities

with lower interest rates. Once the victim installs the phishing

app and initiates a call to a legitimate bank, their outgoing call is

redirected to the fraudsters. Since the victim initiated the call using

the legitimate phone number, they believe that the recipient of their

calls is authentic, leading them to disclose their confidential and

private information. This outgoing call redirection plays a key role

in rendering victims susceptible to fraudsters’ demands [24, 28, 57,

67, 68, 107]. The financial losses due to voice phishing campaigns

that employ call redirection are ten times greater than those due to

phishing campaigns that do not use such apps [52].

Previous studies have focused on analyzing voice phishing in-

volving incoming calls. They examined user studies of victims [109],

honeypots [50], and crime reports [23, 79]. However, to the best of

our knowledge, no previous study has investigated voice phishing

apps and their new phishing strategies that involve outgoing call

redirection. We believe that answering the following questions is

paramount to devise a defense against voice phishing threats:What
distinctive functionalities do voice phishing apps support? Are existing
defenses effective in mitigating new threats that voice phishing apps
pose?
Our contributions. We conducted an investigative study to iden-

tify the distinctive characteristics of Android voice phishing apps.

We collected 1,017 Android voice phishing apps from AhnLab [3],

a well-respected anti-virus corporation in South Korea, and the

Financial Security Institute (FSI) [46].

We identified three new phishing functionalities: call redirection,
call screen overlay, and fake call voice. Our analysis results show
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that these functionalities work together to make outgoing call redi-

rection seamless, thus facilitating voice phishing campaigns. Of the

phishing apps studied, 978 apps (96.1%) redirect the outgoing call

to fraudsters when victims call public directory assistance services

(i.e., 114), banks, loan businesses, and government branches.

We emphasize that call redirection plays a critical role in deceiv-

ing victims especially when all three functionalities work together.

Our user study results show that 87% of participants were deceived

by voice phishing campaigns that involve call redirection. Half of

these participants were well aware of voice phishing threats due to

their prior experiences of receiving voice phishing calls. However,

the high success rate of 87% manifests the efficacy of call redirec-

tion. These results also explain the motivation of most phishing

apps implementing call redirection. Unfortunately, the voice phish-

ing threats that these new functionalities pose have been largely

understudied.

To understand the current mitigation of voice phishing app

threats, we analyzed defense apps from Google Play that are specif-

ically designed to detect voice phishing apps. We observed that

these defense apps mainly support the detection of call redirection

and voice phishing apps in victims’ devices. However, all the de-

fense methods fail to completely block voice phishing threats and

disregard to detect other types of voice phishing behaviors, such

as call screen overlay. These failures stem from known signature-

and blacklist-based detection approaches, which fraudsters are able

to bypass with ease, namely by mutating their APKs. Also, the

existing defense apps that warn of apps using the PROCESS_OUTGO-
ING_CALLS permission often generate false positives.

To address these shortcomings, we propose HearMeOut, an An-

droid system-level detection method to notify the user of phishing

activities, including outgoing call redirection in runtime. HearMe-

Out is a voice phishing notification service that detects suspicious

activities at the Android system level and notifies the users of de-

tected activities. Based on our observation that all phishing apps

abuse the Android APIs of five service managers (e.g., Telephony

and Media), we implement detectors at the Android API framework

layer to identify phishing activities that abuse Android APIs. We

identify the distinctive characteristics of phishing activities that

abuse Android APIs in runtime versus those of benign activities.

We leverage the invocation times, actual parameters, and caller

apps of the APIs to detect phishing activities, which play a decisive

role in differentiating benign from phishing behaviors. HearMeOut

also blocks identified phishing behaviors. Especially when call redi-

rection occurs, HearMeOut displays an active warning dialog that

notifies this possible phishing behavior.

We evaluate the efficacy of HearMeOut in detecting phishing

behaviors. For various types of benign and phishing activities from

53 benign and 12 phishing apps, HearMeOut achieved an accuracy

of 100% with zero false positives. Also, the execution overhead

of HearMeOut was negligible: the average additional latency that

HearMeOut entailed for detection was 0.36 ms.

We further conducted user studies with 45 participants to mea-

sure the efficacy of voice phishing that involves outgoing call redi-

rection and HearMeOut’s effectiveness in preventing such voice

phishing. The experimental results show that 87% of participants

were tricked by phishing campaigns that involved voice phishing

and that 69.6% disclosed their personal information. By contrast,

22 participants (100%) with HearMeOut acknowledged outgoing

call redirection warnings and thus avoided falling victims to voice

phishing.

Our contributions are summarized as follows:

(1) We analyze the distinctive functionalities of Android voice

phishing apps of which the threats have been understudied.

(2) We identify the limitations of existing voice phishing app

detection methods that stem from inaccessible system infor-

mation and blacklist-based detection approaches.

(3) We design and implement HearMeOut, the first system-level

phishing behavior detection service and propose practical

changes to the current Android system.

2 BACKGROUND: VOICE PHISHING

Voice phishing is a traditional scam that exploits the non-face-to-

face nature of telephone communication to deceive victims [50, 81,

91, 108]. In recent years, voice phishing has been proliferating, dis-

torting victims’ monetary assets. In South Korea, the related annual

financial losses increased from 216 million USD in 2017 to a record

high of approximately 598 million USD in 2020 [69, 96, 97]. Voice

phishing apps using call redirection have been identified as a criti-

cal factor in increasing these financial losses. The financial losses

due to voice phishing using phishing apps are ten times greater

than that due to phishing campaigns without these apps [52].

Voice phishing victims suffer agonizing losses both financially

and psychologically; they find themselves having lost their savings,

paying off loans that they did not take out, or being blackmailed us-

ing exfiltrated privacy-sensitive information [22, 23, 25, 26, 84, 112].

Recently, a voice phishing group consisting of 93 scammers was

prosecuted for crimes committed while impersonating a local prose-

cutor; they had extorted over 10 million USD from 300 victims over

the last five years. As a consequence of their constant blackmailing

and extortion, a young victim was driven to take his own life [71].

These incidents call for a better understanding of phishing victims

and practical mitigation of new voice phishing threats.

Call redirection. Voice phishing campaigns consist of four steps:

(1) deceiving a victim into installing a voice phishing app, (2) induc-

ing the victim to call a bank or government agency, (3) redirecting

the victim’s outgoing call to the attacker, and (4) extorting money.

Fraudsters start by sending a target victim an SMS text with a URL.

The SMS text describes an opportunity for the victim to refinance

an existing loan with one that has a lower interest rate, notifies the

victim about shipment tracking information, or notifies the victim

about a health checkup schedule. The text further instructs the

victim to install a mobile app by clicking on the URL. Clicking this

URL causes the victim’s device to install a voice phishing app. Note

that Android offers an option for users to install the app from other

app markets besides Play and unknown sources [13]. To install a

voice phishing app, victims need to explicitly click “Yes” in a popup

window that asks the user’s consent to install apps from ”Unknown

sources.” Unfortunately, the increasing number of phishing victims

indicates that naive users tend to grant the permission to install

phishing apps.

These phishing apps redirect the victim’s outgoing call to a

legitimate bank or government agency to the fraudsters’ number

instead in an attempt to deceive the victim into misplacing their
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trust. In the final step, the fraudsters ask the victim to transfer

money to one of their bank accounts. They then withdraw the

transferred money before the victim realizes that they have been

phished.

We emphasize the critical role of outgoing call redirection, which

contributes to convincing victims to misplace their trust. According

to our user study (§8), 87% of participants were deceived when

their outgoing calls to a legitimate bank were redirected to our

staff member who was impersonating a fraudster; they provided

their personal information, including social security numbers, bank

accounts, and home addresses.

3 VOICE PHISHING FUNCTIONALITY

We describe the representative functionalities of voice phishing

apps in the wild. Specifically, we explain how these apps implement

each phishing functionality using Android APIs.

Phishing apps.We collected 1,017 phishing apps from the FSI [46]

and AhnLab [3], a well-respected anti-virus corporation in South

Korea; we obtained 198 and 819 phishing apps from the FSI and the

anti-virus corporation, respectively. These mobile apps had been

reported by phishing victims and confirmed by the organizations

above from 2018 to 2021.

We acknowledge that our collection of voice phishing apps could

be biased due to the limited number of apps it contains. However,

we emphasize that our objective is to understand the behaviors of

mobile voice phishing apps to devise a practical countermeasure.

Analysis method. We analyzed the functionalities of 1,017 phish-

ing apps. We investigated declared permissions, Intent filters, and

Android components in the manifest files of these apps. We also

statically analyzed the decompiled code and their Android API in-

vocations to implement phishing functionalities using a JADX APK

decompile tool [101].

3.1 Disguising Apps

We investigated the app names, image resources, and icons of 1,017

phishing apps to identify target apps into which they are disguised.

The most popular apps disguised as phishing apps are banking apps;

824 phishing apps (81%) took on the appearance of banking apps,

displaying the logo and images of actual banks. The main role of

these apps is to entice victims to make loan inquiries using official

bank phone numbers. These apps display the official phone number

of the organization they are disguised as in most of their activities.

When the victim calls the bank’s official phone number, the attacker

intercepts the call using outgoing call redirection. In addition, 89

phishing apps were disguised as package delivery tracking apps,

and 23 apps were disguised as health checkup apps.

3.2 Call Redirection

Call redirection refers to the functionality that redirects a victim’s

outgoing calls to specific phone numbers that the attackers choose.

Fraudsters exploit this functionality to deceive victims into misplac-

ing their trust in the recipients of their outgoing calls. Victims do

not realize that their actual outgoing calls have been redirected and

believe that the recipients of their calls are the intended recipients.

For instance, fraudsters entice a victim to install their mobile phish-

ing app by offering loan refinancing at a low-interest rate. Once

the app is installed, it offers authentic phone numbers with banker

photos and explanations of their financial products [25, 26, 71].

Once the victim calls one of these numbers, the outgoing call is

redirected to the fraudsters.

After the victim’s outgoing call is redirected to the fraudsters, the

fraudsters ask the victim to send cash for the initial payment of the

original loan. A victim in doubt may check these phone numbers

by searching for numbers on the Internet or calling the directory

assistance service in South Korea (i.e.,114). However, fraudsters

redirect the outgoing calls to both 114 and legitimate bank numbers

to their own numbers instead, thereby deceiving the victim into

believing in their authenticity.

To implement call redirection, a voice phishing app is required to

register a BroadcastReceiver with an Intent filter for the ACTION_-
NEW_OUTGOING_CALL Intent in its manifest file. When an outgoing

call occurs, the Android system broadcasts an ACTION_NEW_OUTGO-
ING_CALL Intent, which allows any apps with the Intent filter above
to change an outgoing call number in this Intent. The final recipient

of this Intent (i.e., the Android system) makes an outgoing call to

this changed number. For this, the phishing app requires a victim

to grant the PROCESS_OUTGOING_CALLS permission to receive an

ACTION_NEW_OUTGOING_CALL Intent and change the outgoing call

number in this Intent.

Among the 1,017 phishing apps, we found 978 apps (96.2%)

that implement the call redirection functionality. For each app,

we searched for an Intent receiver invoked upon receiving the

ACTION_NEW_OUTGOING_CALL Intent and analyzed all Java code in

this receiver that changes outgoing call numbers using SetRe-
sultData [36]. We then extracted all constants representing phone

numbers, which are target numbers from which phishing apps

redirect calls to fraudsters’ phone numbers.

We observed that each app redirects an average of 791 outgoing

call numbers that exist in its source code. For each identified num-

ber, we sent a query for information about it to https://114.co.kr,

the largest public directory assistance service in South Korea. We

identified the number’s associated corporation name and indus-

try sector. Figure 1 shows the average number of observed phone

numbers for each industry sector. We observed that phishing apps

targeted secondary and tertiary banks, law enforcement agencies,

and government branches, including the FSI and the public direc-

tory assistance service (i.e., 114).

3.3 Call Screen Overlay

Call screen overlay refers to a functionality that covers the default

call screen with another call screen when a victim’s device has an

incoming or outgoing call. We observed that 572 phishing apps im-

plemented this feature of overlaying fake call screens over authentic

ones.

The goal is to display an authentic phone number when victims

have an incoming/ outgoing call from/to a fraudster’s number, thus

relieving suspicion that victims may have about the call recipi-

ent. Therefore, all call screen overlay functions were implemented

together with the call redirection function.

Fake outgoing/incoming call screens.We further investigated

how these phishing apps implement fake call screens. We observed

that 572 phishing apps generated a call screen based on the current
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Figure 1: The average number of phone numbers that each

app redirects by industry sector; the black line in each bar

represents the min and max numbers.

call state (e.g., ringing, off-hook, and idle states.), Android OS, the

phone manufacturer, and phone model information from a victim’s

device. These apps support 20 to 80 different models, mainly from

Samsung and LG.

When the call state is off-hook (CALL_STATE_OFFHOOK), the fake
call screen shows a dialing screen with an attacker-chosen num-

ber paired with the corresponding recipient name in the victim’s

contact list. However, the actual dialing number is different from

this number displayed by the attacker. When the call connection

is established, the fake screen shows a call screen mockup that

contains the current call time. Finally, when the call state switches

to idle, the fake call screen is closed. These fake call screens are

similar to the default call screens for each device model, as shown

in Figure 2.

For incoming calls, fraudsters selectively display their fake call

screens with specific attacker-chosen numbers belonging to actual

organizations. The fraudsters thus deceive victims into believing

that they are receiving calls from the individual whom the fraudsters

impersonate.

3.4 Fake Call Voice

Fake call voice refers to a functionality that plays a voice recording

when call redirection occurs. We observed that 521 apps played

voice recordings that sounded like customer service messages.

These messages were recorded in mp3 files, and the phishing apps

played them when outgoing call redirection occurred.

The purpose of fake call voice is to make it seem as if the victim’s

redirected outgoing call is connected to a bank’s or financial com-

pany’s phone line. When the victim calls the financial institution’s

actual public number, a phishing app usually plays a greeting mes-

sage and then connects to the agent. Attackers play a recorded voice

message that corresponds to the outgoing call number, deceiving

victims into believing that they are connected to a real financial

institution. For instance, such a recorded voice message is “Thank

you for calling. This is your lifetime financial partner, anonymous

insurance. Please wait until there is an available customer service

consultant.”

Note that fraudsters cover a large number of authentic phone

numbers for call redirection, all of which are redirected to a small

number of phone numbers under their control. Therefore, when

Benign outgoing 
call screen

Fake outgoing 
call screen 

Overlaid Screen

Benign incoming 
call screen

Fake incoming
call screen  

Overlaid Screen

Figure 2: Examples of fake outgoing/incoming call screens.

phishing a victim via phone calls, they need to impersonate the

receiver of their victims’ calls. This functionality enables them to

enmesh their victim in a scamming scenario corresponding to this

victim’s outgoing call by playing an appropriate greeting message

before the victim’s call is connected.

3.5 Dynamic DEX Loading

44 phishing apps dynamically loaded DEX files fetched from en-

crypted local resources and their command and control servers. We

observed that these DEX files were encrypted using Bangcle [20],

thereby hindering manual and automatic inspection of their seman-

tics. Phishing apps used the dalvik.system.DexClassLoaderAPI
to dynamically load DEX files. Furthermore, they used the Java re-

flection API to load the dynamic DEX loading API. Phishing apps

called the DEX loading API using reflection by combining the API

name and class with StringBuffer. It is a classic evasion tech-

nique that malware has used to hide its API usage from static

detection [76, 100].

3.6 Phishing App Groups

This section describes the clustering analysis results on the 1,017

phishing apps. To identify app groups that implement similar func-

tionalities, we clustered the collected phishing apps based on the

required permissions and declared Intent filters in their manifest

files; therefore, each group has an identical set of requested permis-

sions and Intent filters.

Among 40 groups, we observed five groups with more than

50 phishing apps, covering 742 apps (72.9%). We then analyzed

randomly sampled apps from each group. Specifically, we examined

how they implemented call direction by manually examining the

Broadcast receivers that called upon an android.intent.action.
NEW_OUTGOING_CALL Intent for each sampled app.

Group

Name

# of apps

Sampled

apps

# of different

bank apps

Group 1 407 82 42

Group 2 131 27 17

Group 3 75 15 8

Group 4 75 15 7

Group 5 54 11 7

Table 1: Manual Analysis Results of grouping phishing aps

using the same set of permissions and Intent filters.

Table 1 shows the statistics for sampled apps from the five app

groups. In each group, we observed that the sample apps share
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a similar app layout and source code decompiled via JADX [101].

However, they have different obfuscated source code and logo image

resources used for showing the identities of banking apps. For

example, 80 apps in Group 1 share the almost identical decompiled

source code in their Broadcast receivers but are disguised as 42

different banking apps. We believe that fraudsters generate various

app variants by changing image resources and obfuscating variables,

classes, and package names of their original phishing app. The

existence of various apps in each group also implies that fraudsters

have been changing the app signatures that anti-virus products

may use for detection, which we discuss in Section 4.

4 CURRENT DEFENSES AGAINST VOICE

PHISHING APPS

We investigate existing defense apps and past AOSP patches aimed

at preventing voice phishing. We then present their shortcomings

that next-generation voice phishing defenses should overcome.

4.1 Existing Defense Apps

To investigate current app-level phishing mitigation available in

Google Play, we collected four phishing defense apps that are specif-

ically designed to detect voice phishing apps: whowho [110], Phish-

ing Eyes [40], Anti Scam [93], and Anti Spy [102]. We used the

search keywords “voice phishing defense” and “voice phishing pre-

vention” to compile the list.

Phishing app detection. All the apps leverage blacklists of voice

phishing apps. Since the Android system allows a mobile app to

extract all package names in the same device, they check for the

presence of known package names of voice phishing apps. However,

this blacklist-based approach suffers from false negatives when en-

countering new phishing apps. The Anti Scam app [93] implements

an additional approach to check for dangerous permissions that

enable outgoing call redirection, reading/writing call logs, reading

phone call states, and reading/writing contacts. However, this ap-

proach also yields a large number of false positives because the

permissions that voice phishing apps leverage are widely used.

28,430 benign apps use at least one permission among the permis-

sions noted above.

Call redirection detection. Only one app, whowho, supports the

detection of call redirection. It detects any changes to the user’s

outgoing call number and identifies the app responsible for this call

number change.

This app detects call redirection by comparing the outgoing

call number with the phone number in the most recent call log.

Specifically, the app creates an Intent receiver that the Android

system calls upon receiving android.intent.action.NEW_OUT-
GOING_CALL to identify an original phone number. It is paramount

for this app to know this original number before any other apps

change the outgoing number in the Intent; therefore, this defense

app specifies the priority of the Intent receiver to the high num-

ber of 2,147,483,647, preventing other app receivers from being

invoked before this app. After identifying the original number, the

app collects the outgoing number from the latest call log. When

the two differ, the app then checks for the presence of any phish-

ing package names in the currently installed device. When all the

aforementioned conditions are satisfied, the app warns users.

This approach has several problems. (1) When the Android re-

ceiver of a phishing app has the same highest priority and is invoked

before whowho’s receiver, the defense app cannot obtain the orig-

inal outgoing call number. (2) Several phishing apps modify the

latest call log to the original phone number after call redirection

occurs. If a phishing app changes the latest call log before whowho

reads it, this defense app is unable to detect whether call redirec-

tion has occurred. In other words, this defense app is unable to

retrieve the original outgoing call number due to its limited access

to internal Android system information.

Limitations of app-level defenses We argue that these detec-

tion apps fail to establish a sufficient level of security protection for

mobile users. This failure stems from two limitations: (1) blacklist-

based approaches are trivially bypassable, and (2) only limited in-

formation is accessible to defense apps.

Three apps have leveraged blacklists of suspicious package names

to warn users about the presence of suspicious apps. However, the

attackers are able to develop an APK with their choice of package

name, trivially bypassing the blacklists of known phishing package

names. Considering that voice phishing apps are often distributed

by SMS messages, not by official app markets, fraudsters have no

restrictions in choosing their package names.

Moreover, these defense apps also have a limited capability to

access information pertaining to other apps. By the Android system

design, the defense apps are able to obtain other apps’ manifest files,

which include permissions, Intent filters, and components. However,

they are unable to observe the dynamic execution behaviors of other

apps. Thus, app-level detection has focused on leveraging a classifier

based on limited features, such as package names, APK signatures,

and permissions, which allow fraudsters to easily manipulate.

Existing anti-virus solutions. Existing anti-virus solutions also

use their own methodology to statically detect mobile phishing

apps. However, note that their designed goal is to detect malicious

mobile apps, not mobile phishing apps. They have focused on iden-

tifying apps exfiltrating personal information, hijacking passwords,

or tracking victims’ physical locations [48, 92, 98, 103, 115]. We

checked 12 live phishing apps obtained from one anti-virus corpo-

ration by uploading those to VirusTotal. Only 16.4% of the existing

solutions classified them as malicious apps. These results demon-

strate that existing anti-virus solutions also suffer from false nega-

tives due to their detection strategy of leveraging known malware

signatures.

High privacy cost.We observed that one app (i.e., Phishing Eyes)

sends users’ incoming/outgoing call numbers, SMS texts, voice calls,

or installed app lists to its server, each of which is privacy-sensitive

information [21, 72, 73]. We believe that the existing approach of

sending privacy-sensitive information demands a high privacy cost,

rendering this approach impractical.

4.2 Patching Android APIs

Google has proposed several updates to the ways of using An-

droid APIs for implementing call redirection and overlaying call

screens [9, 31, 89, 111]. These updates usually restrict access to these

APIs and require user consent. For instance, the recent changes of

requiring the “Display over other apps” permission to overlay a
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Figure 3: SDK version distribution: the width of each curve

represents the frequency of SDK versions; the white dot

shows the median; and the thick center line represents the

interquartile range.

UI over other apps and the usage of CallRedirectionService to

make outgoing calls may mitigate voice phishing threats.

These behavior changes of Android APIs have been released in

a new version of Android SDK. To apply these updates, an Android

app should be compiled with an updated Android SDK, instructing

the Android system to enforce the updated policy according to its

target Android SDK version.

We believe that patching Android APIs requiring a new SDK ver-

sion is ineffective in mitigating voice phishing threats. We observe

that fraudsters simply use low target versions of the Android API

level to develop their phishing apps. For example, PROCESS_OUT-
GOING_CALLS is deprecated in Android 10 (API level 29). However,

when a fraudster uses a target SDK version lower than 29 in devel-

oping their phishing app, they are still able to abuse PROCESS_OUT-
GOING_CALLS in any Android device. Furthermore, if the attacker

lowers their target SDK version below Android 6 (API level 23), An-

droid devices use the installation time permission model even for

dangerous permissions [95], such as PROCESS_OUTGOING_CALLS,
instead of enforcing the runtime permission model [12]. It is well

acknowledged that users tend to blindly accept installation time

permissions [18, 41, 70]. This is due to the backward compatibility

of Android since the Android system still needs to support Android

apps built with old versions of Android SDK.

Fraudsters have been abusing this backward compatibility to

make their phishing apps not exhibit the updated behaviors in-

troduced by new Android SDKs. Therefore, fraudsters are even

motivated to use old SDK versions to bypass any mitigation de-

ployed in the later SDK versions. For apps in Google Play, Google

has not allowed uploading APKs that do not meet the minimum

target API level [11]. By contrast, phishing apps have no restrictions

in using a low target API level since they have been distributed

over SMS messages.

Figure 3 shows the minimum and target SDK versions between

phishing and benign app groups; the phishing and benign app

groups consist of 1,017 and 59,869 apps, respectively. We collected

these 59,869 apps in Google Play [15, 16, 17, 35] from April 2019

to March 2021 using two methods. (1) We collected 10,024 apps by

periodically crawling 100 highly ranked apps in each of the 35 app

categories. (2) To cover less popular apps, we randomly crawled

49,845 apps from Google Play APK mirror sites [15, 16, 17].

As the figure shows, the median value of the target SDK versions

of voice phishing apps is 21, while the median value of those benign

apps is 28. This means that voice phishing apps intentionally use

lower target SDK versions than do benign apps. Therefore, patching

Android APIs is ineffective in preventing these phishing apps from

abusing the APIs.

5 OVERVIEW

We propose an Android system-level defense, HearMeOut, which

is designed to monitor voice phishing behaviors. We enumerate

the security and privacy requirements that our new defense sys-

tem addresses (§5.1). We then describe the overall architecture of

HearMeOut (§5.2).

5.1 System Requirements

We enlist security and privacy requirements that a next-generation

voice phishing defense should address to overcome the limitations

of the existing methods (§4).

Runtime detection. We argue that static detection methods, in-

cluding blacklist-based approaches, are ineffective in identifying

new phishing apps. Fraudsters can obfuscate their phishing apps,

which makes it difficult to extract unchanging and distinguishable

features, including method signatures and distinctive code patterns.

Furthermore, they are able to keep mutating their phishing apps

until they pass a target system of static detection [90, 104]. They

also unload their core functionality of voice phishing via dynamic

DEX files and leverage their command and control servers to up-

date their DEX files (§3.5). Therefore, the static detection of using

known signatures prolongs the arms race between fraudsters and

detection systems.

To bring positive changes to this arms race, a new defense system

should support the dynamic detection of phishing behaviors when

they actually occur. The goal of voice phishing apps, including new

ones that bypass static detection, is to perform abusive behaviors

in runtime. Thus, focusing on the identification of these runtime

behaviors avoids compiling and managing a vast volume of known

detection signatures.

System-level detection. The app-level detection of phishing apps

fails to provide a sufficient level of protection for users. By design,

an Android app has limited access to other apps’ information; an

Android app can only access the manifest files of other apps and

their APK binaries [32, 33]. The Android framework does not allow

any system and user apps to monitor other apps’ runtime behaviors.

Therefore, monitoring runtime behaviors requires support from

the Android framework.

Client-side defense. Detecting voice phishing apps in app mar-

kets is not directly effective in protecting phishing victims. We

note that voice phishing apps are distributed via SMS texts, and

phishing victims install these apps on their devices even though

they are not from legitimate app markets (§2). Thus, enhancing the

vetting process of these apps in app markets has limited impact in

preventing victims from being abused.

Less privacy-intrusive. A defense method should be less privacy

intrusive such that users have no needs to provide their privacy-

sensitive information to another party. Also, it should not leak

privacy-sensitive information to other mobile apps.
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Figure 4: HearMeOut architecture.

5.2 Overall Architecture

We propose HearMeOut, an Android system that detects voice

phishing activities in runtime and warns users of the detected

activities via system-level notifications.

Figure 4 illustrates the overall architecture of HearMeOut, which

consists of two components: Detector and Blocker. These com-

ponents operate as Android system services. At a high level, these

components work together to perform two steps: (1) Detector

detects suspicious voice phishing activities; and (2) Blocker blocks

detected suspicious voice phishing activities.

Note that theAndroid framework has several software layers [34]:

it consists of the Linux kernel, hardware abstraction layer (HAL)

that manages Linux kernel drivers, Android runtime, the API frame-

work, and system/user apps. As Figure 4 shows, voice phishing apps

perform phishing behavior by invoking Android APIs provided by

five service managers at the API framework layer (§3). The con-

text information that pertains to invoking each of these APIs, such

as the invocation time, actual arguments, and the app name of

calling the API, provides rich information to distinguish phishing

behaviors from benign ones. We revised these APIs to pass context

information to Detector.

Detector.Detector detects voice phishing behaviors that phish-

ing apps conduct. It detects call redirection, call screen overlay, and

fake call voice. Detector leverages the context information when

invoking the APIs of Telephony, Telecomm, Broadcast Receiver,

View, and Media modules.

Blocker. Blocker is designed to block phishing behaviors that

Detector identifies. When a voice phishing app exhibits call redi-

rection, call screen overlay, or fake call voice, Blocker blocks any

of these phishing behaviors. In particular, when a call redirection

attempt occurs, Blocker displays a warning dialog, as shown in

Figure 5, along with an alarm sound and vibration simultaneously.

The warning dialog is designed to leave an active warning that

hinders users from ignoring the warning message. For this, we

Figure 5: Phishing redirection call detection warning mes-

sage in HearMeOut.

referenced previous active warning studies for web browsers and

Android [5, 6, 39, 42, 74].

The warning dialog provides a description that explains that call

redirection occurred due to a specific Android app while providing

three options: (1) make an outgoing call to the original phone

number that the user provided, (2) make an outgoing call to the

redirected phone number, or (3) terminate the outgoing call. We

intentionally make it difficult for users to choose the second option

by not providing a clickable button.

6 IMPLEMENTATION

We implemented HearMeOut in Android 8.1 [30] and revised all

phishing-relevant APIs at the Android framework layer to imple-

ment the detection of phishing activities.We now describe the detec-

tion method for each type of phishing behavior, along with criteria

to distinguish between phishing and normal activities. To identify

the characteristics of benign functionalities, we used the 59,869

benign apps crawled from Google Play (§4.2). For each phishing

functionality, we sampled 200 benign apps that have permissions

or Intent filters required to implement the respective functionality.

That is, this preliminary analysis guided us in devising a detection

policy for each phishing functionality.

Call redirection. To detect a phishing behavior that commits call

redirection,Detector compares the original call number the victim

enters to the final outgoing call number. When call redirection

occurs, Detector starts by identifying the original and final call

numbers. It then checks whether the final number includes the

original number. If the initial call number is not a substring of the

final number, Detector regards this recall redirection attempt as a

phishing activity.

Specifically, we revised broadcastIntent(), which initiates call
redirection [94] to obtain the initial call number. We also modified

setResultData(), which changes the outgoing call number [36]

and extracts a package name that changes the number via calling

this API. Detector checked these two numbers in onCreateOut-
goingConnection(), which is a callback that occurs upon every

outgoing call event [8].
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We note that the phishing apps’ pattern of changing outgoing

call numbers is highly distinctive from that of benign apps. We

analyzed 1,045 apps that use the PROCESS_OUTGOING_CALLS per-

mission and the ACTION_NEW_OUTGOING_CALL Intent filter, which
are required conditions for call redirection. We manually analyzed

the decompiled code of their Intent receivers for ACTION_NEW_-
OUTGOING_CALL; we observed that most apps were designed to add

local prefix numbers or to simply acknowledge outgoing call events.

We found only three exceptions of benign apps that automatically

appended a specific number (i.e., *281) to the original call number

to support the “number plus” service [29]. On the other hand, voice

phishing apps attempt to replace an original call number with a

completely different call number that belongs to the attacker. There-

fore, leveraging the inclusion relationships between the initial and

final call numbers enables detecting phishing activities without

false positives and negatives.

When Detector detects call redirection, Blocker cancels the

outgoing call at onCreateOutgoingConnection() and displays

the warning dialog shown in Figure 5 using WindowManagerImpl.
addView().

Note that we directly changed the function body of each API,

instead of demanding Android SDK updates to enforce the security

policies that depend on a target SDK version (§4.2). HearMeOut is

thus able to monitor abusive usage patterns of APIs regardless of

the target SDK versions that phishing apps use.

Call screen overlay. Detector checks whether the call screen

overlay (1) appears immediately after an incoming or outgoing call

occurs and (2) covers the area where the original phone number

appears. We devised the first condition based on our observation

that all call screen overlays work in tandem with call redirection

(§3.3). The second condition captures phishing behaviors that hide

original call numbers.

Specifically,Detector first checkswhether WindowManagerImpl.
addView(), which dynamically adds the overlay to the layout [47],

is called after onCreateIncomingConnection() or onCreateOut-
goingConnection() is called. Detector checks whether the time

difference between two API invocations is within one second. De-

tector then computes the position and size of the created overlay

via WindowManagerImpl.addView() and checks whether it covers

the calling number of the call screen in a Pixel 2 device. Detector

computes whether the overlay covers the entire width of the screen

where the call number is displayed.

We analyzed 200 randomly sampled apps from 59,869 apps that

declared android.permission.SYSTEM_ALERT_WINDOW. No apps

displayed an overlay on the call screen nor hid the authentic phone

number with this overlay. Only phishing apps attempted to cover

the display portion where the phone number appears (§3.3).

When Detector detects the call screen overlay, Blocker re-

moves the call screen overlay in the WindowManagerImpl.remov-
eView().
Fake call voice. Detector detects any attempts to play a fake call

voice by checking whether a target app plays any voice recording

immediately after the outgoing call occurs. Specifically, Detec-

tor checks if MediaPlayer.start(), which plays an audio/video

resource [37], is called after onCreateoutgoingConnection() is

invoked within a fixed time interval.

Activity

# of

Phishing Apps

# of

Benign Apps
Accuracy

Call redirection 12 6

100%Screen overlay 6 15

Call voice 6 20

Total 12 33 100%

Table 2: Accuracy of each phishing detection method.

When Detector detects the fake call voice, Blocker blocks

playback of the voice file in MediaPlayer.start().

7 EVALUATION

We evaluate the efficacy of HearMeOut in detecting voice phish-

ing behaviors (§7.2) and measure the performance overhead of

HearMeOut in identifying such behaviors (§7.3).

7.1 Experimental Setup

We conducted experiments with a Pixel 2 smartphone running the

revised AOSP 8.1 with HearMeOut [30]. The device has a 2.35 Hz

2-core CPU, 64 GB storage, 4 GB RAM, and a 2,700 mAh battery.

Benchmarks. We ran a series of experiments on 12 live voice

phishing apps collected from the anti-virus corporation (§3). Note

that it is difficult to obtain live phishing apps because phishing

apps usually have a short time window for their active phishing

campaigns. After this short time window, they terminate their

command and control servers, rendering phishing apps no longer

functional. We also prepared 53 benign apps sampled from our

benchmarks of 59,869 apps in the Play Store [15, 16, 17, 35].

7.2 Detection Accuracy

We measured the accuracy of HearMeOut in detecting phishing

activities in runtime. Table 2 shows our experimental results. Each

row corresponds to a phishing activity that we tested for HearMe-

Out. The second and third columns show the numbers of phishing

and benign apps, respectively, that implement the corresponding

activity.We counted these numbers by checkingwhether the respec-

tive apps implement the corresponding functionality by manually

analyzing the decompiled code and manifest files of 53 benign and

12 phishing apps. The benign apps we collected for accuracy test-

ing include the following: “number plus” service apps that use call

redirection APIs, spam blocking apps that use overlay, and blocking

APIs, music playback apps that use voice play APIs, and personal in-

formation management apps that access SMS messages and contact

lists.

Triggering phishing activities. We manually conducted the fol-

lowing tests for each app to execute APIs that HearMeOut monitors.

• Call redirection: We made an outgoing call to the specific call

number that the app under testing shows in its main activity.

We observed that the main windows of all six phishing apps

displayed the actual phone numbers of the organization that

they disguised themselves as. For example, to trigger call

redirection from the six phishing apps, we made an outgoing

call to 1644-7777, which is an authentic Shinhan savings

bank’s phone number that the app shows in its main activity

window. For benign apps, we followed the guideline of each

app to turn on the call redirection function (e.g., the “number

plus” service [29]).
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Activity

w/o HearMeOut w/ HearMeOut

Phishing

Apps

Benign

Apps

Phishing

Apps (ΔTime)

Benign

Apps (ΔTime)

Call redirection 155.03 154.25 155.81 (+0.78) 154.42 (+0.17)

Screen overlay 10.86 10.86 10.97 (+0.11) 10.93 (+0.07)

Call voice 12.33 12.30 12.52 (+0.19) 12.50 (+0.20)

Table 3: Average execution time (ms) of each benign and

phishing activity with/without HearMeOut.

• Screen overlay and call voice (media play): For every phish-

ing app, we triggered call redirection to invoke screen over-

lay or fake voice call functionalities. Remind that these func-

tionalities work together with call direction (§3). For each

benign app, we played music or triggered a functionality

that shows overlaid alert messages with phone number in-

formation for scamming calls.

As the table shows, HearMeOut accurately detected phishing

activities without false positives and negatives. These results show

that the detection methods of Detector, which leverage the abu-

sive patterns of using Android APIs, are effective in detecting phish-

ing activities.

Note that we did not use these live phishing apps to devise

detection policies for diverse phishing behaviors (§3). Nevertheless,

HearMeOut still shows high detection accuracy, demonstrating

that HearMeOut captures common phishing patterns of abusing

APIs. We also observed that the existing blacklist- or signature-

based methods [40, 93, 102, 110] did not detect any of these live

phishing apps, demonstrating their limitations. They suffer from

false negatives when encountering new apps for which they do not

have matching signatures (§4.1).

7.3 Performance Overhead

Wemeasured the execution time and power consumption of HearMe-

Out in identifying phishing activities for 53 benign and 12 phishing

apps.

Execution time.We ran each phishing activity 10 times using the

activity-triggering method mentioned in Section 7.2 and measured

the average execution time for each activity. In particular, we mea-

sured the execution time from when an activity started to when

the activity was completed. For each activity, the execution time

was measured according to the following criteria.

• Call redirection: execution time from the occurrence of an

outgoing call Intent to the connection of the outgoing call.

• Call screen overlay: execution time of the addView()method.

• Fake call voice: execution time from the MediaPlayer in-

stance creation to the MediaPlayer.start() method com-

pletion time.

To measure the impact of HearMeOut on the performance of the

entire Android system, we compared its performance with and

without HearMeOut. Table 3 shows the average execution time

for each activity with and without HearMeOut. We observed that

the execution overhead of HearMeOut was negligible; the addi-

tional average latency in detecting a phishing activity was 0.36 ms.

We note that this additional latency includes the execution times

of the monitoring logic in revised APIs, the detection process of

Detector.

Call 
red

irec
tio

n

+ Scre
en over

lay

+ Call 
voice

Phishing apps Benign apps

Figure 6: Average battery consumption for each scenario

with/without HearMeOut.

For each functionality, we plotted the empirical cumulative dis-

tribution function (CDF) of observed latencies with and without

HearMeOut. We noticed that the latency differences were negligible.

HearMeOut required up to 0.65 ms of additional latency in median

latency (50% of the CDF) and 5.8 ms of additional latency in the

90% of the CDF that call redirection causes.

Power consumption.We conducted each activity triggering sce-

nario 10 times and measured the average power consumption of

HearMeOut for 53 benign and 12 phishing apps. To measure the

amount of consumed power, we used the Battery Historian pro-

filer [7], which is a battery information measurement module de-

veloped by Google. This tool estimates the battery consumption of

an Android device caused by the Android system, running apps,

Wi-Fi, CPU calculations, etc. Among these factors, we focus only

on analyzing the power consumption of apps under testing and the

Android system, which are directly related to phishing activity.

Figure 6 shows the average battery consumption for each activity

with/without HearMeOut. We observed that the additional battery

consumption of HearMeOut is negligible; the additional average

battery consumption of the activity detection process was 0.00068

mAh (0.09% increased) compared to without HearMeOut.

8 USER STUDY

To measure the efficacy of HearMeOut in mitigating voice phishing

threats involving call redirection, we recruited 45 participants and

investigated their responses to phishing behaviors. We describe

user study designs (§8.1) and experimental results (§8.2).

8.1 Experimental Design

Phishing app.We implemented amock phishing app that conducts

call redirection, call screen overlay, and fake call voice. We designed

the phishing app to disguise itself as the Woori mobile bank app,

one of the largest banks in South Korea. We implemented call

redirection to redirect any outgoing calls to a Woori Bank official

service center to our actor’s mobile phone number.

Actor. We hired an actor to play the role of a voice phishing fraud-

ster. The actor had prior experience of working as a service repre-

sentative at a bank call center for three years. The actor pretended

to be a Woori Bank call service agent. We instructed the actor to

impersonate a Woori Bank agent and ask for personal informa-

tion from participants who made calls to the actor. Specifically, the
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actor asked for five types of personal information: name, occupa-

tion, residential address, bank account number, and social security

number.

Participants. From November to December 2021, we recruited a

total of 45 participants, consisting of 26 males and 19 females (ages

20 to 63). All participants were Android mobile phone users and had

called a Woori Bank official service center within the past month.

In the recruiting process, we advertised the user study as a call

interaction observation study.

Each participant was offered $10 to participate in their own

phishing scenario, which took approximately 30 to 40 minutes. For

each participant, we prepared a Pixel 2 mobile phone pre-installed

with our phishing app. We then asked them to call theWoori Bank’s

official service center. The participants were also asked to inquire

about applicable loan products along with loan interest rates, loan

repayment periods, and loan limits. Participants’ calls to the Woori

Bank service center were redirected by our phishing apps to our

actor. When the participants asked about applicable loan products,

the actor requested their name, occupation, bank account number,

and social security numbers to look up the loan information.

From the 45 participants, we randomly assigned 23 participants

to a group not using HearMeOut (i.e., the control group) and the

remaining 22 to a group using HearMeOut (i.e., the experimen-

tal group). Accordingly, the 22 participants in the experimental

group were intended to observe HearMeOut displaying phishing

redirection warning messages (see Figure 5).

At the end of the user study, each participant was asked to

complete a survey asking about their awareness of the ongoing

voice phishing campaign and the meaning of the warning dialog.

The questionnaires are described as follows:

• Did you think the phishing app you used was a real banking

app? Why, or why not.

• Did you think the person on the phone was aWoori Bank service

representative? Why, or why not.

• Did you understand the message in the HearMeOut warning

dialog?

Ethics. We designed a user deception study to simulate a real-

world voice phishing scenario. We obtained IRB approval with

the following restrictions. (1) We were only to collect personal

information pertaining to the user study. (2) We were not to tamper

with the WooriBank daily operations. (3) We were to obtain two

consent forms from each participant: one for the informed study

(i.e., call interaction observation) at the beginning of the user study

and the other for the intended study (i.e., voice phishing) at the

end of the user study. (4) We were to destroy collected personal

information belonging to each individual, except for aggregated

statistics for publication.

Furthermore, we explicitly informed the participants that they

did not need to provide unwanted personal information during

the experiment and had the option to stop the user study at any

time. In addition, after the study was finished, each participant was

informed of the original purpose of the study and given the option

to have all experimental data discarded. No participants requested

the disposal of their user study results.

Control Experimental

Total # of Participants 23 22

Call redirection occurs 23 (100%) 0 (0%)

Trusts callee as a bank agent 20 (87%) 0 (0%)

Gives personal information 16
†
(69.6%) 0 (0%)

†
We exclude four participants who were reluctant to provide personal information in the user

study.

Table 4: Experimental results for participants with andwith-

out HearMeOut.

8.2 Experimental Results

Table 4 summarizes the experimental results of the user study.

Overall, we observed that the participants in the control group

without HearMeOut were highly susceptible to voice phishing. In

particular, 20 participants (87%) believed that their outgoing calls

were connected to a Woori Bank service representative, and 16

participants (69.6%) provided their personal information. On the

other hand, none of the 22 participants in the experimental group

with HearMeOut called the redirected phone number. These results

demonstrate that the displaying warning message of HearMeOut in

Figure 5 is effective in mitigating voice phishing threats involving

outgoing call redirection.

Control group without HearMeOut. We noticed that 20 par-

ticipants had called the Woori Bank’s service center within the

past month. However, they did not raise their doubt on possible

voice phishing campaigns. Table 5 shows reasons that contributed

to the victims being deceived by voice phishing. All the deceived

participants trusted the person they called as an authentic service

representative because they had directly entered the phone num-

ber themselves. They did not think that the outgoing call number

could be changed by a phishing app. Also, 10 of 20 participants

were deceived because the recipient’s call number on the outgoing

call screen was the authentic number with which the phishing app

had covered the redirected number using a fake call screen overlay.

In addition, six participants believed that they were connected to

Woori Bank because of the Woori Bank’s automatic greeting voice

that the phishing app played. We emphasize the critical threat that

voice phishing apps pose especially when outgoing call redirection,

call screen overlay, and fake call voice operate together.

Among the 20 deceived participants, 10 participants had prior ex-

periences of receiving voice phishing calls several times. They were

already aware of the threat that voice phishing renders. However,

they did not account for the possibility of getting their outgoing

calls changed. These results reveal that the general public are less

familiar to the unique threat that voice phishing apps pose than

does traditional voice phishing.

Interestingly, three participants noticed that the recipient of

the outgoing call was not a Woori Bank service representative.

Two of them answered that they suspected the recipient because

they were not first connected to Woori Bank’s automatic response

system (ARS) but were instead directly connected to the service

representative. Another participant answered that he noticed that

the actor’s questions were too simple compared to a real agent’s

questions based on his prior experience of requesting a loan product.

We noticed that the participants’ suspicion of the authenticity

of the phishing app affected the success rate of the voice phishing

campaign. All 12 participants who believed the phishing app as
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Reasons # of participants

Just entered the call number to Woori Bank 20 (100%)

Callee’s reliable tone and words 12 (60%)

Correct number displayed in the call screen 10 (50%)

Woori Bank’s automatic greeting voice played 6 (30%)

Table 5: Reasons for believing that the recipient was aWoori

Bank agent. Participants were able to select multiple rea-

sons.

an authentic Woori Bank app were deceived by voice phishing. By

contrast, 10 participants raised doubt on the authenticity of the

phishing apps. Three participants of them noticed that the recipient

of their calls was not a Woori Bank service representative. However,

70% were still deceived due to call redirection.

Experimental group with HearMeOut. None of the 22 partici-

pants in the experimental group called the redirected phone number,

indicating that the HearMeOut warning prevented the participants

from calling the redirected number.

Among the 22 participants, 12 were aware of all three clickable

options in Figure 5. They said that there was no reason to call the

redirected number. Eight participants only recognized two buttons

and not the button to call the redirected number. They did not read

thewarningmessage carefully. However, in the end, the participants

did not call the redirected number and called the original phone

number, which fulfills the intended goal of preventing phishing.

The eight participants pressed the call button that connected to

the phone number that they entered. Another participant made a

call after deleting the phishing app. After reading the warning, she

thought it would be a good idea to delete the phishing app because

it changed the outgoing call number. The other one stopped the

experiment before any outgoing call occurred; he thought that the

phone might be connected to a phishing scammer.

9 LIMITATIONS AND DISCUSSION

HearMeOut deployability. HearMeOut has a limitation in that

it requires the Android system changes to implement Detector

and Blocker. This means that HearMeOut requires support from

key AOSP maintainers and phone manufacturers [65], such as

Google, Samsung, and Motorola. Note that Android phone manu-

facturers have been providing security updates every one to three

months [10]. We believe that HearMeOut can be shipped to end

users via these security updates of Android frameworks.

We hope that these key players become more active in iden-

tifying phishing activities in runtime. As we mentioned, finding

more phishing apps and updating Android APIs have a limited

impact on preventing phishing apps from abusing victims (§5.1).

These phishing victims download their phishing apps via URLs

and give full consent to them, and fraudsters use low Android SDK

versions to bypass the restrictions in using APIs. We argue that

AOSP changes for HearMeOut are small but effective in preventing

mobile phishing victims from being abused.

Other voice phishing methods. Note that there are other types

of phishing mitigation, such as phishing voice classification and

warning of suspicious SMSs. These methods focus on identifying

primitive phishing attempts. However, HearMeOut focuses on iden-

tifying phishing call redirection activities that mobile phishing apps

conduct to deceive victims, such as call redirection and call screen

overlay. Therefore, HearMeOut is a complementary tool to the ex-

isting approaches, but is designed to identify advanced phishing

activities.

Comparison with incoming call voice phishing. Voice phish-

ing using outgoing calls could be more effective in deceiving victims

than voice phishing methods using incoming calls. Our experimen-

tal results show that 87% of participants were tricked by phishing

campaigns involving call redirection and that 69.6% disclosed their

personal information. The success rate of this outgoing call voice

phishing campaign was two to six times higher than for incoming

call voice phishing campaigns. Aburrous et al. [1] measured the suc-

cess rate when a female co-worker contacted employees by phone

and asked for their Internet banking credentials. They were able

to deceive 32% of the employees into giving out their e-banking

credentials. In more recent work, Tu et al. [109] executed an im-

personation telephone phishing scam and found that the spoofed

Caller ID had a significant effect in tricking victims. They achieved

a 10.33% deception rate in convincing recipients to divulge the last

four digits of their social security numbers. A distinct advantage of

outgoing call voice phishing over incoming voice phishing is that

victims trust the outgoing call number because they enter it them-

selves. In our experiment, all 20 deceived participants answered

that they trusted the callee as a Woori Bank agent because they

had entered the Woori Bank call number themselves.

Android countermeasures. Android has been restricting app in-

stallation from unknown sources by explicitly asking a user’s con-

sent when the user attempts to install an app by clicking the URL

in a phishing SMS message. However, numerous legitimate apps

from corporations and organizations have been using the same

installation channel, educating the general public more susceptible

to app installation from unknown sources. Also, Google Protect

has been warning users when the users attempt to install known

malicious apps. However, we observed that 12 live phishing apps in

Section 7.1 were not triggered by Google Protect until their phishing

campaigns were over, rendering them alive for up to three weeks.

We believe that this is due to (1) the short-lived nature of mobile

phishing apps that keep changing their app signatures and (2) the

distribution channel of using SMS messages, not exploiting official

app markets, including Play.

Call redirection in iOS. iOS does not provide APIs to perform

call redirection in iOS [59], which renders the attackers unable to

change a recipient call number. Also, iOS does not allow creating an

overlay on top of other apps. Only an app in the foreground is able

to display an overlay [60, 63], thus making the attackers unable

to create a fake call overlay to replace the outgoing call number

displayed on the screen. By contrast, iOS apps can play media files

in the background [62], which the attacker may abuse to play fake

call voices. In addition, fraudsters have restrictions in distributing

iOS phishing apps; iOS provides limited ways of installing apps

besides App Store. Thus, victims may install phishing apps only

through iTunes or Xcode on their devices [61, 64]. However, these

installation channels require physical access to iOS devices, thus

rendering fraudsters difficult to install phishing apps on victims’

iOS devices. We believe that these exclusive policies not allowing to

install apps from third-party sources are not applicable to Android

ecosystem. Android is based on an open-source ecosystem that
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involves diverse device manufacturers and other legitimate app

markets.

10 RELATEDWORKS

Phishing. Previous research has proposed numerous techniques

for analyzing and identifying email phishing attacks [54, 55, 56, 87].

The most common way to detect phishing attacks has been content

filtering in an anti-spam manner, including URLs, messages, and

attachments [27, 38, 54, 78, 105, 106, 114]. IdentityMailer [4] detects

email phishing attacks based on the trained behavior models of

senders. The authors extracted header information from an email,

timing patterns, and stylometric features for each user. Ho et al. [54,
55] investigated lateral phishing whereby attackers take over a

compromised legitimate account and then send phishing emails.

Another recent line of research focuses on the identification of

phishing webs. Several approaches rely on blacklisting by lever-

aging crowdsourcing [43, 75, 83, 88] and reputation systems [77]

to improve detection accuracy. Han et al. [51] analyzed the en-

tire life cycle of phishing websites by using a honeypot system.

In particular, they measured the impact of blacklisting services of

the reported or discovered sites by security companies from the

time they were first installed. Unfortunately, blacklisting services

have their own limitations since phishing attacks rarely last more

than a few days [99]. Phishing blacklists also suffer from incom-

plete coverage [14], behavior-based JavaScript evasion [86], and

cloaking [58, 85].

Telephone scams. There has been a surge in research in the tele-

phone domain for telephone support scams [53, 82], voice spam [19,

66, 108, 113], and voice phishing [22, 23, 49, 50, 79, 109].

Maggi [79] studied the modus operandi of incoming call voice

phishing attackers by analyzing the reports of voice phishing vic-

tims. In particular, the authors investigated several attributes, in-

cluding Caller ID, transcribed conversations, subject, and language,

and revealed that the phishers relied on automated responders to

make it easy to conduct and maintain their phishing campaigns.

Tu et al. [109] conducted a large-scale phishing study, showing that
incoming call telephone scams were unexpectedly successful. This

work has uncovered that the incoming call telephone scam can

be made more convincing by spoofing the caller ID. Chang and

Lee [22] proposed an incoming call voice phishing detection system

incorporating the codec parameters of the transmitted speech in-

formation. Several data collection systems have been studied, such

as emplacing phone bots [80] or deploying honeypots [50].

None of these techniques can fully characterize the voice phish-

ing threats using the victim’s outgoing call from voice phishing

apps and, therefore, are incapable of defending against attacks from

these apps. Unlike the existing voice phishing studies, however, we

first measured the effect of voice phishing using outgoing calls, an-

alyzed the apps used for voice phishing, and designed HearMeOut,

a mitigation method of voice phishing.

11 CONCLUSION

We conducted the first investigative study that manifests the key

functionalities of voice phishing apps, which have been largely

understudied. Our analysis results reveal (1) key voice phishing

functionalities, including call redirection, and (2) the limitations of

currently available mitigation methods by demonstrating how they

fail to protect victims. We propose HearMeOut, which addresses

the shortcomings of existing approaches, and suggest changes to

the Android system for monitoring suspicious runtime behaviors

involving voice phishing. Our user study demonstrates that HearMe-

Out is capable of preventing users from calling fraudsters by display-

ing active warnings. Our findings facilitate a better understanding

of Android voice phishing apps. We conclude by calling for changes

to the Android system in order to expand protection to users from

voice phishing apps that are not even from legitimate app markets.
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