
Un-Rocking Drones: Foundations of Acoustic
Injection Attacks and Recovery Thereof

Jinseob Jeong∗†, Dongkwan Kim‡, Joonha Jang∗, Juhwan Noh∗, Changhun Song∗, and Yongdae Kim∗
∗KAIST, †Agency for Defense Development, ‡Samsung SDS

{jeongjin-sub, dkay, cyber040946, juhwan, songch, yongdaek}@kaist.ac.kr

TABLE I: Past studies on the security of MEMS sensors
Description Gyroscopes Accelerometers

Attack Denial of Service (DoS) [2] [3]
Spoofing [3] [4]

Mitigation

Mechanical Shielding & Damping† [2], [3] [3], [4]
Circuit-Level Change† [2], [3] [3], [4]
Sampling Rate Change† [3] [3], [4]
Detection [9], [10] [9]
Partial Sensor Value Recovery [11], [12]‡ ·
Full Sensor Value Recovery ⋆ ⋆

† These require hardware modification; thus, they are not directly applicable.
‡ This requires supplementary sensors that are unaffected by the attack.
⋆ These are our focus to make drones accomplish the assigned missions.

Sensors are used to measure physical properties as quantita-
tive values. Therefore, by design, they can measure malicious
signals transmitted by adversaries in addition to normal (benign)
signals. Exploiting this, several studies have demonstrated the
feasibility of attacks against various sensors in drones, that can
cause the drones to crash. In particular, these attacks manipulate
the values of microelectromechanical system (MEMS) inertial
measurement unit (IMU) sensors, such as gyroscopes [2], [3]
and accelerometers [3], [4], by resonating these sensors with
acoustic noise.

Notably, acoustic injection attacks are becoming increas-
ingly serious, practical security threats owing to the technical
improvements in sonic weapons. For example, a long-range
acoustic device (LRAD) [5], which is a type of directed energy
weapon [6], is widely employed as an anti-drone solution [7].
Moreover, the significance of the acoustic noise effect is also
well-known in the military. The military environmental test
standard (Method 515.8 of MIL-STD-810H [8]) explicitly
specifies the necessity of testing the system’s robustness against
acoustic noise in the development stage.

Several mitigation strategies have been proposed to address
the attacks on MEMS sensors, as shown in Table I. However,
these strategies entail limitations in terms of their practicality.
For instance, mechanically shielding these sensors [2] and
applying sampling randomization [4] may not fundamentally
prevent these attacks, while requiring comprehensive analyses of
their side effects on drones. In particular, heating problems need
to be considered when applying mechanical shielding [2], [13].
Although sampling randomization may address spoofing attacks,
it makes drones more vulnerable to a denial of service (DoS)
attack [3]; this aspect is described in further detail in §V-F.
Conversely, detection-based approaches have been proposed [9],
[10]; however, these do not include contingency plans for
the drone’s flight. The recently proposed sensor recovery
approach [11], [12] is promising; however, its current status
remains immature as its recovery lasts only for a few seconds.

Abstract—Drones equipped with microelectromechanical sys-
tem (MEMS) inertial measurement unit (IMU) sensors are exposed
to acoustic injection attacks. These attacks resonate sensors,
compromising their output and causing drones to crash. Several
mitigation strategies have been proposed; however, they are limited
in terms of practicality as they cannot make the drone fly t o its
planned destination in the event of an attack.

To remedy this, we aim at recovering the compromised
sensor values for the practical mitigation of acoustic injection
attacks. To achieve this, we first c o nstructed a r e alistic testbed
and delved into the implications of resonant MEMS sensors
on drones. We discovered that sampling jitter, which refers to
the inconsistent timing delay in retrieving sensor values, has
a significant i m pact o n d r one c r ashes d u ring t h e a t tack. Note
that while any real-time system needs to satisfy its real-time
requirements, it does have sampling jitter owing to manufacturing
errors or scheduling/operational overheads. The sampling jitter is
negligible in terms of real-time requirements; however, we found
that it became critical for drones being attacked. This is because
the sampling jitter spreads the resonant sensor signals into the
in-band range of the drones’ control logic, thereby neutralizing
the drones’ safety mechanisms, such as a low-pass filter.

Considering the resonant signals affected by sampling jitter
as noise, we developed a novel mitigation strategy that leverages a
noise reduction technique, namely a denoising autoencoder. This
approach recovers benign sensor signals from compromised ones
for the resonant MEMS IMU sensors, without requiring other
supplementary sensors. We implemented this prototype, termed
UNROCKER, and demonstrated its capability through a series of
experiments reflecting r e al-world s c enarios. T o f a cilitate future
research, we released our source code and experimental data.

I. INTRODUCTION

Commercial drones have gathered considerable popularity
for applications in delivery services, emergency rescues, and
military operations [1]. Drones have high requirements in terms
of their real-time responses for dealing with various conditions
for stable flight. T hus, d rones a re e quipped w i th a v ariety of
sensors such as gyroscopes, accelerometers, barometers, global
navigation satellite system (GNSS) sensors, and optical flow
sensors. Although these sensors are indispensable for drones,
they are exposed to distinct security threats unlike those in
traditional software systems.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24112
www.ndss-symposium.org

Consequently, these approaches cannot work against persistent
attacks. Moreover, the current state-of-the-art recovery [11]
approach requires other supplementary sensors; thus, it cannot
be employed if all the sensors are compromised simultaneously.
To summarize, thus far, a practical mitigation strategy that
enables drones to continue their flight toward the target location
has not been reported.

In this regard, it is necessary to determine whether com-
promised MEMS sensors can be recovered without requiring
additional supplementary sensors. This would enable the drones
to continue flying toward the target location and accomplish
their assigned missions. To achieve this, we thoroughly in-
vestigated the implications of compromised sensor values on
the drones’ control logic. In particular, we focused on MEMS
gyroscopes and accelerometers, because these are essential for
controlling the attitude and position of drones.

We first developed an acoustic injection testbed that emu-
lates the realistic behaviors of the drones under attack (§IV).
Testing attacks with actual drones can be cost-expensive as these
attacks can physically damage drones. However, the developed
testbed enabled detailed investigations of the drones’ behavior,
without any risk of physical damage. We implemented this
testbed on PX4, which is an industry-leading, open-source
drone project. Notably, PX4 provides simulators that can test
drone software for planned missions, under both the software-
and hardware-in-the-loop (SITL and HITL) modes. Using PX4,
we implemented software models of the resonant sensors
to simulate attacks. Finally, we automated the simulation
procedures for rapid and repeated analyses.

Using this testbed, we conducted a series of rigorous
experiments, and thus, discovered that sampling jitter, which
refers to the inconsistent timing delay in retrieving sensor
values, has a significant impact on drone crashes during an
attack (§V). Note that although a real-time operating system
(RTOS) is guaranteed to satisfy the deadline for its designated
operation, it does have sampling jitter owing to manufacturing
errors or scheduling. The sampling jitter does not significantly
affect the drones in a benign situation [14]. However, under
acoustic injection attack, it acts as a key factor in a drone
crash, by spreading the resonated sensor signals across multiple
frequencies, which include the in-band range of the drones’
control logic. Thus, it neutralizes the safety mechanisms of the
drones, such as a low-pass filter (LPF). Consequently, even a
small amount of resonant noise could cause the drone to crash
in the presence of sampling jitter. Additionally, based on our
investigations, we discovered several misbeliefs associated with
previously proposed mitigation methods.

Our investigations revealed that, from the perspective of
signal processing, the spread resonant signal caused by the
sampling jitter can be considered as additive noise in the
original signal. Based on this observation, we developed a novel
mitigation strategy that leverages a noise reduction technique
to recover benign MEMS sensor signals from the compromised
ones, without requiring supplementary sensors (§VI). To this
end, we used a denoising autoencoder (DAE), which is a
popular neural network model used for noise reduction. We
subsequently implemented a prototype of this proposed recovery
model, UNROCKER. Thereafter, we demonstrated its capability
through a series of experiments with real-world scenarios.

X

Gyro X
(Roll)

Y

Acc Z Gyro Z
(Yaw)

Accel data
Gyro dataRoll

Pitch

Yaw Z

Fig. 1: Attitude and position of a drone.
Applied

Acceleration

m

m

m x

y
z

Fcoriolis
MASS

FIXED OUTER
PLATES

CS1 < CS2

Sensing
direction

Driving
direction

Applied
Acceleration

m

m

m x

y
z

Fcoriolis
MASS

FIXED OUTER
PLATES

CS1 < CS2

Sensing
direction

Driving
direction

Fig. 2: Structure of MEMS accelerometer (left) and gyroscopes
(right) [18], [19].

In summary, our contributions can be stated as follows:

• We developed an acoustic injection testbed for MEMS gyro-
scopes and accelerometers; this testbed enables automated
testing of the influence of compromised sensor values on
drones, without the risk of physical damage to the drones.

• Using this testbed, we conducted rigorous experiments
and discovered that sampling jitter is the essential factor
influencing drone crashes during attacks. Notably, sampling
jitter has not been discussed in previous studies.

• During our investigations, we discovered that sampling
jitter produces noise-like signals. Based on this finding, we
developed a novel approach that adopts a noise reduction
technique, particularly a DAE, to recover the benign values
of compromised MEMS sensors.

• We implemented a prototype recovery system, UNROCKER,
and demonstrated its capability through various experiments
including real-world scenarios on physical sensors.

• We released our code, dataset, and demo videos [15].

II. BACKGROUND

A. Attitude and Position Control in Drones

The attitude and heading reference system (AHRS) is
vital for drone flight as it computes the attitude (i.e., roll,
pitch, and yaw) and position (i.e., forward/back, up/down, and
left/right) of the drones, as depicted in Fig. 1. Specifically, the
AHRS comprises IMUs with gyroscopes and accelerometers to
measure the angular rate and acceleration, respectively. Based
on the measured sensor values, it computes the attitude and
position of the drones. To minimize errors, the values of various
types of sensors can be combined in a complementary sense,
which is referred to as sensor fusion. Notably, the extended
Kalman filter (EKF) is a popular sensor fusion algorithm used
in open-source drone projects [16], [17].

B. MEMS IMU Sensor

An IMU typically consists of a gyroscope and an accelerom-
eter on a single integrated chip. Owing to their lightweight and
low cost, MEMS IMUs are widely used in commercial drones
for attitude and position control. The typical structure of the
sensors in MEMS IMUs is illustrated in Fig. 2.

MEMS Accelerometer. An accelerometer is used to measure
the acceleration of linear motion based on inertial force. It
contains a proof mass on a spring that can travel back and
forth along the sensing direction, i.e., the axis. Upon applying
a force, the mass tends to remain stationary owing to its inertia.
Thus, the spring is stretched or compressed, and this creates
variations in capacitance because of the fixed outer plates

2

Drive mode

G
ai

n
ωa ωd ωa’ Frequency

Stable gain
Sense mode

Drive mode

G
ai

n

ωd Frequency
Stable Gain

Sense mode
Fig. 3: Frequency response of an exemplary gyroscope in the
drive and sense modes (ωd: driving frequency; ωa: resonance
frequency maximizing the attack’s implication).

(electrodes). Upon measuring this capacitance change (voltage
change), the accelerometer induces the spring’s displacement to
compute acceleration a using the law of inertia and Hooke’s law
(Fa = m · a = −k · x, where m denotes the mass, k indicates
the spring coefficient, and x denotes the induced displacement.)

MEMS Gyroscope. A MEMS gyroscope measures the
angular rates based on the Coriolis effect. It operates in
two orthogonal directions simultaneously, such as driving and
sensing directions, as shown on the right of Fig. 2. Here, its
operation for each direction is referred to as drive and sense
modes, respectively [20], [21]. It contains a proof mass on a
spring that continuously oscillates in the driving direction. In
case the gyroscope rotates, the rotating force is applied to the
oscillating mass. The vibration of this rotating mass creates
an orthogonal force (i.e., the Coriolis force) in the sensing
direction, which is the cross-product of the rotational and
driving directional axes. Eventually, this force causes changes
in capacitance (voltage change). By measuring this capacitance
change, the gyroscope computes the displacement of the mass
in the sensing direction and uses it to compute the angular rate
using the Coriolis force:

Fcoriolis = −2m(ω × v) = −kx (1)

where m, ω, v, k, and x denote the mass, angular rate, velocity
of the proof mass, spring constant, and displacement of the
mass, respectively.

The frequency response of each operation mode can be
determined in the design stage of the gyroscope, particularly
for its mechanical structures and coefficients. An exemplary
gyroscope’s response characteristics of the drive and sense
modes over various frequencies are plotted in Fig. 3, where ωd

denotes the driving frequency. Although the driving frequency is
designed as fixed, it can fluctuate in practice owing to external
factors such as manufacturing errors, temperature, and aging.
Therefore, a driving frequency is often set in the middle of the
flat response region of the sense mode; thus, the gyroscope can
produce stable output regardless of external factors [20], [22].

C. Acoustic Injection Attack

By design, MEMS gyroscopes and accelerometers are
vulnerable to acoustic injection attacks, because they include
a mechanically moving proof-mass. The resonance of this
proof mass can cause fluctuations in the capacitance values,
thereby compromising the final computed values. Moreover,
in the case of MEMS gyroscopes, resonating the mass at a
frequency where the sense mode responds intensively (the left
or right peaks in Fig. 3) can amplify the implication of the
attack. Notably, the resonance frequency of each sensor is
determined by the coefficient of each element in the sensor,
such as the springs or dampers. Thus, accurate estimation
of this coefficient could be challenging. Instead, adversaries
can identify the resonance frequency by injecting acoustic
signals over a range of frequencies and monitoring the output

MEMS Structure
MEMS IMU Sensor

Analog Filter A/D Converter

Flight ControllerMain loop
- Attitude controller
- Sensor fusion : EKF

Sensor Drivers
- Sensor update : SPI / I2C communication

Amp.

MEMS Structure
MEMS IMU Sensor

Analog Filter A/D Converter

Acoustic
Injection

Flight Controller
Main loop

- Attitude controller
- Sensor fusion : EKF

Sensor Drivers
- Sensor update : SPI / I2C communication
- Digital LPF

Amp.

Fig. 4: Workflow of an acoustic injection attack, from the
MEMS sensors’ sensing structure to the drones’ flight controller.

sensor values. Additionally, if the driving frequency of the
target sensor is specified in its datasheet, adversaries can
infer the resonance frequency with reference to this driving
frequency [23], given that the resonance frequency resides near
the driving frequency (Fig. 3).

The typical workflow of an acoustic injection attack is
illustrated in Fig. 4. Initially, the adversary emits a malicious
acoustic signal that resonates the MEMS structure of the
sensor (e.g., the proof mass). Subsequently, the sensed analog
signal is converted into digital data through an analog-to-digital
converter, and the digital data are transferred to the flight
controller (FC) of the drones. Ultimately, the AHRS in the FC
computes the attitude and heading based on these transferred
sensor values to determine the appropriate actions for the rotors.

D. Sampling Sensor Values in Drones

Sampling is the process of converting a continuous signal
into a series of discrete values [24]. Therefore, if the sampling
frequency is inadequately low, the sampled values may represent
the original signal in a distorted form, which is referred to
as aliasing. To avoid this, the sampling frequency should be
at least twice that of the original signal, as indicated by the
Nyquist–Shannon sampling theorem [25].

By contrast, with respect to the acoustic injection attack, a
compromised (resonated) sensor signal exists at a considerably
higher frequency (several kHz). As this frequency is signifi-
cantly higher than the sampling frequency of the drones (400
Hz for ArduCopter [17] and 250 Hz for PX4 [16]), the effect
of aliasing markedly increases. This is because the resonated
signal is under-sampled to a signal with a frequency ranging
across only half of the sampling frequency. For instance, if
the sampling frequency is 250 Hz and the resonated signal
has a frequency of 5,040 Hz, the resonated signal would be
under-sampled to a 40-Hz signal: 5,040 mod 250 = 40.

Based on the Nyquist-Shannon sampling theorem, an under-
sampled resonant signal can be expressed as follows:

ŝ′(t) = Ai · cos(2π(Fi −N · Fs)t+ ϕ) (2)

where Ai denotes the induced gain (amplitude) of the injected
acoustic signal, Fi indicates the induced frequency, and Fs

denotes the sampling frequency. Here, N , t, and ϕ represent
the number (for modular operation), timestamp, and phase
of the under-sampled resonant signal, respectively. Thus, Ai ·
cos(2π(Fi−NFs)t+ϕ) indicates the induced resonance effect
considering the under-sampling effect of the induced signal at
frequency Fi.

In real-world scenarios, the sampling frequency can vary
because of various external factors, such as manufacturing
errors, imprecise internal clocks, or scheduling issues. Thus,
such factors can increase the implications of an acoustic
injection attack to an even greater extent by distorting the
original resonated signal.

3

III. OVERVIEW

Our goal is to make drones accomplish their planned
missions under acoustic injection attacks. Accordingly, we
aimed at recovering the benign sensor values from the com-
promised ones. An overview of our approach is illustrated
in Fig. 5. First, to delve into the implications of compromised
sensor values on drone behavior, we developed a testbed that
can simulate an acoustic injection attack on a MEMS IMU.
To simulate the attack, we conducted an empirical analysis
of the resonated MEMS sensors to construct their software
models (1 and 2 in Fig. 5). Thereafter, we conducted a
series of experiments to investigate the implications of the
attack on the drone system and, consequently, determined
several new findings (3). Notably, we discovered that sampling
jitter is a critical factor that causes drone crashes. Considering
a compromised signal affected by sampling jitter as noise,
we developed a sensor recovery technique that attenuates the
compromised sensor values and recovers the benign ones using
a denoising technique (4).

A. Threat Model

Here, we assume a strong adversary capable of remotely
transmitting a strong acoustic and ultrasonic signal to the
target drones to initiate a DoS or spoofing attack. This
adversary possesses comprehensive knowledge of the structure
and operating logic of the target drones. Therefore, they are
completely aware of the model of the sensors employed on
the drones, and their sampling frequencies. Consequently, they
can generate and transmit a malicious signal at the resonance
frequency of the sensors on the MEMS IMUs in the drones.
Here, the adversary utilizes the resonance frequency that yields
the peak (maximum) response of the sensor. Additionally, he or
she can perform an attack on all MEMS sensors simultaneously,
thereby incapacitating mitigation strategies that utilize other
supplementary sensors [11], [12]. Lastly, the adversary can
continue this attack for a prolonged period. Thus, unless the
drone can mitigate the attack persistently, it will not be able
to continue flying toward its target location and will fail to
accomplish the assigned mission.

B. Analysis Target

We selected PX4 as the target drone software, which is an
industry-leading, open-source drone project. PX4 enables both
SITL and HITL simulations, which can be used to test drone
software for planned missions; thus, we leveraged this feature to
develop an acoustic injection testbed. Notably, SITL and HITL
simulations are commonly employed in aerospace engineering
to validate both flight control logic and hardware [26], [27].
SITL is an entirely software-based simulation used for testing
the FC software of drones. In contrast, HITL is a hardware-
assisted simulation that is widely used for evaluating the
FC software using a physical board [26], [28]. As HITL
utilizes physical hardware to run the flight control logic during
simulation, it reflects hardware issues, such as operational or
scheduling times. We used both simulation types to thoroughly
investigate the implications of the compromised sensor values
on a drone. Through a comparative analysis of SITL and HITL,
we discovered sampling jitter (§V), a critical factor for acoustic
injection attacks that has not been discussed in previous studies.

MEMS Sensors

Acoustic
Injection

Resonant
Sensor Model

Sensor Recovery

Software-in-the-Loop

Hardware-in-the-Loop Logged Sensor Values
Gyro.Acc.

Acoustic Injection TestbedPhysical Analysis Implication Analysis

Logged Position & Status

1 2 3

4
Denoising Autoencoder

Fig. 5: Our approach overview (§IV: 1 & 2 , §V: 3 , §VI: 4).

Among the several commercial drones implemented based
on PX4 [29], we selected 3DR Iris and Solo as our target
drones, because they are widely used (as default) by PX4. As
the HITL simulation requires actual hardware, we prepared
an FC board named Pixhawk, which was used as default by
the target drones. The Pixhawk board is equipped with two
MEMS IMUs from InvenSense, namely, ICM-20689 (primary
IMU) and ICM-20692 (secondary IMU), which include both
gyroscopes and accelerometers. We also prepared a finished
product of 3DR Solo to validate the simulation results.

C. Experimental Setup

All experiments were performed on a server equipped with
Intel Core i9-10900K at 3.70 GHz, 128 GB DDR4 RAM,
GeForce RTX 2070 GPU, and 2 TB SSD, operated on Ubuntu
20.04. To generate the acoustic signals, we prepared a function
generator, RIGOL DG1000, which supports a wide range of
frequencies. We then input the generated signals to a JBL Stage
A120 speaker, through an Omnitronic MK-60DG amplifier.

IV. ACOUSTIC INJECTION TESTBED

As mentioned earlier, testing the acoustic injection attack
in practice requires heavy experimental overheads. Specifically,
it needs a speaker and a physical drone. The speaker must
be able to aim the flying target drone and emit an attack
signal precisely at the resonance frequency of the target sensors.
Furthermore, such an approach can physically damage drones;
which necessitates the use of several spare drones. By contrast,
a software testbed enables rapid and reproducible analyses
without these experimental overheads. Therefore, we developed
a software-based acoustic injection testbed.

We implemented our testbed based on the PX4 simulator.
Specifically, we developed software models of the resonant
MEMS sensors and integrated these models into the simulator.

A. Modeling Resonant MEMS IMU Sensors

Our testbed uses emulated sensor values based on the
software models of the resonant MEMS sensors on drones.
As drones can be stationary or flying in real-world scenarios,
these software models should account for both cases.

Researchers [4] successfully modeled the resonant signal of
MEMS accelerometers under both stationary and dynamic cases.
However, in the case of MEMS gyroscopes, researchers [30]
only modeled stationary cases without considering dynamic
cases. In this work, we simply adopted the previously reported
model for accelerometers. For the gyroscopes, we developed
a resonant signal model reflecting dynamic cases based on

4

the proposed stationary model [30]. Hereafter, we describe the
related details.

Modeling Resonant MEMS Accelerometers. As described
in §II, an acoustic attack signal can resonate with a MEMS
accelerometer. When resonated, the accelerometer generates a
resonated signal in addition to its original sensor signal. This
resonated signal can be represented as the sum of the original
signal and the resonant signal. In this context, a previous
study [4] expressed the resonant signal ŝacc(t) as follows:

ŝacc(t) = sacc(t) +Ai · cos(2πFat+ ϕ) (3)

where sacc(t) denotes the original sensor signal, Ai denotes
the induced amplitude of the attack signal, Fa denotes the
resonance frequency, and ϕ denotes the phase of the attack
signal. We used this equation in our accelerometer model.

Modeling Resonant MEMS Gyroscopes. The operation
mechanism of a MEMS gyroscope is distinct from that of
the accelerometer, as it operates in two orthogonal directions,
namely sensing and driving directions (§II). Therefore, reso-
nance can appear in both directions, producing the resonant
signal for each direction. Consequently, the output signal of a
resonant gyroscope can be represented as a mixture of three
signals: (1) a benign angular rate (2) the cross-product of a
benign signal and a resonant signal in the driving direction,
and (3) a resonant signal in the sensing direction. The first,
second, and third terms in Equation 4 (and in Equation 5)
denote the signal of (1), (2), and (3), respectively.

A prior study [30] proposed a resonant gyroscope model,
particularly for stationary cases. Although this study is insight-
ful, the authors only focused on stationary cases where the
benign signal Ω(t) is zero. Thus, they only needed to consider
the last term, i.e., the resonant signal in the sensing direction.

To remedy this, we derived an equation model of resonant
MEMS gyroscopes considering dynamic cases. We first mod-
eled the displacement of the proof mass in resonated gyroscopes
along the sensing direction, as follows:

x̂(t) = SΩ(t)cos(wdt) +AdΩ(t)cos(ωact+ ϕ)

+Ascos(ωact+ ϕ)
(4)

where x̂ denotes the displacement of the proof mass in the
resonant gyroscope with moving positions; S, Ad, and As

denote the scaling gains of the drive-mode-driven Coriolis
force, acoustic-noise-driven Coriolis force, and direct impact
on acoustic noise on the sensing direction, respectively.

To derive the angular rate from Equation 4, we divided
both sides by the scale gain S. Then, we multiplied cos(wdt)
to remove the ωd component caused by modulation. Finally,
Equation 5 is obtained by applying an LPF to remove the
harmonic component generated by the modulation.

Ω̂(t) = Ω(t) + Ω(t)
(Ad

S
cos

(
(ωac − ωd)t+ ϕ

))
+
(As

S
cos

(
(ωac − ωd)t+ ϕ

)) (5)

where Ω(t)
(

Ad

S cos
(
(ωac − ωd)t + ϕ

))
and

(
As

S cos
(
(ωac −

ωd)t+ϕ
))

denote the angular rate components of the Ωfalse(t)

signal induced by the acoustic signal that occurs in the driving
and sensing directions, respectively.

The impact of an acoustic signal on MEMS gyroscopes
can be analytically divided into two orthogonal directions:
the sensing direction and the driving direction (§II-B). We
calculated the relative magnitude Grel of the two angular rates
of each mode that makes up Ωfalse(t).

The sensing directional excitation xacS can be expressed
as:

xacS = xs · cos(2πfac · t+ ϕ) (6)

where xs denotes the sensing directional distance deviation
caused by the acoustic signal, and cos(2πfac · t+ϕ) represents
the sinusoidal form of the acoustic frequency (ωac = 2πfac).
Similarly, the driving directional excitation xacD can be
described as follows:

xacD = xd · cos(2πfac · t+ ϕ) (7)

where xd denotes the driving directional distance deviation
caused by the acoustic signal.

We assumed that xd and xs have similar orders of magni-
tude, that is, xd ≈ xs = x. Recalling our threat model (refer to
§III-A) and Fig. 3, this was a severe assumption for the driving
directional impact. Although the sensing directional excitation is
directly converted into the electric signal, the driving directional
excitation should be transferred to the sensing directional
deviation detected by the sensing mass. Upon applying the
Coriolis force equation (Equation 1), the induced deviation
in the distance to the sensing direction with respect to the
excitation signal in the driving direction can be derived as
follows:

xSacD =
2mΩ

ks
·
∂xacD

∂t
=

4πmfacxdΩsin(2πfact+ ϕ)

ks
(8)

Subsequently, the relative gain Grel is derived through
dividing the amplitude of xSacD by that of xacS , assuming
that the magnitude of the distance deviation is similar to that of
the acoustic excitation. Consequently, we can obtain a simplified
equation, as follows:

Grel =
|xSacD|
|xacS |

=
Ad · Ω
As

=
4π ·m · fac · Ω

ks
(9)

where m denotes the mass of the proof mass, ks denotes the
sense mode spring coefficient, and fac denotes the resonance
frequency.

In particular, m is considerably smaller than the other
coefficients (m : 2.5 × 10−9kg, fac : 23 kHz, Ω : 10 rad/s,
and ks : 22.2 N/m). Here, we referenced the values from a
previous study [30], and the application of these values yielded
a relative gain Grel of 3.3 × 10−5 ≈ 0. This calculated
result indicates that the angular rate of the sense mode mainly
governs Ωfalse(t) and that the angular rate induced by the drive
mode is negligible. Thus, we can remove the term related to
the drive mode, and the resonant gyroscope signal for dynamic
cases can be deduced as follows:

Ω̂gyro(t) ≈ Ωgyro(t) +Ai · cos(2πFit+ ϕ)(
Ai =

As

S
, Fi =

|ωac − ωd|
2π

) (10)

where the induced acoustic frequency Fi corresponds to the
difference between the acoustic signal frequency (Fac =

ωac

2π)
and the driving frequency (Fd = ωd

2π). For clarification, we
refer to As

S as induced amplitude Ai.

5

(a) Spectrum of the resonating signal.

(b) Spectrum of the dynamic signal.

(c) Spectrum of resonating signal with dynamics.

Fig. 6: Spectrum analysis of MPU-9250 gyroscope.

B. Empirical Analysis with Physical Sensors

To build our testbed more precisely, we conducted two
empirical experiments in the real world. First, we validated the
model’s correctness for reflecting a gyroscope’s response to
the attack. Second, we examined the frequency and amplitude
of resonant gyroscopes, to determine the practical range to be
applied for the testbed. To this end, we prepared an Arduino
board and additional gyroscopes, MPU-{6050,6500,9150,9250},
in addition to the IMU sensors in the Pixhawk board (i.e., ICM-
{20689, 20692}).

Model Validation. We theoretically demonstrated that the
second term in Equation 5 (i.e., the cross product of the benign
signal and the driving directional resonant signal) is negligible.
To validate this in the real world, we conducted experiments
using IMUs, such as MPU-6500 and MPU-9250. We set up
these IMUs on an Arduino board and injected an acoustic
signal. To reflect the dynamic case, we used an additional
mechanical vibration source that produces consistent vibrations
on the gyroscope. In total, we performed three experiments,
and the output spectra of the gyroscope for each experiment
are illustrated in Fig. 6. First, we applied an attack signal at
the resonance frequency (27 kHz) to the gyroscope under a
stationary state (Fig. 6a), which exhibited a peak at 89 Hz.
Subsequently, we applied only the vibration to the gyroscope
(Fig. 6b), which exhibited two peaks at 35 and 70 Hz. Lastly,
we applied both the attack signal and the vibration (Fig. 6c),
which showed three peaks at 35, 70, and 89 Hz.

The output spectrum of the third experiment was approx-
imately a mixed form of those from the first and second
experiments. Notably, we could not observe any other noticeable
peak caused by the driving directional excitation (i.e., the second
term in Equation 5). If the driving directional excitation is
present, it should appear as a peak at the frequency of Fm+Fi,
where Fm denotes the frequency of the mechanical vibrating
source. As this peak does not appear, we concluded that the
driving direction excitation is negligible.

Actual Values for Resonant Sensors. We also measured the
practical values of the induced frequency Fi and the induced

TABLE II: Resonance analysis results of gyroscopes in IMUs

Model Acoustic Freq.
(Hz)

Max Amp.
(deg/s)

Induced Freq.
(Hz)

MPU-6050 27,230 39.0 7.2
MPU-6500 27,600 143.9 129.0
MPU-9150 27,500 22.6 193.1
MPU-9250 27,410 100.8 0.9
ICM-20689 27,100 108.8 205.9
ICM-20602 27,400 53.1 19.7

amplitude Ai, to use as a reference for generating the resonant
gyroscope values in the testbed. Specifically, we analyzed
the spectrum of the resonating gyroscope to determine the
peak response in the acoustic injection tests; these results are
presented in Table II.

C. Testbed Implementation

To implement our testbed, we incorporated the developed
software sensor models into the simulation framework (Gazebo
v9.15) of PX4 [16]. Notably, the framework provides a high-
fidelity six-degree-of-freedom simulation, which reflects the
sensor values from a real flight [31], [32]. It also affords
complete software-based (i.e., SITL) and hardware-assisted
simulation (i.e., HITL). We customized the sensor drivers of
PX4 that retrieve the sensor value to evaluate the effect of the
resonance. Thereafter, we modified the messaging modules that
manage commands to configure parameters for our software
sensor models. For an in-depth analysis, we inserted simple
code for logging the generated sensor values, status of the
drones (e.g., attitude and position), and timestamps of the
injected signals and drones’ operations. Finally, we built a script
that could automate the experiments. In total, we implemented
1,347 lines of code to build our testbed in C++ and Python.
For more details regarding our testbed, please refer to §B in
Appendix and our website [15].

V. IMPLICATION ANALYSIS OF RESONANT SENSOR DATA

In this section, we explain our findings through a series of
SITL and HITL experiments using the developed testbed. In
particular, although existing studies argue that sensor resonance
itself induces drone crashes, we found that sampling jitter
causes resonating sensors to crash drones.

A. Resonant Sensors Alone Do Not Cause Crashes

It is widely accepted that resonant IMU sensors can directly
cause drone crashes [2]. However, we discovered this is not
always true.

Setup. For the investigation, we employed sine wave testing,
which is commonly used to evaluate the robustness of the
drones’ controller during the design phase [33], [34]. Sine
wave testing simply feeds various sine wave signals into the
control logic of the target system by varying their amplitude
and frequency. Similarly, we generated various resonant sensor
signals and fed them to the target drone’s control system.

Here, the resonating sensor signal can be represented as an
additive sine wave, as shown in Equation 3 (for accelerometers)
and Equation 10 (for gyroscopes). Although sine wave testing
uses signals whose frequencies range over several tens of Hz,
the test in this study involved signals with frequencies ranging
from several hundred Hz to several kHz. Therefore, we carefully
considered the under-sampling issues during our experiments.

For gyroscopes, we used an induced amplitude Ai between
0 and 4 rad/s (≈230 deg/s) and an induced frequency Fi

between 0 and 250 Hz. Here, for the induced amplitude, we
chose the upper bound (4 rad/s) to cover the maximum values
observed during the empirical analysis (Table II) and those
reported by previous studies [2], [3]. We selected 250 Hz as

6

(a) Drone trajectory in SITL. (b) Drone trajectory in HITL.

Pitch (deg) Roll (deg)

Alt (m)

40
0

-40
3

0

Attack
Start

0 10 20 30 40 50 60 70time(s)

(c) Logged data in SITL.

Pitch (deg) Roll (deg)

Alt (m)

40
0

-40
3

0
0 10 20 30 40 50 60 70time(s)

Attack
Start

(d) Logged data in HITL.

Fig. 7: Results of resonance injection tests for gyroscopes.

the upper bound for the induced frequency, considering the
sampling frequency (250 Hz) of the target drone.

For the accelerometers, we used a resonated amplitude Ai

between 0 and 90 m/s2 (≈9 g) and an acoustic frequency Fac

between 5,000 and 5,250 Hz. Here, we selected a sufficient
upper bound, as in the case of the gyroscopes; in other words,
we referred to values measured in previous studies [4] for the
amplitude. For the frequency, we selected the 250-Hz range,
considering the sampling frequency (250 Hz) of the target.

Additionally, we set up a consistent environment and
injected the acoustic signal into a drone under a stable state for
precise experiments. More specifically, in each experiment, we
first ran a simulation to fly the 3DR Solo drone and waited for it
to hover at a stable altitude of 2.5 m (≈15 s). We then injected
noise signals into the drone and investigated its behavior.

(a) Drone trajectory in SITL. (b) Drone trajectory in HITL.

40
0

-40
25

0
0 10 20 30 40 time(s)

Attack
Start

(c) Logged data in SITL.

40
0

-40

Attack
Start

time(s)

25

0
0 10 20 30 40

(d) Logged data in HITL.

Fig. 8: Results of resonance injection tests for accelerometers.

Results. Although it is widely accepted that IMU sensors
cause drone crashes when resonated [2], we observed that the
drones did not crash in most of the SITL experiment cases,
for both the gyroscopes and accelerometers. By contrast, the
drones crashed in all the cases of the HITL experiments.

Fig. 7 illustrates the drone’s behavior and status for a
resonant gyroscope, where the resonant signal has an Fi

value of 100 Hz and an Ai value of 4 rad/s. Notably, the
drone in the SITL experiment hovered in a stable manner,
with subtle vibrations (Fig. 7a), whereas that in the HITL
experiment crashed (Fig. 7b). In addition, the logged roll, pitch,
and altitude of the drones in the SITL simulation remained
consistent (Fig. 7c), whereas those in the HITL simulation
significantly fluctuated immediately after the injection of the
noise signal (Fig. 7d). The accelerometers exhibited similar
behaviors as shown in Fig. 8; where the resonant signal has
an Fi value of 5.125 kHz and an Ai value of 90 m/s2.

Summary. From this investigation, we learned that resonant
sensors do not always lead to drone crashes. Further, two

Digital
Controller

Actuator
(Rotors)

System
Dynamics

Sensors
Measured Output

Acoustic
Injection

System
Output

(y)

Input
(u)

System Model of Quadcopter G(s)
+

-

Fig. 9: Closed-loop system model of a quadcopter.

(a) Roll (b) Pitch (c) Yaw

Fig. 10: System response of the target drone. The bandwidths
are 4.32, 5.37, and 0.005 Hz for (a), (b), and (c), respectively.

questions were raised: 1) why did the drones not crash in most
of the SITL experiments?, and 2) what caused the inconsistency
between the SITL and HITL experiments? Hereinafter, we
explore these questions.

B. Robust Control Logic Can Prevent Drone Crashes in SITL
Experiments

We further conducted causal analyses of the SITL exper-
iments in which the drones did not crash. Subsequently, we
discovered that such behavior mainly originated from two
factors: 1) the sensor drivers contain digital LPFs that filter out
unwanted signals and 2) the in-band frequency of the control
logic is considerably smaller than that of the LPF boundary.

Digital LPFs. Digital LPFs are often employed in control
systems such as those of drones to eliminate unwanted band
signals (i.e., out-band signals), including noise or harmonic
components [30], [35]. In general, they are located in the
software drivers of the drones that retrieve sensor values; thus,
they are distinct from the analog LPFs inside the sensors.

In our experiments, the drone employed a digital LPF with
a cutoff frequency of 30 Hz; this implies that the LPF filtered
out all signals whose frequencies exceeded 30 Hz.

In-band Frequency Range of the Control Logic. Additionally,
we conducted a simple test, where an acoustic signal was
directly injected into the control logic under the SITL test by
disabling the digital LPF. Here, we injected resonant signals
by sweeping the induced frequency from 0 to 125 Hz, where
125 Hz denotes half of the sampling frequency of the drone.

As a result, we discovered that the drone crashed for
signals with frequencies of just 0–5 Hz. In other words, for
signals whose frequency ranged between 5 and 125 Hz, the
drone successfully continued flying, without crashing. This
demonstrated that the in-band frequency range of the drone’s
control logic was 0–5 Hz; thus, most of the resonant signals
were ineffective.

To identify the in-band range of the target drone more
precisely, we further conducted experiments by modeling the
drone using a system identification method [36], [37]. System
identification involves approximately building a model, namely
a transfer function, for the target system using several input-
output pairs. Prior research has introduced a similar approach
for modeling a drone [9], [38]. Accordingly, we set up a closed-
loop system model of a quadcopter, as illustrated in Fig. 9.
Herein, we employed the angular rate as the input (u), along
with its corresponding attitude control commands, such as

7

the roll, pitch, and yaw, as the output (y). Thereafter, we
collected these values using our testbed, input them into
MATLAB’s system identification toolbox, and obtained a
transfer function (G(s)).

The resulting transfer function is shown in Fig. 10. Notably,
the -3-dB point is the de facto standard to measure the in-
band range of a system, as it guarantees the response of the
system in a stable manner [39]. The -3-dB points of the transfer
functions were 4.32, 5.37, and 0.005 Hz, for roll, pitch, and
yaw, respectively. That is, the in-band frequency range of the
target drone was approximately 0–5 Hz.

Summary. In most of the SITL experiments, the drone did not
crash owing to the digital LPF and the narrow in-band range
of the control logic. This investigation revealed that simply
excluding MEMS IMU sensors whose resonance frequency lies
within the in-band range can prevent drones from crashing in
the SITL experiments while drones crashed in all the HITL
experiments. In this case what caused the resonant signals to
bypass the digital LPF and affect the in-band range? Hereinafter,
we explore this question.

C. Sampling Jitter as a Critical Factor for Drone Crashes

Resonant Sensor Signals are Dispersed in HITL Exper-
iments. To identify the root causes of the drone crash in
the HITL experiments, we first monitored the resonant sensor
signals in both the SITL and HITL experiments before and
after the low-pass filtering in the drones’ control logic. After
logging the sensor signals at each point, we investigated the
spectrum of the sampled signals.

Fig. 11 illustrates the sampled resonant signals whose
resonance frequency is 5,100 Hz. In an ideal case, this signal
will be under-sampled to a signal whose induced frequency is
100 Hz; 5, 100 mod 250 = 100, where 250 is the sampling
frequency of the target drone. The blue line (1) depicts the
spectrum of benign sensor data, which are largely at low
frequencies within the ‘in-band’ frequency. The green plots (2)
in the figure depict the spectrum of an ideal resonant signal
from the SITL simulation, which does not include hardware
issues. Note that the acoustic signal shows peak response at
100-Hz, which is still out-of-band. By contrast, the orange plots
(3) represent the resonant sensor signal before the low-pass
filtering in the HITL simulation on a physical Pixhawk board.
Notably, the peak at 100 Hz in the green plots was dispersed
over multiple frequencies (0–125 Hz) in the orange plots owing
to the sampling jitter. Lastly, the red plots (4) indicate the
dispersed orange plots after the signals were passed through the
low-pass filter. Recall that the target drone employed a digital
LPF with a cutoff frequency of 30 Hz. Because the dispersed
resonant signal (≤ 30) is within the range of the low-pass filter,
it is not completely removed after filtering. As compared with
the benign sensor data spectrum (1), the residual resonant
signal (4) is substantially dominant. Consequently, it was
passed to the control logic of the drone and affected its behavior.
These unfiltered signals influence the sensor fusion filter (i.e.,
EKF), preventing accurate estimation of the position or attitude.
In compromised cases, we observed several consequences, such
as EKF fail-over, position error, or sensor inconsistency error.
For the details of these consequences, refer to Video-C on our
website [15].

0 30 60 90 120

0.0

0.3

0.6

Amplitude

Amplitude

Amplitude

Amplitude

Frequency (Hz)

Am
pl

itu
de

 (m
/s

²)

Z Axis Title

Sampled resonance
in HITL (/w jitter)

3

Post LPF resonance
in HITL (/w jitter)4

Unfiltered
in-band noises

1 Benign Data

LPF cut-off (30Hz)

2
Sampled resonance in
SITL (ideally /wo jitter)

Fig. 11: Spectrum analysis of the sampled resonance signals.

0 250 500 750 1000 1250 1500 1750 2000
3750

4000

4250
 SITL HITL REAL Drone

In
te

rv
al

 (m
ic

ro
-s

ec
on

ds
)

Samples

In
te

rv
al

 (μ
s)

Fig. 12: Measured sampling intervals for each experiment.

Sampling jitter causes the dispersion of the resonant signals.
If so, what caused the dispersion in the HITL experiments?
Recall that a resonant signal is generally under-sampled as its
frequency is considerably higher (several kHz) than the drone’s
sampling frequency (250 Hz). Notably, hardware developers
are aware that such under-sampled signals are more susceptible
to sampling jitter, which is essentially an inconsistent timing
delay in retrieving the sensor values [40], [41]. Particularly,
the under-sampled signals can be spread out by sampling jitter,
as shown in Fig. 11. However, none of the previous studies on
acoustic injection attacks have discussed this issue. Accordingly,
we further investigated the implications of sampling jitter on
the resonant signals. We simply measured the sampling interval
after the retrieval of sensor values at the sensor drivers and
before the sensor values were transferred to the control logic.

Fig. 12 illustrates the measured sampling intervals in each
experiment. The average sampling interval (4 ms) corresponds
with the sampling frequency (250 Hz) of the drone. However,
several sensor values were sampled imprecisely, with large
deviations. More specifically, although the standard deviation
of the sampling intervals was nearly 0 in the SITL experiments,
that in the HITL experiments was approximately 457 µs. Addi-
tionally, we conducted the same experiment with a commercial
drone, 3DR Solo. As the drone utilized the same board as that
employed in the HITL experiments, it also showed substantial
sampling jitter, with a standard deviation of approximately
103 µs. This result demonstrates that sampling jitter is indeed
present in real-world scenarios. However, is this sampling jitter
sufficient to cause drone crashes?

In-depth Analysis of Sampling Jitter. To address the
aforementioned question, we performed additional in-depth
analyses for the sampling jitter. We conducted the same SITL
experiments, but added an intentional random jitter during
the retrieval of resonant sensor values in the sensor drivers.
Thereafter, we investigated 1) drone crashes in the presence
of jitter, and 2) the threshold of the jitter that caused the
drone crashes for the sampled resonant sensor signals. For
the gyroscopes, sampling jitter that was greater than 80 µs
could cause the drone to crash. In the case of accelerometers,
6-µs sampling jitter was sufficient to crash the drone. For both
sensors, the threshold sampling jitter that crashed the drone was
considerably smaller than those in the HITL and actual drone
experiments. Consequently, we concluded that the sampling
jitter during hardware operation is a key factor influencing
drone crashes during attacks.

We also measured the signal-to-noise ratio (SNR) to
investigate the influence of sampling jitter on the original signals

8

0 30 60 90 120

0.0

0.6

1.2

Amplitude

Amplitude

Amplitude

Frequency (Hz)

Am
pl

itu
de

Z Axis Title

Sampled resonance
after LPF3

LPF cut-off (30Hz)Unfiltered
in-band noises

Amplitude (deg/s)

1 Benign Data

Am
pl

itu
de

 (d
eg

/s
)

2 Sampled resonance
in sensor before LPF

Fig. 13: Spectrum analysis of the real drone sensor.

in detail. Our SNR calculations for the resonant signal revealed
that the SNR ranged from 15 to 33 dB in the absence of the
sampling jitter, whereas it ranged from -23 to -5 dB in the
presence of the jitter. Here, the negative SNR implies that the
noise overpowers the original signal. Therefore, the resonance
signal with sampling jitter negatively affects the safety of the
drone control system.

Impact of Sampling Jitter in Actual Sensors. Sampling
jitter is inherent in an FC board, and it originates from multiple
sources, primarily from hardware imperfections (refer to §V-E
and §A in the Appendix). Thus, the sampling jitter is not
controllable. To investigate the actual influence of the sampling
jitter, we measured the resonant sensor signals using physical
sensors under attack, and the results are presented in Fig. 13.
Notably, the results are similar to those in the HITL test
(Fig. 11). The blue line (1) depicts the spectrum of benign
sensor data. The orange plots (2) represent the resonant
sensor signal before low-pass filtering on a physical Pixhawk
board while injecting actual sound with a speaker. Notably,
the resonance signal with an induced frequency of 110 Hz is
dispersed over multiple frequencies (0–125 Hz) as shown in the
orange plots. As depicted in the red plots (3), even though the
out-band noises are diminished, the dispersed in-band signals
are not filtered with an LPF. These unfiltered in-band noises
are large enough to overpower the benign signals.

Summary. We investigated the inconsistent results between
the ideal (SITL), and the hardware-related (HITL as well as
actual sensors) experiments. Subsequently, we discovered that
sampling jitter plays a critical role in drone crashes by spreading
the resonant signals across various frequencies, including the
in-band frequency of the drones.

D. Effect of Sampling Jitter in Actual Drones

To confirm the effect of sampling jitter in the real world,
we conducted an additional experiment using an actual drone,
3DR Solo. After inserting the resonant software sensor models
into the drone’s firmware, we set the drone to hover at an
altitude of 2 m. Then, we initiated the attack to inject resonant
sensor signals into the drone.

As actual drones naturally include sampling jitter, the
generated resonant sensor signals are already affected by
sampling jitter. To emulate the status without sampling jitter,
we slightly modified the timestamp during the generation of
the resonant signals, such that the resonant signals had an exact

(a) Resonant gyro. w/o jitter. (b) Resonant accel. w/o jitter.

(c) Resonant gyro. w/ jitter. (d) Resonant accel. w/ jitter.

Fig. 14: Actual drone flights with and without sampling jitter.

timestamp of 4 ms (250 Hz), which is the sampling frequency
of the drone’s sensor drivers.

As shown in Fig. 14, the presence of sampling jitter affected
the output sensor signals and eventually crashed the drones
for both the gyroscopes and accelerometers. This confirms that
sampling jitter is a critical factor influencing drone crashes
during an attack. For a demo, please refer to Video-B on our
website [15].

E. Empirical Evidences of Sampling Jitter

Next, we investigated the potential causes of sampling
jitter. As expected, multiple factors can cause sampling jitter.
Here, we introduce three potential causes discovered during
our investigation.

Scheduling Issues. First, control systems often employ an
RTOS to satisfy the strict computational requirements. Although
an RTOS ensures that its executable tasks are compliant with the
deadlines, it does not ensure the deterministic execution of the
tasks, i.e., a task in an RTOS is scheduled to be executed within
a specific deadline but not at a specific moment. Consequently,
scheduling jitter naturally occurs on the execution of a periodic
task. In practice, such scheduling jitter is prevalent in several
control systems [42]–[44]. To confirm this, we measured the
scheduling jitter of the sensor task for our target system, PX4
running an RTOS named NuttX. As a result, we observed a
scheduling jitter of 124.6 µs with a standard deviation, which
is comparable to the period of the acoustic frequency.

Operation Interval Mismatches. Second, each task in a drone
is scheduled to be performed at designated intervals. However,
the operation period of the drone’s control logic may not match
that of the sampling logic (in sensor drivers) retrieving the
sensor values. Such mismatches may not cause an issue during
benign operation, i.e., in the absence of an attack, because the
sensor loop ensures that the main loop receives new data in this
setup. However, if the sensors are under attack, this misaligned
time interval can cause jitters from the perspective of the main
control logic. By investigating the source code of PX4 and
ArduCopter, we discovered several cases in which the sensor
drivers implemented in the drone firmware used time intervals
that are different from those of the operation interval of the
control logic. For instance, the sampling frequency (1000 Hz)
of the InvenSense drivers in ArduCopter is 2.5 times higher
than that (400 Hz) of the control logic. For detailed results,
refer to Table VI in §A of the Appendix.

Imprecise Clocks. Each MEMS sensor includes its own
clock source to independently process analog-to-digital (ADC)
sampling. Nonetheless, this clock source was not synchronized
with that of the FC. Such a mismatch can cause inaccurate
clock timings when processing sensor values, thus resulting in
jitters. During our experiments, we observed a 5 % precision
error (Fig. 21 in §A of the Appendix).

F. Misbeliefs in Previous Mitigation Methods

During our investigations, we identified several misbeliefs
associated with previous studies regarding mitigation strategies.

Low-Pass Filters Cannot Mitigate the Attacks. A previous
study [4] proposed that employing LPFs can mitigate attacks.
Notably, LPFs can be largely divided into two categories:

9

analog and digital. As analog circuits cannot completely
suppress the electric signals at unwanted frequencies owing
to hardware issues, a part of the resonant signals can remain
and affect the drone’s control logic. By contrast, digital LPFs
can almost entirely suppress unwanted frequency signals.
Nevertheless, when using either type of LPF, it is challenging
to completely filter out the resonant signals affected by the
sampling jitter. This is because the sampling jitter spreads the
under-sampled resonant signals across the in-band frequency
range, as discussed in §V-C. Thus, both analog and digital
LPFs cannot mitigate acoustic injection attacks.

Sampling Randomization Increases Vulnerability to DoS
Attacks. Prior studies [3], [4] have suggested that sampling
randomization can prevent spoofing attacks in MEMS sensors.
This approach is indeed promising to prevent spoofing attacks;
however, during our experiments, we discovered that it increases
vulnerability to DoS attacks (for a demo, refer to Video-D on
our website [15]). As this mitigation randomizes the sampling
phase, it essentially increases the possibility of under-sampling
the resonant sensor signals. This under-sampling can affect
the sampled signals in a similar manner as sampling jitter:
by spreading the sampled signal across multiple frequencies,
including the in-band range. In addition, ideal uniform sampling
is fundamentally infeasible in actual hardware. Thus, such
inherent nonuniform sampling makes actual drones more
vulnerable to DoS attacks. Therefore, random sampling cannot
be the ultimate solution to prevent such attacks.

VI. RECOVERING RESONANT SENSOR VALUES

Based on an in-depth analysis of the resonant sensor signals,
we learned that they are spread across the in-band frequency
range of the drone’s control logic owing to the sampling jitter.
These in-band resonant signals subsequently overlap the benign
signals and eventually crash the drone. Then, how can we
recover the benign signals from the compromised ones?

A. Design of Recovery System, UNROCKER

Based on the findings (§V), we hypothesized that 1) the
overlapping resonant signal can be considered noise from the
perspective of benign signals, and 2) we could thus leverage
noise reduction techniques to recover the benign signals.
Our intuition is that the compromised signal is essentially a
combination of the benign and resonant signals, as demonstrated
in §IV-A. Thus, removing this noise component from the
compromised signal would yield a benign signal.

First, we investigated if using conventional heuristic de-
noising filters could mitigate the impact of acoustic injection
attacks. As popular heuristic filters, a Savitzky-Golay (Sav-Gol)
smoothing filter [45] and a wavelet domain Wiener filter [46]
were employed; the latter is noted as the industry standard.
Using these filters, we attempted to thwart acoustic injection
attacks, but both failed. For more details, refer to §VII.

The advent of deep neural networks (DNNs) contributes
to overcoming the limitations of conventional heuristic ap-
proaches [47]. Among existing approaches, we chose a
DAE [48], [49] as our basis. Notably, a DAE is widely applied to
safety-critical systems, including medical imaging and various
industrial processes [50]–[54]. As drones are also safety-critical

2

Raw Data
Raw Data Array
Recovered Data Array
Recovered Data

Communication Process

Inference ProcessIMU

Actual Data

Modeled Data

DATA1

Recovery Model

DATA1

MISSION FLIGHT

RECOVERED DATA

PX4 SITL/HITL

DATA2 DATA Nꞏꞏꞏ

DATA2 ꞏꞏꞏ DATA N

SWITCH

1

3

Fig. 15: Overview of our recovery system UNROCKER.

systems, we considered that the DAE can be applied to them
as well.

Note that we do not claim that our approach is optimal.
However, our unique contribution is that we applied a denoising
approach to the compromised sensor signal under acoustic
injection attacks, demonstrating that the attack can be effectively
mitigated. Meanwhile, we also conducted a brief experiment
that compares the DAE with recent advanced approaches; this
also shows the robustness of DAEs (refer to §VIII).

A DAE is fundamentally an autoencoder; thus, it constitutes
a cascaded form of an encoder and a decoder (Fig. 16). It
converts a noisy input signal into a signal with much less
noise through the encoding and decoding processes. Based
on the DAE model, we designed a recovery system that we
call UNROCKER. An overview of UNROCKER is illustrated
in Fig. 15. UNROCKER is designed to operate in the middle
of the sensor drivers and an FC; thus, it directly recovers the
digitized values from the sensors. First, UNROCKER receives
the sensor data from the sensor drivers. As these sensor data are
transferred in a digitized form, a sufficient number of samples
are required to accurately indicate the original analog signal.
Thus, UNROCKER stores the received data in a queue (by
means of a sliding window) and transfers the stored values
to its pre-trained DAE model. Then, it delivers the output
recovered sensor values to the FC.

B. DAE Model Construction

For the DAE model of UNROCKER, we simply borrowed
a DAE model from previous work [55] as it has been widely
used in various studies for signal denoising [51], [56], [57].
Note that this model was implemented with TensorFlow and
Keras. We adjusted its hyper-parameters, such as the input size,
step size, and epoch, by empirically iterating the training phase.

First, to set the input size, we considered the trade-off
between the performance and recovery. It is obvious that a
small number of input values would reduce the complexity of
the network and accelerate recovery. However, few samples
may not sufficiently express their tendency effectively; thus,
the recovery performance would decrease. Considering the
computational overhead and latency in our experimental setup,
we empirically set the input size to 256, which comprises a
signal of approximately 1 s.

For the batch size, we chose 32. Note that a large batch size
reduces the training time, but it consumes large amounts of
memory resources and sacrifices the training loss. By contrast,
if the batch size is small, both the training accuracy and
time increase. After iteratively testing different batch sizes,
we observed that the training accuracy becomes saturated if
the batch size is less than 32; thus, we used it.

For the number of layers, we also tested various combi-
nations. For the accelerometer, we found that 18 is the best

10

Input Conv

ConvMax
Pooling

Max
Pooling

Avg
Pooling

Flatten

Up
Sampling

Conv

Denoising Auto-Encoder

Dense

Reshape

Conv

Up
Sampling

Conv
Up

Sampling
-

-

-

Encoder Decoder

Dense

Fig. 16: Architecture of a denoising autoencoder (DAE).

Home

WP#1
WP#2

WP#3

WP#4

WP#6

WP#7

WP#5

Fig. 17: Trajectory of the planned mission.

configuration, as depicted in Fig. 16. For the gyroscope, we
applied 14 as the number of layers; from the layers of the
model for the accelerometer, four Conv and Pooling pairs were
reduced from the Encoder and Decoder, respectively.

We trained the DAE model for 500 epochs with a step size
of 4 and, limited the loss to 0.001. For the learning curve,
refer to Fig. 22 in the Appendix. We describe the details of
the training dataset in the following section.

C. Resonant Sensor Dataset Construction

In general, training a model requires massive amounts of
data to ensure sufficient performance. However, physically
acquiring such a large number of sensor signals using actual
sensors and a speaker is laborious and time-consuming. In
addition, it imposes large experimental overheads because an
anechoic chamber and a high-performance speaker that can
emit precise acoustic signals are necessary.

To address this, we utilized the resonant sensor models and
our testbed, described in §IV, for the construction of the training
dataset. For this, we modified the source code of PX4’s drone
firmware and implemented additional scripts to automatically
run simulations and generate the signal pairs. We utilized HITL
simulations during the training dataset construction to take into
account the effect of sampling jitter. For a detailed analysis of
the effect of sampling jitter during training between the SITL
and HITL simulations, refer to §C in the Appendix.

For the HITL simulations, we used two target drones,
namely 3DR Iris and Solo; these are based on the Pixhawk
board. We randomly set seven waypoints at an altitude of 25–
100 m as shown in Fig. 17, such that the sum of the distance
between the waypoints was approximately 1.33 km. Thus, once
a drone took off from the starting point, it was assigned to visit
all the waypoints and return to the starting point. The time
required for this operation was approximately 6 min, which
entailed approximately 90k samples of the sensor values.

During the simulations, we generated and collected both
resonant sensor signals and benign ones for each sensor (i.e.,
a gyroscope and an accelerometer). As each sensor has three
axes (i.e., x, y, and z), we collected the signals for each of
these sensor axes. We also ensured that the resonant signals
were not transferred to the FC to make the drone fly without
disturbances; thus, we collected both resonant signals and the
corresponding benign signals simultaneously. Then, we used

TABLE III: Recovery performance summary of UNROCKER
with four Amplitudes and three Drone Models for an Ac-
celerometer and a Gyroscope (Total of 72 cases)

Amplitude of
Resonance Signals

Accelerometer
(σ,m/s2)

Gyroscope
(σ, rad/s)

20 40 60 80 1 2 3 4

Compromised Signals 14.13 28.28 42.38 56.64 0.707 1.414 2.12 2.83

↓ ↓

Recovery of
3DR Iris

X-axis 0.270 0.281 0.282 0.296 0.011 0.011 0.013 0.012
Y-axis 0.086 0.081 0.097 0.083 0.021 0.021 0.020 0.023
Z-axis 0.871 0.923 0.903 0.930 0.013 0.014 0.015 0.016

Recovery of
3DR Solo

X-axis 0.311 0.308 0.342 0.322 0.254 0.254 0.276 0.289
Y-axis 0.125 0.118 0.131 0.143 0.046 0.047 0.047 0.054
Z-axis 0.973 0.971 0.970 1.037 0.031 0.029 0.034 0.038

Recovery of
Flight Data

X-axis 3.461 3.473 3.476 4.078 0.079 0.089 0.093 0.100
Y-axis 2.212 2.213 2.213 2.228 0.050 0.051 0.053 0.056
Z-axis 2.678 2.712 2.738 2.827 0.043 0.043 0.043 0.044

1 The red cells indicate that the standard deviation of the errors was
destructive to drones. Note that the minimum value to crash both Iris
and Solo drones was 35.4 and 1.41 for accelerometers and gyroscopes,
respectively.
2 The amplitudes of the benign sensor signals ranged from -18 to +3 m/s2

for accelerometers, and from -5 to +5 rad/s for gyroscopes

these signal pairs for the evaluation, where the benign signals
were used as the ground truth.

During this step, we set the resonance frequency to 27.1
kHz and 1.83 kHz for the gyroscopes and accelerometers,
respectively, as these are the resonance frequencies of the
primary IMU in our target board. Additionally, we collected
signal pairs by varying their amplitudes. Specifically, we used
0, 1, 2, 3, and 4 (rad/s) for the gyroscopes, and 0, 20, 40, 60,
and 80 (m/s2) for the accelerometers. We also selected the
upper bound of the amplitude as described in §V-A.

To construct a sufficiently large dataset, we repeated the
aforementioned collection procedure six times. Thus, we
collected six sets of 6-min signals for each axis, sensor, and
drone. Then, we randomly split the six sets in the ratio of 4:1:1
for training, validation, and testing, respectively. In total, we
collected 360 6-min signal pairs, which involve approximately
32.4M pairs of sensor values: 2 drones × 2 sensors × 3 axes
× 5 amplitudes × 6 times = 360.

D. Evaluation of UNROCKER

Next, we evaluated the recovery capability of UNROCKER.
To evaluate the success of recovery, we used the standard
deviation of the errors between the recovered sensor values and
benign ones. This method of utilizing the standard deviation has
been widely employed in previous studies [2], [4] for analyzing
the degree of errors between benign and compromised sensor
values. Similarly, we adopted it to measure the errors between
the benign and recovered sensor values, where a smaller
standard deviation in the errors represents better performance.

We first trained UNROCKER using the training and vali-
dation sets for each axis, sensor, and drone (§VI-C), which
resulted in a total of 12 pre-trained models. Subsequently, we
used each model to recover the compromised sensor signals
for the four different amplitudes in the test set: 1, 2, 3, and 4
(rad/s) for the gyroscopes, and 20, 40, 60, and 80 (m/s2) for
the accelerometers.

11

(a) Accel. (HITL) (b) Gyro. (HITL) (c) Gyro. (Flight)

Fig. 18: Example of recovery results (red : compromised signal;
green : recovered signal; blue : reference signal).

These results are illustrated in Table III. As shown in the
table, UNROCKER successfully recovered the compromised
sensor signals for all the amplitudes by significantly reducing
the errors. Fig. 18a and Fig. 18b depict examples of the
recovered signals for the 3DR Iris drone (X-axis), where
the amplitude of the compromised signal is the maximum
value, such as 80 m/s2 for the accelerometers and 4 rad/s
for the gyroscopes. The standard deviation of the errors was
significantly reduced from 56.64 to 0.296 for accelerometers and
from 2.83 to 0.013 for gyroscopes. Accordingly, the recovered
signal (blue) was almost identical to the benign one (green).

We also measured the SNR to demonstrate UNROCKER’s
performance in terms of signal quality. The results are shown
in Table VIII of Appendix §C. Notably, the SNR indicates
an improvement from large negative (from -12.8 to -27.6 dB)
values to positive values (at least 0.8 dB and upto 25.6 dB);
this means that the recovered original signal overwhelms the
noise, demonstrating the recovery capability of UNROCKER.

Evaluation with Actual Sensors (Software Injection). We
also evaluated whether UNROCKER can be applied to physical
sensors. To emulate the dynamic (moving) state as if the
board was installed on a flying drone, we randomly shook
the board and injected acoustic signals for 2 min; this involved
30k samples. For the injection, we first obtained the physical
sensor signals from the board and then added the resonant
sensor signals from the software model in our testbed. This is
because if the sensors are actually resonated, it would not be
possible to obtain the original values from the resonant sensors
for constructing the ground truth. Therefore, we utilized the
software sensor models to inject resonant signals and used the
benign sensor signals as the ground truth. For the resonant
signals, we employed amplitudes of 70 m/s2 at a frequency
of 1.83 kHz for the accelerometers, and 4 rad/s at 27.1 kHz
for the gyroscopes.

Then, we measured the standard deviation of the errors
between the compromised sensor signals and the recovered
ones. Here, we present the results for the X-axis of each sensor
on the primary IMU, because it is the most vulnerable to the
acoustic injection attack. For the accelerometers, UNROCKER
successfully reduced the standard deviation of the errors from
49.61 to 2.00, whereas it decreased that for the gyroscopes from
2.83 to 0.27. Notably, although we reused the model trained
for the HITL simulations throughout the recovery experiment,
UNROCKER successfully recovered the signals for both sensors.

Evaluation with Actual Sensors (Actual Injection). Although
we may not build the ground truth for the dynamic cases, we can
infer the ground truth for the stationary cases, as the position
of the sensors was fixed and their values would be close to 0
with a subtle bias. We placed the Pixhawk board on a flat table
and injected acoustic noise into them using a speaker 10 cm

away from the board (110 dB SPL). Then, we recovered the
resonant sensor signals. UNROCKER successfully reduced the
standard deviation of the errors from 2.361 to 0.935 for the
accelerometers, and from 1.469 to 0.025 for the gyroscopes.

Evaluation with Actual Flight Data. We also evaluated
whether UNROCKER can recover the sensor data reflecting the
dynamics of real flights. For this, we collected sensor logs from
a flying drone (3DR Solo) for 90 s (≈22.5k samples). Then,
we generated the resonant sensor signals using the software
model. The results are summarized in the last row of Table III.
UNROCKER successfully reduced the standard deviation of
errors for all cases, demonstrating its recovery performance.
Notably, this shows that the models trained in the HITL dataset
can be applied for real-world data recovery.

Evaluation with Actual Drone with Actual Injection. To
evaluate UNROCKER under real-world scenarios, we recovered
compromised sensor data for a flying drone under attack. We
prepared a drone equipped with a Pixhawk FC board described
in §III-B. Recall that the Pixhawk board has two MEMS
IMUs (primary: ICM-20689, secondary: ICM-20692), each
of which has a different resonance frequency. We configured
the drone to use the secondary IMU for its flight to make it
continue flying while being attacked. Then, we injected actual
acoustic noise using a small Bluetooth speaker attached to the
target drone, as in a previous study [2]; we placed the speaker
10 cm from the drone’s FC board (110 dB SPL). Then, we
collected compromised sensor data from the primary IMU and
benign data from the secondary one. Lastly, we recovered the
compromised data and evaluated the degree of recovery by
considering the data from the secondary one as ground truth.

UNROCKER successfully reduced the standard deviation of
errors from 0.71 to 0.044 rad/s for the gyroscopes, as shown
in Fig. 18c. Meanwhile, we could not apply the same approach
to the accelerometers because the accelerometers in the primary
and secondary IMUs have similar resonance frequencies; thus,
they resonated simultaneously when being attacked. One may
replace one of them with another one with a different resonance
frequency; however, it is not trivial to simply replace an IMU
with a finished drone product as it requires expert knowledge
of configuration and calibration.

E. Towards Real-Time Drone Recovery

Recall that our ultimate goal is to make drones continue fly-
ing to planned destinations by recovering compromised sensor
values in real-time. However, real-time recovery necessitates
addressing several practical challenges. Particularly, as a real-
time system, a drone has a tight requirement of computational
overhead and latency.For example, the sensor values in PX4
must be updated every 4 ms, as its sampling frequency is
250 Hz. However, the machine-learning (ML)-based approach
typically requires more time, e.g., several seconds [58], [59],
which is significantly large for PX4. We believe that fully
addressing such challenges is beyond the scope of this paper.
Instead, we present a proof-of-concept and share our experience
towards real-time recovery to encourage future studies.

First, we investigated the timing requirements for real-
time recovery in our target system PX4. For this, we forcibly
caused a delay when retrieving sensor values during the
HITL simulations, and then measured the maximal delay that

12

Acc. Compromised
Acc. Recovered

Start attack

1

2

260m

-263m

60m

-167m

1

0m

0m263m
0m 167m

Fig. 19: Trajectory of drones in real-time recovery.

148 150 152 154
-6
-4
-2
0
2
4
6

An
gu

la
r r

at
e

(ra
d/

s)

Time (sec)

 Compromised signals
 True signals
 Recovered signals

(a) Gyro. recovery closed-loop.

70 72 74 76 78
-10

-5
0

5

10

An
gu

la
r r

at
e

(ra
d/

s)

Time (sec)

 Original Signal
 Delayed Signal

Induce 30ms
sensor delay

(b) Gyro. delayed simulation.

Fig. 20: Gyroscope recovery limitation from latency issue.

our target drone could afford. As a result, we discovered
that the recovery for gyroscopes and accelerometers should
be completed within 24 ms and 2.8 s, respectively. The
accelerometers were more robust than the gyroscopes because
gyroscopes are more sensitive to dynamic changes [60]–[62].

Second, we extended UNROCKER to recover compromised
sensor values in real-time during the HITL simulations. To
minimize the computational overhead and latency for data
transmission, we converted the base of UNROCKER from Ten-
sorFlow to TensorRT [63]. TensorRT supports a deep-learning
inference optimizer for low latency and high throughput while
sacrificing performance. In addition, we made UNROCKER
return previously recovered sensor values if the current recovery
was not finished.

For accelerometers, we confirmed that the drones under
attack continued flying and visited all waypoints successfully
when the recovered sensor signals were used. Fig. 19 illustrates
the trajectory of the drones. Whereas the drones without
recovery crashed down to the ground, those with recovery
continued flying successfully. For a demo, refer to Video-G on
our website [15].

However, we discovered that the recovery for the gyroscopes
was limited in our experimental setup. As shown in Fig. 20a,
after a short recovery period, gyroscope signals fluctuated and
eventually crashed the drones.

We further conducted a causal analysis for the fluctuation of
gyroscope signals. As a result, we discovered that a time delay
in retrieving sensor values caused the fluctuation. Particularly,
the data transmission between the Pixhawk board and server
raised a 30-ms delay. To analyze the effect of this latency, we
deliberately added a 30-ms delay to benign gyroscope signals
during the HITL simulations without injecting resonant signals.
As shown in Fig. 20b, the delayed benign gyroscope signals
presented similar aspects to the recovered signals (Fig. 20a).
While our current experimental setup could not address this
latency issue, we believe that drones equipped with edge
artificial intelligence (AI) computing boards may achieve real-
time recovery. We further discuss this issue in §VII.

VII. DISCUSSION

In this study, we investigated the implications of compro-
mised MEMS IMUs on drones and developed a novel sensor
recovery strategy based on a noise reduction technique. This
section describes the limitations of our study, as well as the
remaining insights to further improve the performance of the
proposed drone recovery.

Difficulties in Intentionally Targeting In-band Range. We
discovered sampling jitter to be a critical factor in an acoustic
injection attack by spreading out-band resonance signals into the
in-band range of the drone’s control logic (§V-C). Meanwhile,
one may wonder if an adversary can directly target the in-band
range without considering the sampling jitter. To address this
concern, we discuss that 1) such a case is extremely challenging
for a flying drone, and 2) even if it is feasible, it can be easily
mitigated.

First, an adversary may intentionally manipulate the sensor’s
response signal to be within the in-band range as discussed in
a previous study [4]. The study presented that an adversary can
manipulate the sensor’s response signal at the desired frequency.
However, this is extremely challenging for flying drones owing
to the environmental inconsistencies between stationary and
flying drones because the driving frequency of the flying drones’
gyroscope significantly fluctuates. Note that the frequency of
the gyroscope’s response signal is determined by its driving
frequency; the difference between the frequency of the injected
acoustic wave and the driving frequency becomes the frequency
of the response signal. This driving frequency widely fluctuates
depending on manufacturing errors, temperature, and aging [64].
Therefore, although the adversary conducts an attack using in-
band signals identified for a stationary drone, the response signal
would not likely appear within the in-band range, considering
the narrow in-band range (0–5 Hz). Notably, this issue is also
widely known by developers, and thus, they make MEMS
gyroscopes have a wide flat sensing region (several hundred
to thousands of Hz) to cover the fluctuating driving frequency
for normal operation [64].

Meanwhile, MEMS accelerometers are much more sensitive
to sampling jitter than gyroscopes as shown in §V-C. This
means that if an adversary targets the in-band signals for the
accelerometers, the actual signals sampled on flying drones
will be spread more by the sampling jitter. Consequently, for
accelerometers, an adversary cannot fit the resonance signals
into the narrow 5-Hz in-band range. Similarly, Tu et al. [3]
also demonstrated that only a DoS was feasible while failing
on spoofing (without clear reasoning).

Based on these observations, we concluded that directly
targeting the in-band range without considering the sampling
jitter is extremely challenging.

Evasion of UnRocker. As discussed above, an adversary
is most likely not to be able to carefully control the resonant
signal to reside within the in-band range of the target drone.
Nevertheless, we evaluated the resilience of UNROCKER
against potential in-band resonant signals. More specifically,
we conducted experiments by shifting the attack frequency to
produce compromised sensor signals at different frequencies.
Additionally, we modified the amplitude by continuously
increasing it. For the frequency, we shifted the resonant signal
by -100 and +100 Hz because the resonating frequency of
sensors is often spread out over a ±100-Hz range [65]. We
generated a separate dataset containing 54 additional test cases
in the same manner described in §VI-C; note that these are
different from the 72 test cases shown in Table III. Consequently,
UNROCKER exhibited reliable performance for all experiments
listed in Table IV, showing that the standard deviation of errors
resides within the range of benign signals.

13

TABLE IV: Recovery performance summary of UNROCKER
with three attack variations and three Drone Models for
Accelerometer and Gyroscope (Total of 54 cases)

Attack variations for
Evasion of UNROCKER

Accelerometer
(σ,m/s2)

Gyroscope
(σ, rad/s)

+100Hz -100Hz Amp.†+100Hz -100Hz Amp.†

Compromised Signals 56.64 56.64 41.59 2.83 2.83 2.08

↓ ↓

Recovery of
3DR Iris

X-axis 1.023 1.570 0.357 0.031 0.057 0.013
Y-axis 0.276 0.289 0.199 0.118 0.097 0.028
Z-axis 1.097 1.112 0.940 0.038 0.154 0.021

Recovery of
3DR Solo

X-axis 0.790 1.550 1.076 0.333 0.372 0.390
Y-axis 0.377 0.441 0.322 0.096 0.105 0.059
Z-axis 1.252 1.241 1.082 0.075 0.106 0.037

Recovery of
Flight Data

X-axis 3.555 5.599 2.951 0.167 0.164 0.089
Y-axis 2.223 2.225 2.263 0.094 0.104 0.051
Z-axis 3.118 3.004 2.734 0.070 0.083 0.043

† Continuously varying amplitudes of attack with slow sinusoidal pattern (50
seconds period).

TABLE V: Comparison to the heuristic filtering approaches

Filter
Types

Accelerometer
(σ,m/s2)

Gyroscope
(σ, rad/s)

20 40 60 80 1 2 3 4

LPF

X 1.67
(x6.2)

2.91
(x10)

4.30
(x15)

5.94
(x20)

0.09
(x7.8)

0.17
(x15)

0.25
(x19)

0.34
(x28)

Y 1.64
(x19)

2.90
(x36)

4.28
(x44)

5.93
(x72)

0.10
(x4.6)

0.17
(x8.2)

0.25
(x12)

0.33
(x15)

Z 2.06
(x2.4)

3.16
(x3.4)

4.46
(x4.9)

6.09
(x6.5)

0.09
(x6.7)

0.17
(x12)

0.25
(x16)

0.34
(x21)

Sav-
Gol

Filter

X 1.06
(x3.9)

1.89
(x6.7)

2.76
(x9.8)

3.85
(x13)

0.08
(x7.5)

0.17
(x15)

0.25
(x19)

0.33
(x28)

Y 1.04
(x12)

1.87
(x23)

2.76
(x28)

3.85
(x46)

0.08
(x4.0)

0.17
(x7.8)

0.25
(x12)

0.34
(x15)

Z 1.24
(x1.4)

2.00
(x2.2)

2.84
(x3.1)

3.91
(x4.2)

0.08
(x6.4)

0.17
(x12)

0.25
(x16)

0.33
(x21)

Wie
-ner

Filter

X 1.57
(x5.8)

1.77
(x6.3)

2.03
(x7.2)

2.39
(x8.1)

0.06
(x5.1)

0.07
(x6.3)

0.09
(x6.6)

0.11
(x8.8)

Y 0.54
(x6.3)

0.96
(x12)

1.41
(x15)

1.88
(x23)

0.07
(x3.3)

0.08
(x3.8)

0.09
(x4.7)

0.11
(x4.9)

Z 1.17
(x1.3)

1.43
(x1.5)

1.74
(x1.9)

2.16
(x2.3)

0.13
(x9.6)

0.13
(x9.5)

0.14
(x9.5)

0.15
(x9.6)

Comparison with Heuristic Filters. To observe the validity
of the data-driven ML approach, we evaluated the performance
of UNROCKER with three conventional heuristic filters: a
simple LPF, a Sav-Gol smoothing filter [45], and an industry
standard Wiener filter [46]. Notably, the denoising performance
of UNROCKER was higher than that of the LPF by up to 72
times, that of the Sav-Gol filter by up to 46 times, and that of the
Wiener filter by up to 23 times (refer to Table V). Additionally,
we implemented the heuristic filters in our acoustic injection
testbed (§IV) and checked if they can indeed mitigate the attack.
However, all filters failed to prevent the drones from crashing
(refer to Video-F in our website [15]).

Toward More Practical Real-time Recovery. As discussed
in §VI-E, real-time recovery necessitates addressing several
practical challenges, particularly the computational overhead
and latency issues. However, addressing such issues entails
inevitable degradation in the recovery performance, thus
provoking mundane discussions regarding the trade-off between
recovery performance and speed. We, therefore, encourage
further ground-breaking research that enables sensor recovery
with negligible overheads.

Furthermore, communication latency might be addressed
using an on-board inference chip, as it significantly reduces
communication delays. Recently, many edge computing devices
have been introduced. For example, NVIDIA’s Jetson has been
adopted as a lightweight single-board computer for IoT devices
including drones [66]. Implementing real-time recovery on such
systems would be a promising avenue for future studies, and
we encourage further research on this topic. With such a trend,
we believe that real-time recovery can be accomplished in the
not-too-distant future.

VIII. RELATED WORKS

Security of Drones. With the growth of the drone industry, se-
curity threats pertaining to drones have been studied extensively.
Such studies can largely be categorized into three types [67]:
those based on communication channels, GNSS, and sensors.
Among these, the initial studies on drone vulnerabilities focused
on communication channel issues [68]–[70]. Subsequently,
advanced analyses and mitigation strategies have been proposed
against these communication channels along with detailed
software analyses [71]–[76]. As drones are equipped with
a variety of sensors, the security of sensors constitutes an
additional attack surface for drones [77]. Despite these concerns,
the future of unmanned vehicles is expected to exhibit a growing
dependence on sensor technology. Across a range of aspects,
the vulnerability of sensors used in drones has been extensively
studied, such as for GNSS receivers [78], IMU sensors [2]–[4],
and light detection and ranging (LiDAR) sensors [79].

Comparison to State-of-the-art Denoising. Among various
applications of signal denoising, speech enhancement is one
of the most active applications [80]. Past approaches in
speech denoising adopted conventional spectral domain filtering
(spectral subtraction and Wiener filter). However, owing to the
recent development of DNNs, several ML-based approaches
have been proposed [47]. As a case study, we utilized a recent
DNN model called the deep-feature-loss (DFL) network [81]
instead of DAE. It yielded better results than ours on the
regular dataset (0.171 rad/s for a Solo X-axis gyroscope, which
is superior to 0.289 rad/s from the original UNROCKER as
presented in Table III). However, the performance of DFL
significantly deteriorated for the unseen dataset (when the
frequency was changed, and real sensor data were evaluated);
it produced a 23–193% larger deviation than UNROCKER.

Recently, the state-of-the-art approaches in speech denoising
have presented promising results by adopting the generative
adversarial network (GAN). However, directly applying these
approaches to mitigate acoustic injection attacks is not trivial as
they are optimized for speech-centric data. As a case study, we
evaluated the conformer-based metric-GAN (CMGAN) [82],
which is the leading model in “Speech Enhancement on
DEMAND” [80]. When we trained the CMGAN with our
IMU sensor data, the training loss remained at 0.8, whereas
UNROCKER mostly converged to a training loss of less than
0.0001. This result shows that the model cannot be directly
applied to sensor signal recovery, and it requires additional fine-
tuning or other engineering efforts. We encourage further studies
on applying promising state-of-the-art denoising techniques to
mitigate acoustic injection attacks.

14

IX. CONCLUSION

While MEMS IMU sensors are essential in drones, they
are, by design, vulnerable to acoustic injection attacks, which
can cause the drones to crash. Several mitigation techniques
have been proposed thus far; however, they have not been
able to ensure that the compromised drones continue flying
to their planned destinations. In this study, we proposed a
novel, practical mitigation that recovers the benign sensor
values from compromised ones for MEMS gyroscopes and
accelerometers. We first constructed an acoustic injection
testbed and delved into the implications of compromised sensor
values on drones using the testbed. Consequently, we discovered
a critical factor, sampling jitter, which crashes drones during
attacks by significantly increasing the implications of the attacks.
Considering the resonant sensor signals affected by the sampling
jitter as noise, we developed a sensor recovery technique that
leverages a noise reduction technique, namely a DAE. We
implemented a prototype recovery system, UNROCKER, and
demonstrated its capability through rigorous experiments. The
findings of this study demonstrate that empirical implication
analysis of the compromised sensor signals on drones is
essential for root cause analysis of the attack. Thus, our released
source code and experimental data can be employed in future
studies to perform detailed empirical investigations.

ACKNOWLEDGMENTS

This work was supported by Air Force Defense Research
Sciences Program funded by Air Force Research Laboratory
(AFRL) (Title: Cyber Physical Analysis of System Software
Survivability by Stimulating Sensors on Drones), and Institute
for Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government
(MSIT) (No.2022-0-01202, Regional strategic industry con-
vergence security core talent training business).

REFERENCES

[1] L. SCHROTH, “THE DRONE MARKET SIZE 2020.” [Online].
Available: https://droneii.com

[2] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,”
in 24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
881–896.

[3] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: Fabricating
implicit control over actuation systems by spoofing inertial sensors,” in
27th USENIX Security Symposium, 2018, pp. 1545–1562.

[4] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “WALNUT:
Waging doubt on the integrity of MEMS accelerometers with acoustic
injection attacks,” in 2017 IEEE European symposium on security and
privacy (EuroS&P). IEEE, 2017, pp. 3–18.

[5] Genasys, “LRAD - Long Range Acoustic Devices,” 2022. [Online].
Available: https://genasys.com/lrad-products/

[6] B. Zohuri, “Directed energy weapons,” in Directed Energy Weapons.
Springer, 2016, pp. 1–26.

[7] Prime Consulting and Technologies, “Anti drone solu-
tions,” 2022. [Online]. Available: https://anti-drone.eu/products/
long-range-acoustic-devices.html

[8] U.S Department of Defense, “MIL-STD-810H, DEPARTMENT OF
DEFENSE TEST METHOD STANDARD: Environmental engineering
considerations and laboratory tests,” 2019.

[9] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 10 2018, pp. 801–816.

[10] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and Z. Lin,
“SAVIOR: Securing autonomous vehicles with robust physical invariants,”
in 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 895–912.

[11] H. Choi, S. Kate, Y. Aafer, X. Zhang, and D. Xu, “Software-based
realtime recovery from sensor attacks on robotic vehicles,” in 23rd
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020), 2020, pp. 349–364.

[12] Z. Tu, F. Fei, M. Eagon, D. Xu, and X. Deng, “Flight recovery of MAVs
with compromised IMU,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 3638–3644.

[13] C. Patel, A. Jones, J. Davis, P. McCluskey, and D. Lemus, “Temper-
ature effects on the performance and reliability of MEMS gyroscope
sensors,” in International Electronic Packaging Technical Conference
and Exhibition, vol. 43598, 2009, pp. 507–512.

[14] D. Gis, N. Büscher, and C. Haubelt, “Investigation of timing behavior
and jitter in a smart inertial sensor debugging architecture,” Sensors,
vol. 21, no. 14, p. 4675, 2021.

[15] “UnRocker,” 2022. [Online]. Available: https://sites.google.com/view/
unrocker/

[16] “PX4 Open-source,” 2021. [Online]. Available: https://dev.px4.io/v1.9.0/
en/

[17] “ArduCopter,” 2021. [Online]. Available: https://ardupilot.org/copter/

[18] Q. Quan, Sensor Calibration and Measurement Model. Springer, 06
2017, pp. 147–172.

[19] R. O’Reilly, A. Khenkin, and K. Harney, “Sonic nirvana: Using MEMS
accelerometers as acoustic pickups in musical instruments,” Analog
Dialogue, vol. 43, no. 02, pp. 1–4, 2009.

[20] C. Acar and A. Shkel, “Inherently robust micromachined gyroscopes
with 2-DoF sense-mode oscillator,” Journal of Microelectromechanical
Systems, vol. 15, no. 2, pp. 380–387, 2006.

[21] A. R. Schofield, A. A. Trusov, and A. M. Shkel, “Effects of operational
frequency scaling in multi-degree of freedom mems gyroscopes,” IEEE
Sensors Journal, vol. 8, no. 10, pp. 1672–1680, 2008.

[22] C. Acar, A. R. Schofield, A. A. Trusov, L. E. Costlow, and A. M. Shkel,
“Environmentally robust MEMS vibratory gyroscopes for automotive
applications,” IEEE Sensors Journal, vol. 9, no. 12, pp. 1895–1906,
2009.

[23] B. Gallacher, J. Burdess, and K. Harish, “A control scheme for a MEMS
electrostatic resonant gyroscope excited using combined parametric
excitation and harmonic forcing,” Journal of Micromechanics and
Microengineering, vol. 16, no. 2, p. 320, 2006.

[24] A. D. Wyner and S. Shamai, “Introduction to ‘Communication in the
presence of noise’ by CE Shannon,” Proceedings pf IEEE, vol. 86, no. 2,
pp. 442–446, 1998.

[25] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[26] M. Bacic, “On hardware-in-the-loop simulation,” in Proceedings of the
44th IEEE Conference on Decision and Control. IEEE, 2005, pp.
3194–3198.

[27] D. Jung and P. Tsiotras, “Modeling and hardware-in-the-loop simulation
for a small unmanned aerial vehicle,” in AIAA Infotech@ Aerospace
2007 Conference and Exhibit, 2007, p. 2768.

[28] H. K. Fathy, Z. S. Filipi, J. Hagena, and J. L. Stein, “Review of
hardware-in-the-loop simulation and its prospects in the automotive
area,” in Modeling and simulation for military applications, vol. 6228.
International Society for Optics and Photonics, 2006, p. 62280E.

[29] D. Benowitz, “Drone Analysist.” [Online]. Available: https://droneanalyst.
com/2021/05/30/rise-of-open-source-drones

[30] S. Khazaaleh, G. Korres, M. Eid, M. Rasras, and M. F. Daqaq,
“Vulnerability of MEMS gyroscopes to targeted acoustic attacks,” IEEE
Access, pp. 89 534–89 543, 2019.

[31] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[32] M. Zhang, H. Qin, M. Lan, J. Lin, S. Wang, K. Liu, F. Lin, and B. M.
Chen, “A high fidelity simulator for a quadrotor UAV using ROS and

15

https://droneii.com
https://genasys.com/lrad-products/
https://anti-drone.eu/products/long-range-acoustic-devices.html
https://anti-drone.eu/products/long-range-acoustic-devices.html
https://sites.google.com/view/unrocker/
https://sites.google.com/view/unrocker/
https://dev.px4.io/v1.9.0/en/
https://dev.px4.io/v1.9.0/en/
https://ardupilot.org/copter/
https://droneanalyst.com/2021/05/30/rise-of-open-source-drones
https://droneanalyst.com/2021/05/30/rise-of-open-source-drones

gazebo,” in IECON 2015-41st Annual Conference of the IEEE Industrial
Electronics Society. IEEE, 2015, pp. 002 846–002 851.

[33] D. S. Kaputa and K. J. Owens, “Quadrotor drone system identification
via model-based design and in-flight sine wave injections,” in AIAA
Scitech 2020 Forum, 2020, p. 1238.

[34] S. H. Cho, S. Bhandari, F. C. Sanders, M. B. Tischler, and K. Cheung,
“System identification and controller optimization of coaxial quadrotor
UAV in hover,” in AIAA Scitech 2019 Forum, 2019, p. 1075.

[35] H. Gu, W. Su, B. Zhao, H. Zhou, and X. Liu, “A design methodology
of digital control system for MEMS gyroscope based on multi-objective
parameter optimization,” Micromachines, vol. 11, no. 1, p. 75, 2020.

[36] P. C. Schulze, J. Miller, D. H. Klyde, C. D. Regan, and N. Alexandrov,
“System identification of a small UAS in support of handling qualities
evaluations,” in AIAA Scitech 2019 Forum, 2019, p. 0826.

[37] W. Wei, M. B. Tischler, and K. Cohen, “System identification and
controller optimization of a quadrotor unmanned aerial vehicle in hover,”
Journal of the American Helicopter Society, vol. 62, no. 4, pp. 1–9,
2017.

[38] A. Chovancová, T. Fico, L. Chovanec, and P. Hubinsk, “Mathematical
modelling and parameter identification of quadrotor (a survey),” Procedia
Engineering, vol. 96, pp. 172–181, 2014.

[39] L. R. Rabiner and B. Gold, “Theory and application of digital signal
processing,” Englewood Cliffs: Prentice-Hall, 1975.

[40] A. Kiyono, M. Kim, K. Ichige, and H. Arai, “Jitter effect on digital
downconversion receiver with undersampling scheme,” in The 2004
47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS’04.,
vol. 2. IEEE, 2004, pp. II–677.

[41] M. Kim, A. Kiyono, K. Ichige, and H. Arai, “Experimental study of jitter
effect on digital downconversion receiver with undersampling scheme,”
IEICE Transactions on Information and Systems, vol. 88, no. 7, pp.
1430–1436, 2005.

[42] F. Proctor and W. Shackleford, “Real-time operating system timing jitter
and its impact on motor control,” in Sensors and Controls for Intelligent
Manufacturing II, vol. 4563. SPIE, 12 2001.

[43] B. Ip, “Performance Analysis of VxWorks and RTLinux,” in Languages
of Embedded Systems Department of Computer Science, 2001.

[44] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and
C. Taliercio, “Performance comparison of VxWorks, Linux, RTAI
and Xenomai in a hard real-time application,” Nuclear Science, IEEE
Transactions on, vol. 55, pp. 435–439, 03 2008.

[45] R. W. Schafer, “What is a savitzky-golay filter?[lecture notes],” IEEE
Signal Processing Magazine, vol. 28, no. 4, pp. 111–117, 2011.

[46] J. Le Roux and E. Vincent, “Consistent wiener filtering for audio source
separation,” IEEE Signal Processing Letters, vol. 20, no. 3, pp. 217–220,
2012.

[47] R. Xu, R. Wu, Y. Ishiwaka, C. Vondrick, and C. Zheng, “Listening to
sounds of silence for speech denoising,” Advances in Neural Information
Processing Systems, vol. 33, pp. 9633–9648, 2020.

[48] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Pro-
ceedings of the 25th International Conference on Machine Learning,
2008, pp. 1096–1103.

[49] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based
on deep denoising autoencoder.” in Interspeech, vol. 2013, 2013, pp.
436–440.

[50] S. S. Roy, S. I. Hossain, M. Akhand, and K. Murase, “A robust
system for noisy image classification combining denoising autoencoder
and convolutional neural network,” International Journal of Advanced
Computer Science and Applications, vol. 9, no. 1, pp. 224–235, 2018.

[51] F.-F. Xue, J. Peng, R. Wang, Q. Zhang, and W.-S. Zheng, “Improving
robustness of medical image diagnosis with denoising convolutional
neural networks,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2019, pp.
846–854.

[52] J. Liu, L. Xu, Y. Xie, T. Ma, J. Wang, Z. Tang, W. Gui, H. Yin, and
H. Jahanshahi, “Toward robust fault identification of complex industrial
processes using stacked sparse-denoising autoencoder with softmax
classifier,” IEEE Transactions on Cybernetics, 2021.

[53] Y. Xiong and R. Zuo, “Robust feature extraction for geochemical
anomaly recognition using a stacked convolutional denoising autoen-
coder,” Mathematical Geosciences, vol. 54, no. 3, pp. 623–644, 2022.

[54] Z. Qu, W. Wang, C. Hou, and C. Hou, “Radar signal intra-pulse
modulation recognition based on convolutional denoising autoencoder
and deep convolutional neural network,” IEEE Access, vol. 7, pp. 112 339–
112 347, 2019.

[55] A. Rosebrock, “Denoising autoencoders with Keras, TensorFlow, and
Deep Learning,” Feb, 2020. [Online]. Available: https://pyimagesearch.
com

[56] P. Xiong, H. Wang, M. Liu, and X. Liu, “Denoising autoencoder for
eletrocardiogram signal enhancement,” Journal of Medical Imaging and
Health Informatics, vol. 5, no. 8, pp. 1804–1810, 2015.

[57] P. G. Shivakumar and P. G. Georgiou, “Perception optimized deep
denoising autoencoders for speech enhancement.” in Interspeech, 2016,
pp. 3743–3747.

[58] V. S. Marco, B. Taylor, Z. Wang, and Y. Elkhatib, “Optimizing
deep learning inference on embedded systems through adaptive model
selection,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 19, no. 1, pp. 1–28, 2020.

[59] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art
deep learning software tools,” in 2016 7th International Conference on
Cloud Computing and Big Data (CCBD). IEEE, 2016, pp. 99–104.

[60] M. Ghanbari and M. J. Yazdanpanah, “Delay compensation of tilt
sensors based on MEMS accelerometer using data fusion technique,”
IEEE Sensors Journal, vol. 15, no. 3, pp. 1959–1966, 2014.

[61] J. Li, S. Xu, Y. Liu, X. Liu, Z. Li, and F. Zhang, “Real-time indoor
navigation of uav based on visual delay compensation,” in 2019 IEEE
International Conference on Mechatronics and Automation (ICMA).
IEEE, 2019, pp. 2451–2456.

[62] X. Xinjilefu, S. Feng, and C. G. Atkeson, “A distributed MEMS gyro
network for joint velocity estimation,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
1879–1884.

[63] “NVIDIA TensorRT,” 2021. [Online]. Available: https://developer.nvidia.
com/tensorrt

[64] C. Acar and A. M. Shkel, “Nonresonant micromachined gyroscopes
with structural mode-decoupling,” IEEE Sensors Journal, vol. 3, no. 4,
pp. 497–506, 2003.

[65] ——, “An approach for increasing drive-mode bandwidth of MEMS
vibratory gyroscopes,” Journal of Microelectromechanical Systems,
vol. 14, no. 3, pp. 520–528, 2005.

[66] “Jetson platforms,” 2022. [Online]. Available: https://developer.nvidia.
com/embedded/community/quick-start-platforms

[67] B. Nassi, R. Bitton, R. Masuoka, A. Shabtai, and Y. Elovici, “SoK:
Security and privacy in the age of commercial drones,” in 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1434–1451.

[68] J. Gabrielsson, J. Bugeja, and B. Vogel, “Hacking a commercial drone
with open-source software: Exploring data privacy violations,” in 2021
10th Mediterranean Conference on Embedded Computing (MECO).
IEEE, 2021, pp. 1–5.

[69] J. Valente and A. A. Cardenas, “Understanding security threats in
consumer drones through the lens of the discovery quadcopter family,”
in Proceedings of the 2017 Workshop on Internet of Things Security
and Privacy, 11 2017, pp. 31–36.

[70] V. Dey, V. Pudi, A. Chattopadhyay, and Y. Elovici, “Security vulnerabil-
ities of unmanned aerial vehicles and countermeasures: An experimental
study,” in 2018 31st International Conference on VLSI Design and 2018
17th International Conference on Embedded Systems (VLSID). IEEE,
2018, pp. 398–403.

[71] R. Ivanov, M. Pajic, and I. Lee, “Attack-resilient sensor fusion,” in 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 02 2014, pp. 1–6.

[72] I. Radoslav, P. Miroslav, and L. Insup, “Attack-resilient sensor fusion for
safety-critical cyber-physical systems,” ACM Transactions on Embedded
Computing Systems, vol. 15, pp. 1–24, 02 2016.

[73] J. Park, R. Ivanov, J. Weimer, M. Pajic, and I. Lee, “Sensor attack
detection in the presence of transient faults,” in Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems,
2015, pp. 1–10.

16

https://pyimagesearch.com
https://pyimagesearch.com
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/embedded/community/quick-start-platforms
https://developer.nvidia.com/embedded/community/quick-start-platforms

[74] L. R. Garcia Carrillo and K. G. Vamvoudakis, “Deep-learning tracking for
autonomous flying systems under adversarial inputs,” IEEE Transactions
on Aerospace and Electronic Systems, vol. PP, pp. 1–1, 07 2019.

[75] T. Kim, C. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang, X. Deng,
and D. Xu, “RVFuzzer: Finding input validation bugs in robotic vehicles
through control-guided testing,” in USENIX Security Symposium, 2019,
pp. 425–442.

[76] T. Kim, C. H. Kim, A. Ozen, F. Fei, Z. Tu, X. Zhang, X. Deng, D. J.
Tian, and D. Xu, “From control model to program: Investigating robotic
aerial vehicle accidents with MAYDAY,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 913–930.

[77] C. Yan, H. Shin, C. Bolton, W. Xu, Y. Kim, and K. Fu, “SoK: A
minimalist approach to formalizing analog sensor security,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 05 2020, pp.
233–248.

[78] J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim, “Tractor
Beam: Safe-hijacking of consumer drones with adaptive GPS spoofing,”
ACM Transactions on Privacy and Security, vol. 22, pp. 1–26, 04 2019.

[79] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle: Adversarial
optical channel exploits against LiDARs for automotive applications,”
in International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 08 2017, pp. 445–467.

[80] “Speech Enhancement on DEMAND,” 2022. [Online]. Available:
https://paperswithcode.com/task/speech-enhancement

[81] F. G. Germain, Q. Chen, and V. Koltun, “Speech Denoising with Deep
Feature Losses,” in Proc. Interspeech 2019, 2019, pp. 2723–2727.

[82] S. Abdulatif, R. Cao, and B. Yang, “CMGAN: Conformer-based
metric-GAN for monaural speech enhancement,” arXiv preprint
arXiv:2209.11112, 2022.

APPENDIX

A. Causal Analysis Results of Sampling Jitter

In §V-E, we described three potential causes of sampling
jitter that were discovered during our investigations: scheduling
issues, operation interval mismatches, and imprecise clocks.
Here, we present the detailed results.

First, we measured the scheduling jitter in PX4’s NuttX
RTOS. The standard deviation of the scheduling jitter was
measured at 124.6 µs. In the case of a resonance signal with
a frequency of several kHz, this timing jitter of 124 µs is
comparable to the period corresponding with the acoustic
frequency.

Furthermore, we measured the time interval to retrieve
the IMU sensor data at the FC by directly monitoring the
communication channel between the IMU and FC using an
oscilloscope. In general, the IMU sensor data (e.g., gyroscope
data) are transmitted based on two interrupt signals. When the
IMU samples sensor data, it notifies the FC using an interrupt
signal (a voltage change from “low” to “high”). When the
FC reads the sensor data, it also notifies the IMU through
an interrupt signal (a voltage change from “high” to “low”),
Therefore, these interrupt signals fluctuate, indicating inaccurate
operation timing. The interval fluctuated with a distribution of
approximately 100 µs. For details of this measurement, please
refer to Video-E on our website [15].

In addition, the mismatches between the sampling and
operation intervals can affect the resonant signal in terms of
sampling jitter. Notably, we discovered several mismatches
caused by the specifications of the sensors, as listed in Table VI.

Lastly, to further investigate the sampling jitter sources,
we attempted to recreate the measured resonance spectrum by
introducing additional factors into our computed spectrum. We

TABLE VI: Sampling frequency of sensor drivers
Sensor Type Gyro. Acc.

ArduCopter
(400Hz)

BMI055 2,000 2,000
BMI160 1,600 1,600
InvenSense 1,000 1,000
L3G4200D 800 800
LSM9DS0 760 1,000
LSM9DS1 952 952
Revo 1,000 1,000

PX4 Quadcopter
(250Hz)

ADIS16477 250 250
ADIS16497 1,000 1,000
BMA180 250 250
BMI055 1,000 1,000
BMU160 800 800
FXAS21002C 800 ·
FXO8701CQ · 800
ICM20948 1,000 1,000
L3GD20 760 ·
LSM303D · 800
MPU6000 1,000 1,000
MPU9250 1,000 1,000

measured the resonance signal of the ICM-20689 accelerometer
during the injection of an acoustic signal at 1.83 kHz. The
resonance frequency Fa of the ICM-20689 accelerometer was
characterized by the emitted acoustic frequency (i.e., 1.83 kHz).
Thereafter, we followed Nyquist’s sampling theorem to analyze
the logged frequency.

0 25 50 75 100 125
1E-7

1E-6

1E-5

1E-4

0.001

0.01

0.1

Am
pl
itu
de

Frequency

 FFT of [Book4]

(m/s2)
1E-3

1E-5

1E-7
0 25 50 75 100 (Hz)

(a) PX4 accel. (measured) (Hz)

(m/s2)
(m/s2)

1E-3

1E-5

1E-7
0 25 50 75 100 (Hz)

(b) PX4 accel. (computed)

Fig. 21: Analysis of measured resonance and reproduction of
measured signal considering sources of sampling jitters.

The accelerometer was analyzed considering under-
sampling issues. As the ICM-20689 MEMS employs the
MPU6000 series device driver, it operates at 1 kHz. The
resonance signal at 1.83 kHz that passed through the device
driver was under-sampled to a signal within 500 Hz, which
was half of the 1 kHz sampling frequency. As calculated, the
frequency was 170 Hz: |1830Hz − 1000Hz × 2| = 170Hz.
The signal output of 170 Hz from the driver was further
under-sampled according to the sampling frequency of the
microcontroller unit (MCU), which was 250 Hz. Given that
half of 250 Hz is 125 Hz, the aliased frequency was 80 Hz:
|170Hz − 250Hz| = 80Hz.

However, in addition to the 80-Hz peak, at least two peaks
were observed in the accelerometer’s resonance, as shown
in Fig. 21. Individually, under-sampling cannot explain the
two redundant peaks around 10 and 50 Hz. Accordingly, we
considered two additional elements from the hardware operation
to recalculate these components: scheduling jitter and clock-
source precision error. We have already discussed scheduling
jitter. The MCU and ADC of the MEMS gyroscope use an in-
dependent clock source (refer to Fig. 4). Generally, independent
clocks are not synchronized, resulting in mismatched sampling
because of precision errors. The spectrum shown in Fig. 21b
was obtained by assuming a 5 % mismatch from the clock
source precision error. Considering the unpredictability of the
sampling factor, the results depicted in Fig. 21b are similar to
the actual measurement results (Fig. 21a).

B. Implementation of UnRocker

The modified modules for overall system design, including
the modified code lines and freshly developed auto-test code

17

https://paperswithcode.com/task/speech-enhancement

TABLE VII: Overall implemented components and lines of
code

Component Module Lines of Code

Drone Firmware
(C++)

Sensor Drivers & ROM Filesystem 330
Messaging Modules 202
Drone State Logger 37
Attitude and Position Control 103
Simulator Module 183

Automation
(Python) Simulator 492

DAE
(Python) DAE Model 55

Dataset Construction
(Python) Dataset Generator 458

Model Training
(Python)

Training Script & Data Loader 566
Validation Script & Data Loader 450
Test Script & Data Loader 633

Online Inference
(Python)

Inference Program 208
Communication Program 405
Gyroscope Recovery Test 514
Accelerometer Recovery Test 438

Total 4,964

lines, are summarized in Table VII.

C. More Details on DAE of UNROCKER

Training Results. The training curve of the DAE in the
recovery system of UNROCKER is plotted in Fig. 22. The
red line represents the training loss, whereas the blue line
indicates the validation loss. Both the training and validation
losses converged after 300 epochs when training to 500 epochs,
thereby implying a stable low loss. Therefore, the training
procedure can be considered complete.

train loss val loss

Epoch #
0 100 200 300 400 500

0.010

0.008

0.006

0.004

0.002

Lo
ss

/A
cc

u
ra

cy

Fig. 22: Training curve.

The Implication of Sampling Jitter in Training. Sampling
jitter is a vital factor in acoustic injection attacks, as described
in §V. Thus, we conducted a simple experiment to investigate
the implications of sampling jitter when training the model.
Particularly, we reviewed the necessity of including a sampling
jitter when generating the signals for the training dataset. To
this end, we constructed two datasets for both the SITL and
HITL simulations: one from SITL (no sampling jitter) and
another from HITL (large sampling jitter).

Thereafter, we conducted two tests: 1) we trained the model
using the training set of the SITL dataset, and then evaluated it
with the validation set of the HITL dataset; and 2) we conducted
the same experiment except with the SITL dataset, i.e., using
the training and validation set of the HITL dataset. To enhance
the inference performance for harsh operations, a sampling
jitter must be added during the dataset generation phase.

The outcome is depicted in Fig. 23. The model trained
using the SITL dataset without sampling jitter failed to
recover the sensor values (Fig. 23a), exhibiting significant
fluctuations. By contrast, the model trained with the HITL
dataset containing sampling jitter could successfully recover

TABLE VIII: Recovery performance summary of UNROCKER
with four Amplitudes and three Drone Models for Accelerom-
eter and Gyroscope (Total of 72 cases, SNR representation)

Amplitude of
Resonance Signals

Accelerometer
(m/s2)

Gyroscope
(rad/s)

20 40 60 80 1 2 3 4

Average SNR (dB) of
Compromised Signals -12.8 -18.8 -22.3 -24.8 -15.6 -21.6 -25.1 -27.6

↓ ↓
Recovery of

3DR Iris
(dB)

X-axis 25.6 25.3 25.2 24.8 13.7 13.7 12.2 12.9
Y-axis 12.4 12.9 11.3 12.7 10.2 10.2 10.6 9.4
Z-axis 19.9 19.4 19.6 19.4 20.1 19.4 18.8 18.3

Recovery of
3DR Solo

(dB)

X-axis 24.5 24.5 23.6 24.2 8.7 8.7 8.0 7.6
Y-axis 9.2 9.7 8.8 8.0 6.9 6.7 6.7 5.5
Z-axis 19.0 19.0 19.0 18.4 13.0 13.6 12.2 11.3

Recovery of
Flight Data

(dB)

X-axis 2.2 2.2 2.2 0.8 5.3 4.3 3.9 3.3
Y-axis 2.9 2.9 2.9 2.9 8.2 8.1 7.7 7.3
Z-axis 12.5 12.4 12.3 12.0 1.3 1.3 1.3 1.1

1 The red cells indicate that the level of noise was destructive to drones.

the sensor values (Fig. 23b). This result indicates that sampling
jitter must be included in the signals for training.

input data true data decoded data

0 50 100 150 200 250

1.0

0.5

0

N
o
rm

al
iz

ed
 V

al
u
e

Samples

(a) Trained w/o sampling jitter.

input data true data decoded data

0 50 100 150 200 250

1.0

0.5

0

N
o
rm

al
iz

ed
 V

al
u
e

Samples

(b) Trained w/ sampling jitter.

Fig. 23: Effect of sampling jitter in training.

Additionally, we injected an acoustic wave in the physical
sensors and compared the recovery performance of two models:
one trained with a dataset containing the sampling jitter,
and the other with a dataset not containing it. Consequently,
we discovered that the model trained with the sampling
jitter performed 2.24 times better than the other one, which
demonstrates the significance of sampling jitter in training.

Representation of Signal Quality. The performance of
UNROCKER was evaluated on signal distributions, as shown
in Table III. The signal distribution becomes small enough
for threatening distributions. In addition to this, we evaluated
UNROCKER using SNR measurements. Table VIII summarizes
the results, which show significant improvements.

Online Inference. Online inference time results are shown
in Fig. 24. The inference time is 4–8 ms on a laptop, with
an average of 12 ms on a Jetson Nano, and 9 ms on a Jetson
TX2. Although this result does not satisfy the 250Hz (4ms)
requirement, future AI chips are expected to minimize the
inference performance and I/O delay when on-boarded. We
also measured the power consumption of a Jetson Nano; it
consumed 1.6W for UNROCKER. Thus, the power consumption
in the edge inference board is not crucial.

0 1000 2000 3000 4000 5000
0.000

0.004

0.008

0.012

0.016

C

Row Numbers

 C
 C
 B

16

12

8

4

0In
fe

re
n
ce

 T
im

e
(m

s)

0 1000 2000 3000 4000 5000
Samples

NVIDIA Jetson Nano
NVIDIA Jetson TX2
Laptop (HP Probook)

Fig. 24: Execution times of online inferences.

18

	Introduction
	Background
	Attitude and Position Control in Drones
	MEMS IMU Sensor
	Acoustic Injection Attack
	Sampling Sensor Values in Drones

	Overview
	Threat Model
	Analysis Target
	Experimental Setup

	Acoustic Injection Testbed
	Modeling Resonant MEMS IMU Sensors
	Empirical Analysis with Physical Sensors
	Testbed Implementation

	Implication Analysis of Resonant Sensor Data
	Resonant Sensors Alone Do Not Cause Crashes
	Robust Control Logic Can Prevent Drone Crashes in SITL Experiments
	Sampling Jitter as a Critical Factor for Drone Crashes
	Effect of Sampling Jitter in Actual Drones
	Empirical Evidences of Sampling Jitter
	Misbeliefs in Previous Mitigation Methods

	Recovering Resonant Sensor Values
	Design of Recovery System, UnRocker
	DAE Model Construction
	Resonant Sensor Dataset Construction
	Evaluation of UnRocker
	Towards Real-Time Drone Recovery

	Discussion
	Related Works
	Conclusion
	References
	Appendix

