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ABSTRACT
When using a Content Delivery Network (CDN), domain owners
typically delegate Transport Layer Security (TLS) authentication to
the CDN by sharing their TLS certificate’s private key. However,
this practice not only delegates TLS authentication but also grants
the CDN complete control over the certificate. To mitigate these
concerns, Delegated Credential (DC) was proposed as a solution;
DC, which contains both the CDN’s public key and the domain
owner’s signature, allows the domain owners to delegate their own
credentials for TLS authentication, thereby avoiding the need to
share their private keys. However, the absence of a mechanism to
distribute the revocation status of a DC renders it non-revocable,
even when a compromise of a credential has been detected. DCs
were thus designed to be short-lived, necessitating frequent renewal
for continued use.

To overcome this limitation, we designed Revocable Delegated
Credential (RDC), which provides a revocation method for DCs.
With RDCs, there is no need for frequent renewals as they can
be revoked, allowing for a longer validity period. The revocation
status of RDCs is distributed via DNS, an essential component
of web communication. RDCs utilize the NSEC record, a type of
DNSSEC record, as a means to store, validate, and easily manage
their revocation status. When domain owners no longer trust their
CDNs or detect compromise in their RDCs, they can distribute the
RDC’s revocation status by simply creating a subdomain named
with an RDC identifier. The browser then confirms the existence of
this subdomain using the NSEC record to validate the revocation
status. We implemented RDC in the go tls package and Firefox
Nightly to demonstrate and evaluate its feasibility.
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1 INTRODUCTION
A Content Delivery Network (CDN) is a distributed network of
servers that domain owners use to improve website performance,
reliability, and cost-efficiency. By caching website contents on mul-
tiple servers that are geographically closer to end-users, CDNs
can reduce latency, leading to significant improvements in website
performance. Additionally, CDNs use load balancing and redun-
dancy mechanisms to provide reliable content delivery even during
server failures; this enhances the user experience, improve website
availability, and lower infrastructure costs.

However, the combination of HTTPS and CDNs can create chal-
lenges due to their inherent incompatibilities. HTTPS is a commu-
nication protocol that is authenticated and encrypted by Trans-
port Layer Security (TLS). For a CDN to operate a service through
HTTPS, the CDN needs to perform TLS authentication using the
domain owner’s TLS certificate. However, the TLS protocol assumes
end-to-end communication and does not offer an explicit method
of delegation, which makes it challenging for the domain owners
to delegate their TLS certificates to CDNs. Consequently, domain
owners delegate TLS authentication to CDNs either by allowing
CDNs to generate TLS certificates and private keys on their behalf
or by sharing their own TLS certificates and private keys with the
CDNs. [22, 39].

Sharing the TLS certificate’s private key with a CDN not only
poses theoretical security risks but also creates practical challenges
when a domain owner decides to stop using a CDN (i.e., due to loss
of trust) or when the delegated key had been compromised. If the
CDN generates the TLS certificate on behalf of the domain owner,
which is a common method for sharing the TLS certificate’s private
key, the domain owner may not have control over the TLS certifi-
cate, preventing the domain owner from being able to revoke the
certificate. Even if the domain owner generates the TLS certificate
himself and then shares the certificate and its private key with the
CDN (allowing the domain owner to have control over the TLS cer-
tificate and revoke it as needed), proper revocation of the certificate
is still not guaranteed because the revocation status of the TLS cer-
tificate may not be correctly delivered to the browser[9, 12, 25, 42].
In such cases, the domain owner must accept the potential risk of
an untrusted third party possessing access to TLS authentication
during the certificate’s remaining validity period.

Several solutions [10, 20, 30, 36, 38–40, 46–48, 57, 58, 60] have
been proposed for delegating TLS authentication without sharing
the TLS certificate’s private key. Cloudflare has proposed Keyless
SSL [10], which allows TLS authentication without sharing the
TLS certificate’s private key by introducing a key server under
the domain owner’s control. However, this necessitates that the
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domain owner maintain a highly available key server for uninter-
rupted service, adding an additional responsibility for domain name
owners. Other methods [20, 30, 36, 38, 40, 46–48, 58, 60] have been
proposed to protect not only the TLS authentication key but also
the TLS encryption key during delegation. However, such methods
have trade-offs such as performance degradation, high deployment
costs, and limitations in using the full functionality of CDNs, which
ultimately reduce the benefits of using CDNs.

Mozilla, Facebook, Cloudflare, and Cisco have proposed a recent
advancement called Delegated Credential (DC) [57], which allows
domain owners to delegate TLS authentication by issuing their
own credentials that contain the CDN’s public key and the domain
owner’s signature. DC enables the signing and verification of TLS
authentication using its key pair, and therefore, the domain owners
do not need to share their TLS certificate’s private key. However,
because DCs do not have a storage that can be used to store and dis-
tribute their revocation status, they cannot be revoked. Inevitably,
DCs were designed to be short-lived to allow for expiration at the
end of their short lifespan. Since DCs are short-lived credentials,
domain owners are required to maintain an issuance server capable
of issuing DCs frequently, often up to every 7 days, which dimin-
ishes the advantages of utilizing CDNs. Consequently, we observed
that only 29 domains out of Tranco’s top 100k [37] are utilizing
DCs, signifying a relatively small fraction of delegations that use
this method [16].

In this work, we propose Revocable Delegated Credential (RDC),
which provides a revocation method for DC. Similar to DCs, RDCs
can be utilized to sign and verify TLS authentication messages using
their own key pair, eliminating the need for the domain owners
to share their TLS certificate’s private key. What sets RDCs apart
from DCs is the added capability for the domain owners to revoke
their RDCs in situations where they no longer wish to use a CDN
(i.e., due to trust issues) or if the RDC’s key had been compromised.

The primary challenge with RDCs is finding a reliable and se-
cure method of distributing their revocation status. To address
this challenge, we leveraged the DNS infrastructure. We ensured
that the revocation status of RDCs are protected by Domain Name
System Security Extensions (DNSSEC)[50] and DNS-over-HTTPS
(DoH)[23] infrastructure during distribution, which in turn ensures
reliability, integrity, and confidentiality. To avoid complications
with deployment and distribution of the revocation status of the
RDCs, we leveraged a NSEC record, a type of DNSSEC record, to
store and validate the revocation status of the RDCs. Each RDC is
assigned a unique identifier and its revocation status is determined
by the existence of a subdomain with the same name as this RDC
identifier. Domain owners have the convenience of determining
the revocation status by simply adding or removing a subdomain
that corresponds to the RDC identifier.

We Implemented RDC in a real-world environment to demon-
strate its feasibility. First, we developed an RDC within the TLS
package in Go and the NSS library in Firefox Nightly. This imple-
mentation allowed us to confirm that a TLS server can operate with
an RDC’s private key instead of the TLS certificate’s private key
(Of note, this is also a key feature of DC). Furthermore, we success-
fully validated that a domain owner is able to revoke his RDC by
distributing its revocation status via DNS. During our evaluation,
we observed that TLS handshake using an RDC introduces about

100 ms delay in both the TLS setup time and the page load time
(PLT). This delay can be mitigated by caching of the revocation
status in the DNS resolver, which allows the revocation status to
be more easily accessed. It is worth noting that other solutions that
protect the TLS encryption layer incur their overhead with each
TLS communication; however, the RDC, which protects only the
TLS authentication, incurs overhead only once during the entire
TLS communication. Our contributions are summarized as follows:

• We propose a new design for delegation of TLS authenti-
cation called RDC, which has similar benefits to DCs but
has an added feature of revocability, which is achieved by
utilizing the DNS infrastructure, an essential part of web
communication.

• We utilize a NSEC record, a type of DNSSEC record, to dis-
tribute the revocation status of RDCs while maintaining their
integrity. Domain owners can easily determine the revoca-
tion status by adding or removing a subdomain named with
the RDC identifier.

• We implemented a prototype of RDC into the Go tls package
and Firefox Nightly, and publicly released the source codes1.

• Our evaluation showed that RDC introduces an acceptable
amount of delay to the TLS setup time and the PLT.

2 BACKGROUND
2.1 Content Delivery Network
CDNs are third-party vendor services that host domain owners’
websites and the data on their servers on behalf of the domain own-
ers. CDN infrastructures consist of regional data centers, known
as PoPs (points of presence), that are responsible for communicat-
ing with nearby users. In general, each PoP contains several edge
servers that act as reverse proxy web servers for caching, optimiz-
ing connections, and providing other content delivery capabilities.
Delegating website operations to a CDN allows domain owners to
provide end-users with reliable and high-performance web services.

2.2 Delegation to CDNs
Currently, the majority of HTTP packets are protected by TLS
[19, 28, 29], and the protocol used to protect HTTP with TLS is
called HTTPS. Thus, for domain owners who use HTTPS to protect
their web services, delegation of the web service operation to a
CDN also requires delegation of TLS authentication to the CDN.
TLS certificate. A TLS certificate is utilized for authentication
of the identity of a domain owner. A TLS certificate binds a do-
main name to a public key, allowing the domain owner to prove
ownership of the domain by demonstrating possession of the corre-
sponding private key. Browsers store a list of their trusted certificate
authorities (CAs) in the form of a root store and accept only these
certificates that have been issued by the CAs registered in their
root store as trustworthy [14, 17, 18].
TLS authentication. The TLS protocol consists of two stages:
authentication and encryption. During the authentication phase,
authentication is achieved by proving the domain owner’s posses-
sion of the private key corresponding to the TLS certificate.

1The source code of the Go tls package and the NSS library are available at
https://github.com/revtls/revtls.
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Here, we provide a concise summary of the TLS authentica-
tion procedure. First, the domain owner’s TLS server sends an
Authentication message in response to the browser’s ClientHello.
This Authentication message consists of a Certificate message con-
taining the domain owner’s TLS certificate and a CertificateVerify
message signed with the private key of the TLS certificate. The
browser then completes the authentication process in three steps.
First, it verifies whether the TLS certificate in the Certificate mes-
sage was issued by a trusted CA. Second, it checks whether the
domain name specified in the certificate matches the domain name
that the browser is trying to access. Finally, it validates the Certifi-
cateVerify message using the TLS certificate’s public key to confirm
that the domain owner possesses the private key of the TLS certifi-
cate.

Once the TLS authentication process is finished, both the origin
server and the browser will create a symmetric encryption key
(session key) based on the parameters negotiated during the TLS
handshake, which will be used to establish a secure connection
between them.
Lack of delegationmechanism. CDNs are placed between the do-
main owner’s origin server and the end-users’ browsers to optimize
content delivery. However, the communication model of CDNs is
incompatible with TLS, which is designed to provide end-to-end
authentication and encryption. Neither the X.509 standard [52] (the
standard form of TLS certificate) nor the TLS standard [56] supports
explicit delegation. As a result, many domain owners are resorting
to abnormal means, such as sharing the TLS certificate’s private
keys, in order to delegate their TLS authentication to CDNs [22].

2.3 Current Practices of Delegation
Sharing TLS certificate’s private keys. Sharing the TLS certifi-
cate’s private key is a commonly used method for delegating TLS
authentication to CDNs today [22]. There are two main methods by
which CDNs and domain owners can share the certificate’s private
keys. The first method involves the CDN generating and managing
the certificate and the private key on behalf of the domain owner.
While this method may be convenient for domain owners, several
CDNs providing this method may not authorize the domain own-
ers to access their certificates and private keys, thereby making it
challenging for the domain owners to revoke them. For instance, a
CDN can provide the domain owner with an option to deactivate
a shared certificate through its platform, rather than providing an
option to revoke the certificate. To test whether the deactivation
of a shared certificate successfully revokes the certificate, we con-
ducted a simple test on Cloudflare’s CDN [2], which is the largest
CDN by customer count [1, 8]. We first generated a certificate via
Cloudflare’s CDN, then deactivated this shared certificate, and af-
terwards checked its status on the Censys database [27], which
shows the status of every issuance of TLS certificate by trusted CAs.
As expected, the test revealed that the deactivated certificate was
not revoked until expired 2. Therefore, in these situations, even if a
domain owner chooses to stop using a particular CDN due to loss

2Cloudflare uses the Google Trust Service (GTS) CA certificate for the service. We
contacted GTS to request revocation of the certificate and received a response that
we need to revoke it ourselves using the ACME protocol. We attempted to revoke the
certificate using DNS-challenge supported by ACME, but revocation failed due to an
unauthorized error in ACME.

of trust, he would be unable to stop sharing the TLS certificate with
the CDN, which would have become an untrusted third party.

A second method involves the domain owner generating his own
TLS certificate and private key and uploading them to the CDN
provider. In this case, the domain owner can directly request the
revocation of the TLS certificate from the CA. However, several
studies have demonstrated that revocation checking of the TLS
certificate is not carried out properly [12, 15, 25, 39, 42]. Thus, when
a domain owner stop using a CDN, or when a delegated private
key becomes exposed by security breaks in the CDN, the domain
owner may become vulnerable to exposure of the delegation key
until the certificate expires. Fortunately, there has not yet been any
reported incident of compromised private keys; however, attacks
targeting CDNs or vulnerabilities of CDNs have been consistently
discovered [13, 33, 35, 43].
Keyless SSL. Cloudflare has proposed Keyless SSL [10], which
enables domain owners to delegate TLS authentication without
sharing the TLS certificate’s private keys, by allowing domain own-
ers to manage their private keys on a key server. When a CDN
receives a TLS authentication request from a browser, it forwards
the request to the domain owner’s key server, which performs TLS
authentication using the TLS certificate’s private key and returns
the result to the CDN. Accordingly, in order to ensure seamless web
service, domain owners require a highly available key server capa-
ble of reliably processing every TLS authentication request sent by
the browser via CDN. Thus, certain benefits of using CDNs, such
as high web service availability and operational convenience, are
lost. Contrary to its original purpose, Keyless SSL is currently being
used within the CDN infrastructure to manage domain owners’
TLS certificates and private keys [11].
Delegated Credentials. The IETF has developed an Internet Draft
called Delegated Credential (DC)[57] that allows domain owners
to issue their own credentials containing CDN’s public key and the
domain owner’s signature, enabling TLS authentication without
sharing of the TLS certificate’s private key. In the process of TLS
authentication, a key pair associated with the DC can be used
to sign and verify a CertificateVerify message, replacing the TLS
certificate’s key pair. The TLS certificate’s key pair is used to verify
the signature in the DC, ensuring that the DC was legitimately
issued by the correct domain owner.

Yet, DC has a significant drawback that limits its effectiveness:
DC does not provide a mechanism to store its revocation status.
Domain owners have no method of revoking the DC when they
stop using a CDN or when a compromise of DC is detected. Implicit
revocation of a DC is possible by revoking the TLS certificate that
was used to sign the DC. However, if revocation checking of TLS
certificates is not carried out properly, as previous studies have
pointed out[12, 15, 25, 39, 42], there is a possibility that attackers
will continue to exploit the DC. As a result, DC was designed to
be short-lived to limit its exposure. Due to the short-lived nature
of DCs, with a maximum validity period of 7 days, the domain
owners must maintain an available server that is capable of issuing
a new DC every 7 days to avoid disruptions in service. This require-
ment diminishes the benefits of using CDNs to improve web server
availability and operational convenience.

In order to evaluate how DC has been used since its initial draft
in 2017, we analyzed DC-enabled TLS certificates that contain a
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Figure 1: The number of DC-enabled TLS certificates issued
by trusted CAs and registered in CT logs from 2019 to 2023.

special X.509 certificate extension for DC issuance (data obtained
from the Censys [27] database). Figure 1 shows the number of
the DC-enabled TLS certificates that were issued by trusted CAs.
We observed a consistent increase in the number of DC-enabled
TLS certificates being used since DC has been introduced in 2017.
However, these certificates are still used far less than CDNs [16, 22].
Moreover, we discovered that out of more than 4,000 DC-enabled
TLS certificates, only 29 certificates were for domains in the Tranco
top 100K [37]. Based on these observations, we could infer that DC
is currently only being used for a very small portion of delegations.
While there may be numerous reasons for why DC is not being
extensively utilized, the operational cost of issuing DC at frequent
intervals and the lack of support for revocation may be among the
most notable ones.

3 REQUIREMENTS AND DESIGN GOALS
3.1 Requirements
In the current practice, domain name owners relinquish control
of their private key and certificate when they authorize a CDN to
manage their domain. This situation becomes critical if domain
name owners choose to discontinue using their CDNs or if their
certificate becomes compromised. In both scenarios, the certificate
managed by the CA must be promptly revoked. However, under
the current practice, domain name owners lack the ability to do so
themselves [12, 15, 25, 39, 42].

To address these issues, we establish five goals as follows.
G1: No sharing of the domain owner’s private key. One of
the important design goals of RDC is to maintain a key feature of
DC, ensuring the TLS certificate’s private key “private” by avoiding
the need to share it with CDNs. RDC aims to achieve delegation
through sharing of revocable delegation keys instead of the TLS
certificate’s private keys.
G2: Retaining control of revoking delegation keys. As soon as
a compromise of a delegation key is detected, the domain owner
must have the capability to promptly revoke the delegation key.
RDC aims to enable the domain owner to autonomously decide on
revocation status of the delegation key as needed.
G3: Revoking the delegation key without revoking the TLS
certificate. By providing a method to revoke the delegation key
without revoking the TLS certificate, it is possible to minimize the
impact of the revocation checking of the TLS certificate on the
revocation checking of the delegation key. RDC aims to allow the
domain owner to distribute the revocation status of the delegation
key without revoking the TLS certificate via the DNS infrastructure
and its security mechanism.

G4: Compliance of RDC with the current standards and in-
frastructure. RDC aims to comply with the current standards and
infrastructure of HTTPS, ensuring that HTTPS ecosystem partici-
pants do not engage in non-compliant behavior. Furthermore, RDC
is designed using only the existing infrastructure of the HTTPS
ecosystem, without requiring any additional deployments such as
Trusted Execution Environments (TEEs), CT-like servers or special
security modules.
G5: Retaining benefits of using a CDN. RDC aims to minimize
performance degradation and enables the use of full functionality
of CDNs.

Based on these goals, we propose RDC (Revocable Delegated
Credential) that satisfies these five goals to achieve secure delega-
tion of TLS authentication. In (§6), we will examine whether all
five goals of RDC are met when implementing RDC in real-world
scenario.

3.2 Threat Model and Assumption
We assume that domain owners stop using a CDN when they no
longer trust it. Domain owners may believe that a CDN has a soft-
ware or configuration bug that could result in unintended exposure
of the private key corresponding to the delegation key. Alterna-
tively, domain owners may believe that a rogue employee in the
CDN could use the private key for passive or active attacks to obtain
their sensitive data.

Even if the CDN remains trustworthy and the domain owner
continues to use it, the delegation key could be exposed by one or
more edge servers due to security incidents in the CDN. In such
cases, we assume that the CDN will immediately alert the domain
owner as soon as it detects an exposure of the delegation key.

We adopt the Dolev-Yao model[26], which assumes that an ac-
tive adversary has full control over the network. The adversary is
capable of capturing messages in transit and performing actions
such as message modification, dropping, reordering, and injection.
The adversary who obtains the delegation key can also perform
cryptanalysis of the domain owner’s traffic and even launch attacks
such as injecting malicious code on the victim. We consider the sce-
nario where an active attacker can manipulate a victim’s web and
DNS traffic, such as through a man-in-the-middle (MitM) attack.

However, we assume that the attacker does not possess the capa-
bility to compromise authoritative DNS servers and DNS resolvers.
We also assume that the adversary is not capable of breaking stan-
dard cryptographic primitives.

4 REVOCABLE DELEGATED CREDENTIAL
4.1 Design
At a high level, our approach is to delegate TLS authentication
to a CDN by sharing a revocable delegation key. The challenge,
however, is to provide a method for reliable revocation checking
for the delegation key while ensuring its compatibility with the
existing HTTPS ecosystem. To address this challenge, we make
several design decisions. First, we design RDC by extending the
structure of DC to support revocation, which allows to share the
revocable delegation key with a CDN. Second, we utilize DNSSEC
and DoH to enable the domain owner to distribute the revocation
status of the delegation key. Lastly, we extend the TLS protocol to
deliver revocable delegation key during the TLS handshake process
while complying with a set of current TLS standards[52, 56].
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Figure 2: A high-level design of RDC. The domain owner signs an RDC (which contains the CDN’s public key) using their
TLS certificate’s private key and sends it to the CDN. The CDN then deploys the RDC to its edge servers, which performs TLS
authentication using the RDC’s private key instead of the TLS certificate’s private key. The domain owner can distribute the
revocation status for the RDC by using an NSEC record, a type of DNSSEC record, and DoH to protect the revocation status.

Figure 2 provides an overview of the RDC’s design. The first
step involves a CDN generating a delegation key pair (including a
public and private key) and sending the public key to the domain
owner. Next, the domain owner generates an RDC that includes the
public key generated by the CDN, a unique identifier (which we
refer to as a RDC_serial), an expiration date, and a signature signed
by the domain owner using the TLS certificate’s private key. The
domain owner then issues the RDC along with the TLS certificate
to the CDN, which the CDN deploys to its edge servers.

A CDN edge server can perform TLS handshake using the RDC’s
private key to sign the CertificateVerify message instead of the
TLS certificate’s private key. After then, the edge server sends the
CertificateVerifymessage, the RDC, and the TLS certificate to the
browser so that it can verify the CertificateVerify signature using
the RDC’s public key, and can verify RDC’s signature using the
TLS certificate’s public key to confirm whether the RDC has been
issued by the correct domain owner.

If the domain owner decides to stop using the CDN or detects
a compromise of the private key corresponding to the RDC, the
domain owner can revoke the RDC by creating a subdomain named
with a specific RDC_serial. Existence of this subdomain indicates
revocation of the RDC. During the TLS handshake, the browser can
obtain the DNS record, which indicates existence or non-existence
of this subdomain, and confirm the revocation status of the RDC.
This process of delivering the revocation status of the RDC to the
browser is performed securely by a combination of DNSSEC and
DoH, which ensure integrity and confidentiality, respectively. As
long as the domain owner chooses to revoke only the RDC and not
the actual TLS certificate, the RDC can be safely revoked by its own
revocation mechanism without being affected by the suboptimal
revocation checking of the TLS certificate.

Next, we will describe the components of RDC and how they
work together within the HTTPS ecosystem.

4.2 Properties of RDC
An RDC is a credential that extends the data structure of a DC to
allow revocation. The properties of RDC are as follows:

• RDC_serial is a unique identifier used to verify the revoca-
tion status of an RDC. The browser can launch a DNS query
for a subdomain named with the RDC_serial to obtain the
specific RDC’s revocation status.

• ValidTime is the validity period of an RDC. Since an RDC
can be revoked any time, there is no pressure for the validity
period to be short. A long validity period can be set as long
as it falls within the validity period of the domain owner’s
TLS certificate.

• PublicKeyInfo is a CDN’s public key used to verify a Certi-
ficateVerify signature, which is generated by the corre-
sponding private key. It is the same data type as the PublicKe-
yInfo defined in the X.509 standard [52].

• Signature is the signature over the RDC generated by the
private key corresponding to the domain owner’s TLS cer-
tificate. The TLS certificate’s private key can be used to sign
the RDC since the X.509 standard with digitalSignature on
the X509 v3 KeyUsage extension permits it to sign objects
other than X.509 certificates[52].

Similar to the DC, the RDC is sent to the browser along with the
TLS certificate during the TLS handshake. Adding an RDC_serial
to the DC introduces a minor overhead of tens of bytes. Given that
a DC is roughly a few kilobytes and the TLS 1.3 standard allows
up to 16 MB of data in its handshake message, incorporating an
RDC_serial into the DC and sending it during the handshake poses
no issue3. Therefore, the RDC’s secure delivery is also assured by
the TLS handshake protocol.

4.3 RDC revocation
The revocation status of an RDC is determined by the existence or
non-existence of a subdomain created and owned by the domain
owner, named after the RDC_serial. In other words, if <RDC_serial>
.<domain name> exists, the RDC is considered revoked. On the
other hand, if it does not exist, the RDC is considered valid. There-
fore, the domain owner can revoke an RDC by creating the subdo-
main with the RDC_serial. During TLS authentication, the browser
3It is worth noting that the Go TLS package supports up to 64 KB during the TLS
handshake[4].
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can verify the revocation status of an RDC by issuing a DNS query
for <RDC_serial>.<domain name> to check the existence of this
subdomain.

The information on the existence of the subdomain is distributed
using an NSEC record[51], which is a type of DNSSEC record. An
NSEC record provides the proof of whether a domain exists or not,
with its integrity guaranteed by DNSSEC. By utilizing the built-
in record of DNSSEC, there is no need to worry about additional
deployment or incompatibility issues when handling the revocation
status of an RDC. According to the DNSSEC deployment statistics
maintained by ICANN (Internet Corporation for Assigned Names
and Numbers) [32], as of March 2023, over 90% of all Top Level
Domains (TLDs) have been signed with DNSSEC. This suggests
that using NSEC records to handle the revocation status of RDCs
should be feasible for most domains.4

To ensure confidentiality between the DNS resolver and the
browser, the browser should use a DNS resolver that supports
DNS-over-HTTPS (or DNS-over-TLS) so that it can prevent on-
path active attackers from tampering with the revocation status of
RDCs. Latency between DNS-over-UDP (Do53) and DoH has been
reported to be negligible in previous measurement studies [24, 31],
and depending on the DNS resolver and the location of the browser,
latency performance may even be superior. Users who want to
securely protect the data received from the DNS resolver can choose
to use a browser that supports DoH. Of note, mainstream browsers
such as Firefox[6], Chrome[5], and Edge[3] currently support DoH.

4.4 Security Implication of RDC Revocation
It has been known that revocation checking in TLS certificates
poses a challenge since it requires either (1) browsers to fetch
revocation status of a massive number of certificates during the
certificate validation process (i.e. CRL[52]) or (2) trusted CAs to
provide reliable revocation status for all certificates (i.e. OCSP[54]).
Because of performance and reliability issues [25, 42], abnormal re-
vocation checking methods are being used as practical alternatives
[12, 15, 39]. Essentially, if a domain owner shares his TLS certifi-
cate’s private key with the CDN, he must accept the risks associated
with unreliable revocation checking of the TLS certificate.

RDCs help resolve this challenge because domain owners can
revoke an RDC without asking CAs to revoke the TLS certificate.
By revoking only the RDC, the domain owner can safely revoke the
delegated key under the security guaranteed by the RDC design,
without being affected by revocation checking of the TLS certificate.
Note that RDC does not solve the revocation problems of the TLS
certificate, but only the revocation problems of the delegation keys.
When a TLS certificate is revoked, all associated RDCs must also
be revoked, making the revocation of RDCs dependent on the TLS
certificate revocation checking process.

In summary, RDC does not solve the problem associated with
revoking TLS certificate, but rather, they allow the domain owners
to safely revoke the delegated key in case they need to discontinue
the use of the CDN or detect compromise of the delegation key.

4DNS resolvers should return NXDOMAIN responses to the clients when they receive
NSEC responses from the DNS authoritative servers. Thus, clients should be able to
interpret the NXDOMAIN response as not-revoked.

RDC status

DNS resolvers Browser CDN’s edge servers

DNS query to

<RDC_serial>.domain

ClientHello

<RDC extension request>

ServerHello

<RDC extension response>

Compute a encryption key

- Verifying the certificate chain

- Verifying the RDC 

- Verifying the RDC status

- Verify a TLS signature

Generate a CertificateVerify

using the delegation key

TLS authentication procedure

[DoH-enabled]

Authentication 

<cert, RDC, CertificateVerify>

Figure 3: The sequential flow of TLS authentication using
an RDC. The browser establishes a TLS handshake with a
domain owner’s web service that is being served by a CDN.

4.5 TLS Handshake using an RDC
In this section, we describe how the TLS handshake works with
RDC. Figure 3 illustrates the process of a browser initiating a TLS
handshake using an RDC with a web service owned by a domain
owner and served by a CDN’s edge server. When the browser
receives the Authentication message containing the RDC, it sends
a DoH query to the DNS resolver, inquiring about the NSEC record
for the subdomain named with the RDC_serial to determine its
revocation status. If the NSEC record is already cached in the DNS
resolver, it is promptly returned to the browser without further
queries. Otherwise, the DNS resolver retrieves the record from the
authoritative DNS server before passing it on to the browser.

Upon receiving the NSEC record, the browser determines the
revocation status of the RDC by verifying the existence of the
subdomain associated with the RDC_serial. If the browser receives
an NXDOMAIN response alongside the NSEC record, it interprets
this as the subdomain’s nonexistence, meaning the RDC has not
been revoked. On the contrary, if the browser receives the NSEC
record with a NOERROR response, it has to inspect the NSEC record
to ascertain if it is a compact answer. This is because a compact
answer, in both scenarios—whether the domain name exists or
doesn’t—returns an NSEC record with a NOERROR response. To
determine if the response is a compact answer, the browser looks
at the Next Domain Name field of the NSEC record. If the Next
Domain Name field in the NSEC record starts with \000., the answer
is considered a Compact Answer. For such compact answers, the
browser checks the Type Bit Map field in the NSEC record to decide
the domain’s existence. If this field contains only RRSIG, NSEC,
and NXNAME (with RR type code 65281), the domain is deemed
nonexistent, meaning the RDC has not been revoked. Otherwise,
the domain is deemed existent, meaning the RDC has been revoked.
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After determining the revocation status of the RDC, the browser
follows steps similar to those with the DC. Firstly, it checks the
RDC’s signature to confirm that the domain owner issued the RDC.
Next, it verifies the CertificateVerify using the RDC’s public key
to ensure that the CDN, acting under delegated authority, signed
the TLS handshake message. Finally, the browser undergoes the
traditional certificate chain validation procedure to ascertain that a
trusted CA issued the TLS certificate.

5 IMPLEMENTATION
We implemented RDC into two libraries: the Go tls package (ver-
sion 1.17.3) [4] to enable RDC in the HTTPS server, and the NSS
(Network Security Service) [7] to enable RDC in the Firefox Nightly
browser (version 101.0a.1). As the first step in our process of im-
plementing RDC in the TLS 1.3 protocol, we added an extension
to the TLS extension type (assigned the unique identifier of the
integer 10000), which serves to notify the browser’s RDC support.
We then extended the data structure of the TLS Certificate message
to include the RDC along with the TLS certificate, allowing it to
be delivered to the browser by the HTTPS server. Next, we made
modifications to the TLS Certificate message, enabling the HTTPS
server to use the RDC’s private key instead of the TLS certificate’s
private key when signing the CertificateVerify message. We also
added internal functions for the TLS authentication procedure to
verify the CertificateVerify signature and the RDC’s signature by
using the RDC’s public key and the TLS certificate’s public key,
respectively. Additional functions were also implemented to vali-
date the revocation status of the RDC. Upon the browser receiving
the RDC, the functions parse the RDC_serial contained in the RDC
and initiate a DoH query for the subdomain named RDC_serial

to retrieve the corresponding NSEC record. The browser detects
the revocation status of the RDC by verifying the existence of the
subdomain through the examination of the NSEC record.

6 EVALUATION
6.1 Experiment Setup
In order to evaluate the design goals outlined in (§3.1), we estab-
lished a testbed consisting of an HTTPS web server, a client, and a
DNS resolver. Our first step involved utilizing the Go tls package to
develop an HTTPS web server that supports RDC. We then bought
a test domain and obtained a TLS certificate of this domain from
Let’s Encrypt CA. After obtaining the TLS certificate, we created
a key pair intended for use by the web server and generated an
RDC that includes both the public key of the key pair and a signa-
ture that had been generated by the TLS certificate’s private key.
Subsequently, we provided the TLS certificate, the RDC, and the
RDC’s key pair to the web server, which we ran on an AWS t2.small
instance5. We deployed the instance in three different geographic
locations: Seoul, Virginia, and Paris

We then proceeded to the client setup and built a Firefox Nightly
browser using the NSS library with RDC support on an Ubuntu
20.04 LTS desktop machine equipped with an Intel Core i9 proces-
sor clocked at 3.50 GHz and 8GB of memory. Of note, the Firefox
Nightly browser was located in Seoul. We utilized Firefox’s built-in
5AWS t2 small instance has an Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz and 2GB
RAM

Network Monitor tool[44, 45] to measure the TLS setup time and
the page load time (PLT), which provided detailed information on
various stages of network requests, including DNS resolution time
(time taken to resolve a hostname), Connecting time (time taken
to establish a TCP connection), TLS setup time (time taken to es-
tablish a TLS connection), Sending time (time taken to send the
HTTP request to the server), Waiting time (waiting for a response
from the server), and Receiving time (time taken to read the entire
response from the server). The TLS setup time and the PLT were
measured to examine how a DNS query for the NSEC record affects
these values. To investigate the influence of DNS resolver caching
on the TLS setup time and the PLT, we installed Bind 9 on an AWS
t2.small instance located in Seoul and adjusted the max-cache-ttl,
which allowed us to control the caching of the revocation status.
The Firefox Nightly browser sent DoH queries to retrieve the DNS
records. Lastly, we utilized Cloudflare’s authoritative DNS service to
distribute the revocation status of the RDC, as well as the IP address
of the HTTPS server. To leverage the NSEC record for distributing
the revocation status, we applied DNSSEC to our test domain.

6.2 Function Evaluation
Our evaluation focused on two main aspects: whether the HTTPS
server can be operated using an RDC in the same manner as with
a DC without the TLS certificate’s private key, and whether the
domain owner can revoke the RDC. First, we examined the op-
eration of the HTTPS server utilizing an RDC without the TLS
certificate’s private key. The native TLS ListenAndServe function,
which is necessary for running the HTTPS web server, requires
both a TLS certificate and its corresponding private key.

func (srv *Server) \
ListenAndServeTLS("domainOwnerTLSCert", "cdnRDC", "cdnRDCKey")

Figure 4: ListenAndServeTLS function that integrates RDC.
The function parameters do not require the TLS certificate
private key; instead, only the TLS certificate of the domain,
the CDN’s RDC, and the RDC’s private key are necessary.

However, as shown in Figure 4, the ListenAndServe function
that supports RDC only necessitates a TLS certificate, an RDC, and
the RDC’s private key, rendering the TLS certificate’s private key
unnecessary. By employing our testbed, we successfully ran the
RDC-supporting HTTPS web server and were able to access the
test domain using the RDC-supporting Firefox Nightly browser.
Through these results, we can confirm the accomplishment of de-
sign goal G1 described in a prior section. Moreover, the successful
operation of HTTPS communication within the existing infras-
tructure while adhering to the standard compliance confirms the
fulfillment of design goal G4.

Next, we evaluated the revocation capability of the RDC. Revo-
cation of the RDC can be achieved by creating a subdomain named
with the RDC_serial. To test the revocation functionality, we uti-
lized Cloudflare’s authoritative DNS service, which served as our
authoritative DNS service to create the subdomain and revoke the
RDC. After creating this subdomain, we attempted to access the
test domain using the Firefox Nightly browser. The browser suc-
cessfully detected the RDC’s revocation status and blocked us from
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Figure 5: Comparison of the TLS setup times between vanilla
TLS and TLS with RDC.

accessing the test domain. Consequently, since the domain owner
was able to autonomously revoke the RDC without revoking the
TLS certificate, we can conclude that design goals G2 and G3 were
successfully met as well.

Lastly, during the delegation process, the RDC does not impose
any additional obligations on domain owners, such as running an
additional server, as in Keyless SSL or DC. This allows domain
owners to retain the operational benefits of using a CDN. Thus,
we can affirm that design goal G5 is achieved from an operational
standpoint. A publicly accessible video demonstrating this function
evaluation is available6.

6.3 Performance Evaluation
In this section, we utilized Firefox’s built-in Network Monitor
tool[44, 45] to measure the TLS setup time and the PLT of vanilla
TLS and TLS with RDC, aiming to evaluate the performance impact
of using RDC during the TLS handshake.

Figure 5 presents the TLS setup time of vanilla TLS, TLS with
RDC when the DNS resolver does not cache the NSEC record, and
TLS with RDC when the DNS resolver caches the NSEC record.
We observed that, regardless of the server’s location, there is a
consistent approximately 130ms difference between vanilla TLS
and RDC with TLS. However, with the NSEC record cached in the
DNS resolver, we observed that the difference between vanilla TLS
and RDC with TLS is approximately 50ms, resulting in an overall

6https://github.com/revtls/revtls/video

reduction of approximately 80 ms when compared to setup times
without the cached NSEC record. The difference in the TLS setup
times between vanilla TLS and TLS with RDC can be attributed
to the additional DoH query for the NSEC record during the TLS
handshake process when RDC is used.

Moving on, we calculated the PLT by aggregating DNS resolution
time, Connecting time, TLS setup time, Sending time, Waiting time,
and Receiving time provided by Firefox’s Network Monitor[44, 45].

Figure 6 presents the PLT of vanilla TLS, TLS with RDC with-
out cached NSEC records, and TLS with RDC with cached NSEC
records. Similar to the results of the TLS setup times, the primary
difference between vanilla TLS and TLS with RDC can be attributed
to the additional DoH query for the NSEC record during the TLS
handshake process. Similarly, regardless of the server’s location,
when the NSEC record was not cached in the DNS resolver, we
observed a consistent difference of approximately 130 ms between
vanilla TLS and RDC with TLS. However, akin to the TLS setup
time results, with the NSEC records cached in the DNS resolver,
we observed an overall reduction of approximately 80 ms when
compared to PLTs without cached NSEC records.

Unlike other solutions that introduce overhead for every commu-
nication to protect the TLS encryption layer, TLS with RDC focuses
on protecting the TLS authentication layer, resulting in only a one-
time delay during the TLS authentication procedure. Given that a
one-time delay ranging from 50 ms to 130 ms is deemed acceptable
for users, we can conclude that the utilization of TLS with RDC
accomplishes the design goal of G5 in terms of performance.

7 SECURITY ANALYSIS
Authenticating with a revoked RDC. An attacker who obtains
an RDC’s private key from a CDN, he may attempt to establish
a TLS connection using this key. However, in our design, if the
domain owner detects a compromise in the RDC, he can revoke
the RDC by distributing its revocation status via DNS. The updated
revocation status of the RDC will be delivered to browsers with
a Time-to-Live (TTL) of the NSEC record to defeat the attacker’s
attempt. Thus, the attacker will not have enough time to carry out
the attacks using the compromised private key of the RDC.
Cache poisoning of the NSEC record. An attacker may attempt
to poison the NSEC record cache to mask the revocation status of
an RDC. However, an RDC’s revocation status is distributed with a
delay equal to the NSEC record’s TTL (recommended to be 3 hours
or less[49, 55]) This delay is significantly shorter than the 7-day
validity period of DC and can be further reduced if domain owners
operate their own authoritative DNS server to control the TTL.
Man-in-the-Middle attacks. An attacker may attempt to ma-
nipulate the revocation status of an RDC during its transmission
between the authoritative DNS server and the DNS resolver. How-
ever, the use of DNSSEC signatures protects the NSEC record that
indicates the RDC’s revocation status, making it infeasible for the
attacker to manipulate the RDC’s revocation status during its de-
livery to the DNS resolver. As another potential form of attack,
the attacker may try to tamper with the RDC’s revocation status
between the DNS resolver and the browser. However, DoH ensures
confidentiality of the RDC’s revocation status being delivered from
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Figure 6: Comparison of the PLTs between vanilla TLS and
TLS with RDC.

a DNS resolver to the browser, making it infeasible for the attacker
to access the revocation status.
Forging an RDC without a TLS certificate private key. RDCs
are signed with the private key of the TLS certificate of the domain.
During TLS authentication, the RDC signature is validated with the
public key of the TLS certificate, which ensures that the RDC was
issued by the correct domain owner. Moreover, the TLS certificate
is validated through the certificate chain validation process that
ensures that the TLS certificate was issued by a trusted CA. This
process makes it impossible for an attacker to forge a valid RDC
without possessing the TLS certificate’s private key for the domain,
which must be issued by a trusted CA.
Forging an RDC with a compromised TLS certificate private
key. In the event that an attacker compromises a domain owner’s
TLS certificate, the attacker can create an RDC himself and use
it for TLS authentication. However, using an RDC issued by the
attacker for TLS authentication does not introduce any additional
vulnerabilities compared to using a compromised TLS certificate.
Once the domain owner detects a compromise of the TLS certificate,
he must revoke the TLS certificate to invalidate both the TLS cer-
tificate and the RDC. However, when revoking the TLS certificate,
it is necessary to rely on the abnormal revocation checking process.
Therefore, it is crucial to securely manage TLS certificate’s private
keys to minimize their exposure, and thereby reduce the need for
TLS certificate revocation.
Amplification attacks on DNS. An attacker can carry out an am-
plification attack if a DNS response is larger than its corresponding
query. However, with RDC, no additional data is required to prove

the RDC revocation status since the status is delivered using an
NSEC record. The NSEC record is commonly used and has a rela-
tively small size, making it unattractive for an attacker to launch
an amplification attack.

8 LIMITATIONS AND DISCUSSION
Revocation checking of TLS certificates. In cases where the
TLS certificate’s private key is shared with a CDN, the risk of the
private key’s exposure will increase as the number of CDN’s edge
servers that share the private key increases. Given such increased
risk, the domain owners are more likely to need frequent certificate
revocations and encounter issues associated with these unreliable
revocation mechanisms. However, if the domain owner shares the
RDC instead of the TLS certificate’s private key, the private key
will be used only by the domain owner, and the risk of its exposure
or compromise will be significantly reduced. As a result, there will
be less situations that necessitate revocation of the TLS certificate,
which in turn helps prevent encountering risks associated with the
revocation checking of TLS certificates.
Session key protection. RDC offers a means to keep the TLS
certificate’s private key secure; however, an additional method is
needed to protect the TLS encryption key (also known as the session
key). However, previous studies [20, 30, 36, 38, 40, 47, 48, 58, 60]
have revealed that there are trade-offs that should be considered
when aiming to protect the session key, including performance
degradation, inability to use full functionalities of CDNs, and ad-
ditional deployment. Depending on the security level needed for
their web service, the domain owners can either choose to protect
the TLS certificate’s private key only or to protect both the private
key and encryption key. Current technologies used by the CDNs
primarily concentrate on protecting TLS certificate’s private key.
This circumstance indicates that many domain owners would opt
to retain a moderate level of security (protection of their TLS certifi-
cate’s private key only) and maintain the full benefits of using the
CDNs, rather than to sacrifice those benefits of CDNs for the sake of
a higher level of security (protection of both their TLS certificate’s
private key and session key).
Incremental deployment. The use of RDC requires support from
the browser. As such, a CDN that only possesses the RDC’s private
key but not the TLS certificate’s private key will not be able to
perform TLS authentication with browsers that do not support the
RDC mechanism. During the period of incremental deployment of
RDCs when many browsers may not support the RDC mechanism,
other alternativemethods can be used to achieve TLS authentication
using an RDC. First, the CDN determineswhether the browser being
used supports the RDC mechanism or not. This can be achieved
by checking the inclusion of the RDC extension in the ClientHello.
If the ClientHello shows that the browser does not support RDC,
the CDN can forward the ClientHello to the domain owner’s origin
server or the Keyless SSL key server to request TLS authentication.
Therefore, even in situations when the browser does not support
the RDC mechanism, TLS authentication can be performed by the
CDNs that only possess the RDC’s private key without the TLS
certificate’s private key.
Managing the lifecycle of an RDC.Automating the management
of the lifecycle of an RDC can help reduce the operational burden
on the domain owner. To achieve this, a protocol that enables au-
tomated management of an RDC’s lifecycle must be devised. This
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protocol would necessitate APIs between the domain owner and
the DNS provider for RDC revocation, as well as APIs between
the domain owner and the CDN for RDC issuance. Currently, DNS
providers offer APIs for managing the domain owners’ DNS records,
one of which can be utilized for RDC revocation. Also, it can be
reasonably assumed that CDNs will likely provide the necessary
API between the domain owners and themselves to promote their
business by implementing advanced security technologies. Based
on these facts and assumptions, we believe that it will be possible to
make a protocol for automation of RDC management, such as Au-
tomatic Certificate Management Environment (ACME)[21], which
streamlines TLS certificate management to alleviate the operational
burden on domain owners in managing the RDC lifecycle.

9 RELATEDWORK
TLS authentication solutions. Cloudflare introduced Keyless
SSL[10] in which the domain owners maintain a key server that
stores their private key, and CDNs forward requests to the key
server for operations that require the private key. This approach
eliminates the need for domain owners to share their private keys
with the CDNs, but it does require the domain owners to run a
highly available key server. At present, Keyless SSL is being used
for managing customers’ keys within the CDNs, which is far from
its original intended purpose[11].

Cisco, Facebook, Cloudflare, and Mozilla have proposed the Del-
egated Credential (DC)[57], which enables domain owners to issue
a credential that contains the CDN’s public key and can be used
for TLS authentication. The motivation behind DC is to minimize
the risk of exposing the TLS certificate’s private key. However, be-
cause DCs lack a method of distributing their revocation status,
they must be short-lived, with a validity period of 7 days, to allow
for expiration. Consequently, the domain owners who wish to con-
tinue using the DC must maintain a server capable of re-issuing
the DC every 7 days before it expires. This reduces the operational
benefits of using CDNs. Moreover, while the validity period of 7
days is short, it is still considered sufficient time for an attacker
who has acquired a compromised private key to launch an attack.
Shortening the validity period may reduce the chances of an attack
but will increase the operational burden on the domain owners
who will need to re-issue the DC more frequently.
DANE solutions. DNS-based Authentication of Named Entities
(DANE) [53] is a protocol that leverages DNSSEC to associate a
domain owner’s TLS certificate with a domain name, facilitating val-
idation of the domain owner’s authenticity during TLS handshakes.
In this protocol, the TLSA (TLS Authentication) record serves as a
repository for storing and retrieving the domain owner’s TLS certifi-
cate, enabling clients to verify its legitimacy. Liang et al. proposed
an extended version of DANE [39] that expands its capabilities to
allow domain owners to delegate TLS authentication to CDNs by
including the CDN’s TLS certificate into their TLSA record. How-
ever, this solution requires modified versions of both DANE and the
certificate validation procedure. Another approach, proposed by
Shihan et al., InviCloak[40], establishes an encrypted channel be-
tween the browser and the domain owner using the TLSA record’s
public key, ensuring the privacy of data. While InviCloak aims to
minimize performance trade-offs, the domain owner needs to main-
tain a dedicated server for data protection and may face limitations
in utilizing full CDN functionality, such as WAF.

TEE solutions.Trusted Execution Environment (TEE) is a hardware-
based security technique that establishes a secure enclave, utilizing
a TEE-enabled CPU to protect sensitive data. Phoenix[30], a TEE so-
lution based on Intel SGX, enables domain owners to create enclave
containers within CDNs, ensuring protection of sensitive key mate-
rial, including the TLS certificate’s private key, and preventing unau-
thorized access from the CDN. However, Phoenix incurs noticeable
performance overhead, diminishing the performance advantages of
using CDNs. Furthermore, SGX vulnerabilities[34, 41, 59], such as
data leakage, raise concerns about the overall security of the system.
Additionally, Phoenix’s adoption is constrained by the requirement
of an SGX-enabled CPU, which increases deployment costs and
reduces incentives for CDNs to adopt the solution. Other proposed
TEE solutions[20, 48, 60] encounter similar challenges due to their
reliance on SGX and limited utilization of network functions, which
is critical for use of CDNs.
Crypto solutions Cryptographic solutions [36, 58] are designed to
enable processing of encrypted data without decrypting it, thereby
eliminating the need to share the TLS certificate’s private key. The
downside of cryptographic solutions is that their deployment in-
volves introducing an additional encryption scheme, which can
result in performance overheads. Furthermore, utilization of en-
cryption techniques may impose limitations on the functionality of
CDNs.
TLS extension solutions Researchers also proposed to extend
TLS to protect domain owners’ contents from CDNs. Several TLS
extension-based solutions [38, 46, 47] have been proposed to protect
the domain owner’s content at the TLS encryption layer, but they
all require additional deployment, result in performance overhead,
or limit the use of the full functionality of CDNs.

10 CONCLUSION
We propose a new design for delegation of TLS authentication
called RDC, which offers a method of revoking DCs by utilizing
the DNS infrastructure, an essential part of web communication.
RDCs leverage the NSEC record, which allows CDNs to determine
the revocation status of an RDC by checking for the existence of
a subdomain named with its unique RDC_serial, while ensuring
the security of DNSSEC and DoH. To evaluate its feasibility, we
implemented RDC into the Go tls package and the NSS library in
the Firefox Nightly browser. Through our testbed, utilizing this
implementation, we successfully demonstrated that a TLS server
can operate using an RDC’s private key instead of the TLS cer-
tificate’s private key, and that the RDC can be promptly revoked
through the DNS provider. Consequently, the RDC design allows
domain owners to revoke their delegation keys in scenarios such
as discontinuing use of their CDN or detecting a compromise in
their delegation key. Overall, our findings confirm that the RDC
design effectively fulfills all the design goals outlined in (§3.1).
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