
Too Much of a Good Thing: (In-)Security of Mandatory Security Software
for Financial Services in South Korea

Taisic Yun1,2 Suhwan Jeong2 Yonghwa Lee1

Seungjoo Kim3† Hyoungshick Kim4† Insu Yun2† Yongdae Kim2†

1 Theori Inc., 2 KAIST, 3 Korea University, 4 Sungkyunkwan University

Abstract
Motivated by real-world hacking incidents exploiting Ko-

rea Security Applications (KSA) 2.0 from North Korea in
2023, we conducted a comprehensive security investigation
into its vulnerabilities. For over a decade, KSA 2.0 has been
mandated in South Korea for financial services, making it
nearly ubiquitous on PCs nationwide. While designed to en-
hance security through measures such as secure communica-
tion, keylogger prevention, and antivirus protections, KSA
2.0 can bypass sandbox mechanisms, violating modern web
security policies.

Our analysis uncovered critical flaws, including inconsis-
tencies with web browser threat models, improper TLS usage,
sandbox violations, and inadequate privacy safeguards. We
identified 19 vulnerabilities that expose users to serious risks,
such as keylogging, man-in-the-middle attacks, private key
leakage, remote code execution, and device fingerprinting.
These vulnerabilities were reported to government officials
and vendors and have since been patched.

To understand the security implications of KSA 2.0, we
conducted two user studies. First, our survey of 400 partici-
pants revealed widespread KSA 2.0 adoption, with 97% of
banking service users having installed it, despite 59% not un-
derstanding its functions. Second, our desktop analysis of 48
users’ systems found an average of 9 KSA installations per
user, with many running outdated versions from 2022 or ear-
lier. These findings suggest potential security concerns arising
from the widespread deployment of KSA 2.0 in practice.

1 Introduction

Korea Security Applications (KSA) 2.0, a mandatory soft-
ware suite widely implemented across South Korea, was in-
troduced to secure financial and governmental online services.
With over 207 million registered users as of 2022 [46], its
widespread adoption is driven by historical legislation and

†: Corresponding authors

stringent financial institution requirements. KSA 2.0 is in-
tended to enhance the security of Internet banking by provid-
ing features that grant web pages privileged access to system
resources that can be used for mandated security features
beyond the capabilities of standard web browsers.

However, the effectiveness of KSA 2.0 in enhancing se-
curity is questionable. Recent vulnerabilities in KSA 2.0
have led to multiple real-world hacking incidents, particularly
from North Korea [5–9, 58]. These attacks exploited flaws in
KSA 2.0 programs to distribute malware and conduct sup-
ply chain attacks, compromising 61 institutions and over 10
million computers in 2023 [30]. KSA 2.0’s widespread in-
stallation on most PCs, including those in government agen-
cies, makes it a prime target and poses significant national
security risks. This issue is not unique to South Korea; sim-
ilar attempts to mandate potentially problematic software
have been made globally, such as China’s Green Dam Youth
Escort in 2009 [47], Kazakhstan’s root certificate installa-
tion attempt in 2019 [43], and Russia’s Sovereign Internet
Law [39]. These cases highlight the broader implications of
government-mandated security solutions and emphasize the
need to consider their potential risks carefully.

We first conduct a comprehensive security analysis of KSA
2.0 to evaluate its effectiveness and identify potential vulnera-
bilities. We examine the design and implementation of these
applications, focusing on their interaction with system re-
sources and web security models, using various methods such
as black box testing, reverse engineering, and fuzzing with
tools like AFL++ [23] and AFLnet [56]. Our findings reveal
four design issues of KSA 2.0: inconsistencies between KSA
2.0 and web browser threat models, improper use of TLS pro-
tocols, violations of browser sandboxing, and enabling user
tracking. We also discovered 19 vulnerabilities that demon-
strate these design issues, leading to keylogging, man-in-the-
middle attacks, private key leakage, remote code execution,
and user identification. We reported all vulnerabilities to the
respective developers, and they have been patched.

To better understand the security implications of KSA 2.0,
we conducted two complementary user studies. First, we sur-



veyed 400 participants, with age and gender distributions
matching South Korea’s demographics. The survey revealed
that 97% of users had installed KSA 2.0 for banking services,
with 59% reporting they did not understand its functions. To
validate these findings and assess actual installation patterns,
we conducted a desktop analysis study with 48 additional
participants. This analysis revealed an average of 9 KSA
installations per user, with many systems running outdated
versions from 2022 or earlier. Given that users perceive KSA
2.0 installation as a requirement for accessing essential ser-
vices in Korea, this widespread deployment with outdated
versions suggests that security vulnerabilities could signifi-
cantly impact the national digital infrastructure.

Our contributions are summarized as follows:

• We conducted a comprehensive security analysis of KSA
2.0, identifying four major design flaws: inconsistencies
with web browser threat models, improper TLS usage,
browser sandbox violations, and enabling user tracking.
We discovered 19 vulnerabilities that expose users to
risks such as keylogging, man-in-the-middle attacks, pri-
vate key leakage, remote code execution, and device
fingerprinting.

• We conducted two user studies to understand the impli-
cations of widespread KSA deployment. Our survey of
400 participants, representative of South Korean Inter-
net users, revealed that 97% had used KSA, while 59%
were unaware of its functions. None of the participants
identified the bank-mandated anomaly detection capa-
bilities that could potentially enable user tracking. Our
follow-up desktop analysis with 48 participants provided
concrete evidence of security risks by revealing multi-
ple outdated KSA versions per user, with many systems
running versions from 2022 or earlier that lack critical
security updates.

• We offer several actionable recommendations to enhance
the security of banking services. Security vendors should
focus on designing solutions that are well-integrated
with browser architectures and follow the principle of
least privilege. Governments play a significant role by
establishing comprehensive regulatory frameworks that
promote timely vulnerability and patch management and
provide clear and detailed assessment guidelines.

Our work highlights the challenges of deploying non-
standard security mechanisms, drawing on the case of South
Korea’s national-level experimentation with KSA.

2 Overview of KSA

In this section, we will cover the design goals of KSA and the
evolution of its designs over time. A more detailed historical
background is provided in the appendix (see Appendix A).

2.1 Design Goals
KSA is a suite of programs mandated for Korean citizens to
securely use financial services and government services. It
serves two main purposes: 1) supporting public-key based
authentication on the web and 2) protecting sensitive data
handled by web services, even if the user’s device is compro-
mised. KSA originated with the e-government initiative in
South Korea in 1997. As part of this initiative, the govern-
ment mandated regulated digital signatures for all Internet
banking [42]. Early web browsers lacked the necessary secu-
rity features, so banks provided their own through external
plugins. In the 1990s, the Korean government developed a
domestic encryption algorithm called SEED and mandated its
use in public and financial sectors, aiming to protect domestic
industries and promote cryptographic research [28]. Korean
services also incorporated additional security features, such
as firewalls, anti-keylogging, and anomaly detection, which
were soon legally mandated for safer electronic finance [27].

2.2 Technical Issues
To achieve the aforementioned goals, KSA must access sys-
tem resources. For instance, KSA requires access to device
drivers or digital certificates stored in the file system to imple-
ment security features such as firewalls or certificate-based
authentication. However, due to security concerns, modern
browsers restrict such functionalities through sandboxing [18].
As a result, KSA needs to violate the browser’s security
model and bypass the browser’s sandbox.

2.3 Early Design: KSA 1.0
In the initial version, KSA 1.0, ActiveX was used because
Internet Explorer was the dominant browser at the time [4].
ActiveX, a software framework created by Microsoft, allowed
native applications to interact through Internet Explorer, en-
abling web-based communication with native clients, which
aligned perfectly with KSA’s goals. As a result, KSA was
widely adopted using this technology. However, ActiveX
granted web-based access to various system resources, in-
troducing significant security risks. Due to these concerns,
Microsoft began deprecating ActiveX in 2015 [40].

2.4 Current Design: KSA 2.0
With the rise of alternative browsers like Chrome, Safari, and
Opera, as well as the growing use of smartphones, the Ko-
rean government sought to amend the legal requirement for
security programs reliant on ActiveX, which was tied to the
Windows platform. However, service providers and security
vendors continued using familiar designs despite these legal
changes [62], likely due to the high costs and challenges of
switching technologies, resulting in ongoing reliance on exist-
ing systems. After the deprecation of ActiveX, developers lost



OSkernelDevicedriver Filesystem

③②①

Webpage

Pagescript

Installpage

Pagescript

Webpage

Pagescript

(7)Access

(3
)
R
e
d
ir
e
ct
io
n

(5
)
R
e
d
ir
e
ct
io
n

KSAKSARequiredKSA

(1)Alive?

Browsersandbox Systemresource Socketconnection

(2)Noresponse (4)Installation (6)API (8)Result

Figure 1: Workflow of KSA
a legitimate way to bypass the sandbox and began seeking new
solutions. To address this, they discovered that web browsers
can perform inter-process communication (IPC) through web
protocols (e.g., HTTPS or WebSocket). Using this method,
the web browser can interact with applications installed on the
user’s machine, bypassing the sandbox. While this approach
allows developers to implement the desired features, it also
introduces numerous security issues, which we will discuss in
§5. In the following section, we will provide a more detailed
explanation of how KSA 2.0 operates.
Workflow. Figure 1 illustrates the high-level workflow of
KSA. 1 When users access a specific website (e.g., a bank
service web page), a script on the page attempts to connect to
KSA. If the connection fails, the web page redirects users to
the installation page. 2 If KSA is not installed, users must
download and install it from the installation page (see Fig-
ure 2), as they cannot use the service without it. In South
Korea, many services mandate KSA installation even though
legal requirements no longer enforce it. Users who refuse to
install it cannot access services such as online banking ser-
vices. 3 After installation, when users revisit the website, the
script connects to KSA, which operates as a local server. The
website can then use JavaScript to send requests to KSA for
tasks requiring system resources (e.g., file read/write, system
permission access). In this paper, we refer to these types of
requests as KSA’s API.
Persistence and exposure. During the installation process,
KSA registers itself as a program that automatically starts up
after a system reboot. Consequently, they continuously run in
the background, maintaining open ports and actively waiting
for connections from web pages requesting KSA services.
This behavior keeps KSA programs exposed to not only le-
gitimate web pages but also potentially malicious entities,
increasing the attack surface and the risk of exploitation.

2.5 Current Status of KSA 2.0

Ecosystem. Third-party vendors develop KSA to meet the
specific security requirements of financial companies and
public service providers, such as top-tier banks, card and in-
surance companies, and some government services. The ser-
vice providers then distribute these KSA solutions to users
through their websites, mandating their use based on individ-
ual company policies.
Popularity. A recent technical report from the Bank of Ko-

Figure 2: Example of an installation web page requiring users
to install KSA programs

rea reveals that 207.04 million users were registered for In-
ternet banking in South Korea in 2022 [46]. To understand
the requirements for KSA, we investigated all 17 top-tier
banks in South Korea. Our findings indicate that 13 out of
17 banks state that installation is mandatory. However, upon
further verification, we discovered that for 2 of these banks,
users could still log in to the bank website without installa-
tion. Among the remaining 4 banks, 3 did not explicitly state
that installation was mandatory but strongly recommended it,
while 1 requested installation without explanation. To assess
the prevalence of KSA usage among Internet users, we con-
ducted an online survey with 400 representative participants.
The survey results confirm the extensive and mandatory reach
of KSA, with the vast majority of the population having in-
stalled it to access online banking services. The detailed study
methodology and results are described in §6.

3 Threat Models based on Access Control

Before discussing the security analysis of KSA, we propose
four threat models. To attack KSA, an adversary must be able
to freely call KSA’s APIs. The feasibility of these attacks
varies depending on KSA’s access control implementation.
We do not include an attacker who can bypass all browser
security techniques (i.e., a full chain exploit) in our models,
as it is realistically challenging to circumvent all browser
security measures.

3.1 Access Control
Figure 3 shows KSA’s access control and the correspond-
ing threat models. KSA’s access can be controlled by three



T4T2 T3

Maliciousweb

Pagescript

Exploited
renderer

KSA

Whitelistedweb

</XXS>

Maliciousweb

Pagescript

Systemresource

Corruptedweb

Pagescript

DNSserver
T1

MitMattacker

KSA

Systemresource

KSA

Systemresource

SourceIP:127.0.0.1
Origin:Whitelist.com
Protocol:HTTPS/HTTP

SourceIP:127.0.0.1
Origin:Attacker.com
Protocol:HTTPS/HTTP

SourceIP:127.0.0.1
Origin:Whitelist.com
Protocol:HTTP

BrowsersandboxUser'sPC

KSA

Systemresource

SourceIP:0.0.0.0
Origin:Attacker.com
Protocol:HTTPS/HTTP

Remoteattacker

Figure 3: Threat models for KSA. Depending on KSA’s access control, it is vulnerable to four types of attackers: A remote
attacker (T1), malicious web (T2), Man-in-the-Middle (T3), an origin spoofer (T4).

factors: bind address, supporting protocols, and origin ver-
ification. The bind address determines which IP addresses
can access KSA. If it is set to the wildcard address (i.e.,
0.0.0.0), KSA can be accessed from anywhere on the In-
ternet. Moreover, if KSA accepts insecure protocols (e.g.,
HTTP), it becomes vulnerable to man-in-the-middle attacks.
Finally, the origin verification of KSA refers to the mech-
anism that checks the origin of a request using the HTTP
Origin header [45]. This ensures that KSA can only be ac-
cessed by specified websites. These are existing mechanisms
to limit attackers, yet many current KSA implementations
lack even such basic access controls.

3.2 Threat Models

In this subsection, we discuss threat models corresponding to
each access control.
Remote attacker (T1). The first threat model is named Re-
mote attacker. This model is applicable when KSA allows
access from the public Internet if KSA binds its address to
the wildcard address (i.e., 0.0.0.0). In this case, an adversary
can access KSA from anywhere on the Internet to exploit it,
making it the most dangerous threat model.
Malicious website (T2). The second threat model is named
Malicious website, which refers to an attacker capable of
executing arbitrary JavaScript in a browser. This is the basic
model for general browser security [13]. This threat model is
useful if KSA does not check the origin of the API. In this
case, the adversary can use JavaScript to call arbitrary APIs
in KSA, exploiting its vulnerabilities.
Man-in-the-Middle (T3). The third threat model is named
Man-in-the-Middle. This model signifies an attacker who can
manipulate network packets (e.g., on public Wi-Fi). Con-
sidering the low adoption rate (27.4% [11]) of HTTP Strict
Transport Security (HSTS), we assume that an attacker can
make the victim access an HTTP page via the SSL stripping
attack [38]. In this scenario, the attacker can execute arbitrary
JavaScript, similar to T1, and can manipulate the HTTP Ori-
gin header, nullifying the origin check of KSA. Notably, in
browsers, due to Mixed Content Blocking [21, 44], it is not

possible to send HTTP requests in HTTPS domains, so we
assume that the attacker can manipulate the network traffic.
Origin spoofer (T4). The final threat model is named Origin
spoofer, which refers to an attacker who can bypass the origin
check of KSA. Such attackers typically assume that the ren-
derer is compromised or that there is a Cross-Site Scripting
(XSS) vulnerability in whitelisted websites. As mentioned in
previous research [29], renderer exploits are more common
than sandbox escape (196 vs. 5 in 2022), making this more
realistic than those allowing full chain exploits.

3.3 Comparison with Browser Extensions
KSA has a different security model compared to typical
browser extensions [60]. Unlike extensions, KSA is not part
of the browser’s ecosystem and does not benefit from its
protections. While the browser manages the origin check of
extensions using its sandbox, KSA’s origin check relies on
the HTTP Origin, which is not protected by the browser’s
sandbox. Consequently, if the renderer is compromised (T4),
KSA cannot securely validate the origin of the request, mak-
ing it more vulnerable than browser extensions.

4 Analysis

4.1 Dataset
Table 1 shows mandatory KSA programs from top-tier banks
in South Korea, which we used for our analysis. In South
Korea, KSA can be divided into mandatory and optional pro-
grams. Users must install the mandatory KSA programs to
access banking or public services, while optional ones are
recommended by banking and public service websites for
enhanced security. This paper focuses on the mandatory KSA
programs from top-tier banks [12]; however, some of our tar-
get programs are also used in government services such as
Korean Government Services (gov.kr) and Military Manpower
Administration (mma.go.kr), though not all KSA programs
deployed in government contexts were included in our analy-
sis. Mandatory KSA programs are categorized into four main
types:



• Firewall. Monitors packets and optionally blocks them
if transmitted by unknown software.

• Anti-keylogging. Encrypts keyboard inputs from the
device driver to the webpage to prevent keylogging.

• Anomaly detection. Collects various information (e.g.,
IP address or hardware information) from the user’s
computer to detect abnormal transactions.

• Certificate management. Manages certificates used for
login or financial transactions.

4.2 Analysis Approach
To comprehensively analyze KSA programs, we conducted
analysis by combining the following three methods.
Blackbox testing. The first method we used for analysis was
black-box testing. This applies to all types of KSA programs
regardless of their protection mechanisms (e.g., obfuscation
or anti-reversing techniques). We analyzed the JavaScript of
existing services and test scripts for developers, allowing us
to understand how KSA programs operate at a high level and
identify potential logical issues (e.g., keylogging) that could
occur in KSA programs (§5.1).
Reverse engineering. Secondly, we utilized reverse engineer-
ing. Although more effort-intensive than black-box testing,
reverse engineering allows us to uncover implementation de-
tails and hidden APIs within KSA programs. Through this,
we discovered a vulnerability that leads to Remote Code Ex-
ecution (RCE) by combining hidden features (§5.3). Many
KSA programs have adopted various techniques to prevent
reverse engineering, making analysis difficult. To circumvent
these techniques, we used tools like unlicense [24] to bypass
well-known obfuscations, including Themida [49]. However,
in some cases, such as PRODUCT E, we failed to reverse en-
gineer due to proprietary protections. In such cases, we used
a debugger to inspect runtime memory and analyze behavior.
Fuzzing. Lastly, we applied fuzzing to identify memory
errors using AFLnet [56], a network protocol fuzzer. Since
AFLnet mutates data at the security protocol layer (e.g., SSL)
rather than the application layer, we modified it to mutate
data at the application layer for more effective fuzzing of
KSA. For KSA with prolonged SSL connection processes,
we patched the binaries to replace socket communication
with standard input/output (I/O) operations, allowing us to
use AFL++ [23], a general-purpose fuzzer, for more efficient
fuzzing.

5 Security Problems in KSA

By systematically analyzing KSA, we identified four key
design issues in KSA that can lead to significant security
problems. These issues are categorized as follows:

1. Inconsistencies in Threat Models between KSA and
Web Browser: KSA often places more trust in web

pages than typical software, potentially enabling high-
privileged attacks.

2. Disregard for the TLS Security Models: KSA im-
plementations weaken the security of TLS, making it
susceptible to Man-In-The-Middle (MITM) attacks.

3. Violation of Browser Sandbox: KSA conflicts with
browser sandboxing, allowing attackers to bypass
browser security mechanisms and compromise systems.

4. Enabling User Tracking: KSA often neglects user pri-
vacy, enabling various tracking and fingerprinting meth-
ods.

Unsurprisingly, these design issues do not align with widely
accepted security practices and principles, particularly in web
security. Therefore, robust implementation is essential; with-
out it, serious consequences can arise. Furthermore, the design
can be exploited even without implementation flaws. In the
following sections, we detail the specific security problems
and case studies resulting from these design issues. Additional
issues are presented in Appendix D.

5.1 Inconsistencies in Threat Models between
KSA and Web Browser

The first issue arises from inconsistencies between the threat
model of KSA and that of web browsers. Typically, browsers
do not trust web pages as they come from untrusted sources.
Consequently, browsers implement various security policies
to protect the system from web pages (e.g., Same Origin
Policy [2] or sandbox [18]). However, while analyzing KSA,
we observed that KSA tends to trust web pages more than
general software. Specifically, it allows web pages to control
high-privileged system actions to prevent malicious activities
of general software. This opens up the possibility for attackers
to execute high-privileged attacks that are impossible on the
ordinary web (e.g., keylogging) or to neutralize protection
mechanisms provided by KSA itself.
Case study: Keylogging - PRODUCT D and PRODUCT E.
We discovered a vulnerability where a user’s keyboard inputs
can be stolen by exploiting the very anti-keylogging KSA
(PRODUCT D or PRODUCT E) designed to protect them. To
understand this issue, it is crucial to first examine how anti-
keylogging KSA operates. It works by encrypting keyboard
inputs through a device driver hook and transmitting them
directly to the web page, where they are decrypted (Figure 4).
While this encryption is meant to secure keystrokes, it ironi-
cally introduces the potential for keylogging attacks.

This design is particularly problematic because it assumes
that an adversary can log keystrokes but cannot access the
web page. However, keylogging typically requires high-level
system access, meaning that an attacker would likely also have
control over the browser, undermining the entire premise of
the protection mechanism.

This flawed design can lead to even more serious issues. We



Table 1: KSA 2.0 software we analyzed, along with their access control mechanisms and corresponding threat models that make
them vulnerable to attacks. The names of the software have been anonymized at the request of the Korean government agency.

Type Access Control Threat Model

Bind Address Protocol Sec.
Name C K F A Localhost Wildcard (+Filtering) Wildcard SSL None Origin Check T1 T2 T3 T4

PRODUCT A
PRODUCT B
PRODUCT C
PRODUCT D
PRODUCT E
PRODUCT F
PRODUCT G

C - Certificate management, K - Anti-Keylogging, F - Firewall, A - Anomaly detection

(7)Encrypted
keystroke

(6)Encrypted
keystroke

Keyboard KSADevicedriver

(4)Keystroke
(5)Keystroke

(1)StartAPI

(3)Starthooking
keystroke

(9)EndAPI

Webpage

(2)SessionID

Enc.

Server

Dec.

(8)Repeat(4-7)

(Symmetrickey)

Format:[Header]|[Symm.encryptedkeystroke]|[Asym.encryptedkeystroke]

Figure 4: Workflow of PRODUCT E

found that anti-keylogging KSA can be abused for system-
wide keylogging because it trusts the web page, allowing
control over high-privileged system operations. This includes
manipulating KSA to use symmetric encryption or even dis-
abling encryption entirely. As a result, inputs can be captured
not only from other web pages (SOP violation) but also from
other programs (sandbox violation). This issue has been noted
by other researchers [53], who confirmed the option to dis-
able encryption, but it remains exploitable even in the latest
patched version. Furthermore, we found that this issue affects
other anti-keylogging KSA such as PRODUCT E. As shown
in Figure 4, steps (2) and (6) involve sharing the symmetric
key with the web page and encrypting the keystroke with this
key, respectively, enabling keylogging. We agree that using
symmetric encryption for keystrokes is nonsensical. During
our disclosure process (see §5.5), vendors acknowledged this
design vulnerability but stated they could not deprecate it due
to reliance on this feature by existing services. As will be
mentioned in §5.5, such a patch requires updates to both the
server-side (e.g., JavaScript) and client-side components. As
server-side patches require vendors to involve their customers,
such as banking institutions, in the process, they are hesitant
to proceed, risking a negative impression of the product.

Case study: Disable security features - PRODUCT E and
PRODUCT D. Certain KSA (e.g., anti-keylogging) needs to
provide APIs to enable or disable its functionalities. How-
ever, this renders these solutions ineffective in adversarial

environments. This functionality is necessary because KSA
is intended to be active only on specific websites, includ-
ing banks. Otherwise, even after using the web service, all
keystrokes by users would be encrypted by KSA, disrupting
normal keyboard input. As the browser only knows which
website is being accessed, KSA employs JavaScript on the
pages to activate or deactivate its features (e.g., onfocusout
event in DOM). However, this design allows attackers to call
the said API, effectively neutralizing these solutions.

5.2 Disregard for the TLS Security Models
KSA supports TLS connections (e.g., HTTPS or WSS) but
operates as a service on localhost, which is not well aligned
with the typical model of TLS. To circumvent this, vendors
have opted for a design that significantly weakens the security
of TLS. That is, they install their own certificates for root CA
and generate server certificates accordingly. We believe that
this is due to the mixed content policy enforced by browsers
in 2015, when KSA transitioned to a local service. At that
moment, browsers do not allow mixed content (i.e., use of
HTTP in HTTPS pages) in any domain, including localhost,
and require the use of TLS. However, this is not the case any-
more, as major browsers have eliminated the mixed content
restrictions for localhost [10]. Thus, we believe that this is a
legacy and outdated design.

Table 2: Root CA management for KSA

Name RootCA’s
certificate

KSA server’s
certificate

Delete RootCA’s certificate
after uninstall

PRODUCT A G G
PRODUCT B G G
PRODUCT C F F
PRODUCT D F F
PRODUCT E F G
PRODUCT F F F
PRODUCT G G G

F - “Fixed", G - “Generated at runtime"

Case study: Untrustworthy CA - Every KSA. To use
TLS, vendors register their own CA, which significantly weak-



ens the security of TLS. As KSA operates in the localhost
(127.0.0.1), it requires a valid certificate for the domain that
will be resolved into the localhost. There are two ways for this:
1) using a certificate specifically for localhost (or 127.0.0.1),
or 2) using a certificate for another domain and modifying
the user’s DNS settings (e.g., /etc/hosts) to point to localhost.
Both methods are not feasible with conventional CAs; They
do not issue a certificate for localhost, and it is practically
impossible to provide individual certificates to each user. It is
also infeasible to share the same certificate among users, as
this would reveal the private key to all users.

As a result, KSA registers its own certificate as a Root
CA during the installation process and generates the domain
certificate accordingly. In this case, if the vendor of KSA
is malicious or compromised, the TLS would be broken, en-
abling Man-In-The-Middle (MITM) attacks. Moreover, as
shown in Table 2, all but two KSA implementations do not
remove their Root CA certificates during uninstallation. This
means that if the key is leaked, it complicates future patches
and updates. Such a practice is considered extremely danger-
ous and should be avoided [16].

Figure 5: MitM attack using Google certificate issued by the
PRODUCT E RootCA signed by the leaked private key

Case study: CA private key leakage - PRODUCT E. Dur-
ing our analysis, we confirmed a case of private key leakage,
which we had been concerned about before. While investi-
gating how KSA generates Root CA’s certificate and server
certificate, we discovered that one KSA generates a random
server certificate at runtime based on a fixed Root CA’s cer-
tificate (see Table 2). This implies that the private key of the
Root CA should exist in a certain form during the installation
process. Through reverse engineering, we identified that this
private key is included in the binary with encryption and will
be decrypted during the installation process. As a result, we
could leak the private key of the Root CA and successfully
sign the google.com domain with this key (see Figure 5).
More seriously, the private key remains valid for any user’s
computer who has ever installed the KSA once. Even if the
KSA is uninstalled, it continues to be effective unless the user
directly modifies the OS certificate configuration.

A Arbitrarylocation(cancontrol)F Fixedlocation(can'tcontrol)

(1)Malware

Malware

(4)Enc.malware
(3)Enc.malware

(2)[Encrypt]

Enc.

②Arbitraryfileinjectioninfixedlocation

①Makeencryptedmalware

(5)[SetLogoPath]

(7)Savefile

(6)Downloadfile
Check

F
Enc.malware

Serverurl

Dec.

F

A
(10)Savefile

In:S,Out:A

(8)[DecFileData]
(9)Loadfile

Malware

③Writethedecryptedfileinarbitrarylocation

KSAFilesystem Maliciousweb Attacker

Figure 6: RCE attack workflow of PRODUCT B

5.3 Violation of Browser Sandbox

Browsers utilize sandboxes to prevent web pages from access-
ing system resources. Unfortunately, KSA inherently con-
flicts with the sandbox. KSA is located outside the sandbox
because it is designed to implement functions that are not
typically possible on the web. Consequently, through logical
vulnerabilities or memory bugs within KSA, attackers can
compromise systems without using browser vulnerabilities
(e.g., renderer exploit or sandbox escape).

Case study: Remote code execution - PRODUCT B. We
developed a remote code execution attack in PRODUCT B.
This attack notably serves as a mere example among potential
issues in KSA, implying the existence of other vulnerabilities
that could be more severe.

In short, we found that PRODUCT B has two vulnerabilities
that can be chained to achieve remote code execution (RCE).
At first, we identified a vulnerability that allows us to move an
encrypted file to an arbitrary location by decrypting it (i.e., ar-
bitrary file move). However, within the sandbox environment,
we cannot directly use this vulnerability to achieve RCE, as
we can only access a sandbox directory with a random name,
which cannot be predicted by an attacker. To resolve that,
we use a second vulnerability to save an external file to an
absolute path (i.e., arbitrary file download).

The workflow of this attack is illustrated in Figure 6. It is
divided into three steps. 1 The attacker uses KSA’s API to
encrypt the malware and receives the encrypted result. 2 The
attacker exploits a flawed error-handling mechanism within
the SetLogoPath API to inject the encrypted malware to a
specific fixed location on the user’s system. KSA implements
security measures to validate downloaded logos based on
their digital signatures, but files that are 256 bytes or less
can bypass this validation and are downloaded to a static
location without being deleted. 3 The attacker uses the Dec-



FileData API provided by PRODUCT B to write the malware
in a sensitive location. This API takes input and output files
as parameters, decrypts the input file, and writes it to the
output file. However, there is no validation process for the
output file, allowing an attacker to write files to sensitive lo-
cations (e.g., Start Menu Program). By chaining these steps,
we successfully achieved remote code execution by accessing
a malicious web page.
Case study: Memory Corruptions - PRODUCT F and
PRODUCT G. Currently, KSA is implemented in a memory-
unsafe language (such as C or C++), making it vulnerable
to memory corruption. To identify these issues, we used
AFLnet [56], a fuzzer designed for network protocols. Mem-
ory corruption in KSA carries two significant implications
due to its design. First, attackers can exploit these vulnera-
bilities directly without using browser vulnerabilities (e.g.,
renderer exploits and sandbox escapes). Second, attackers can
abort KSA with a simple memory bug, disabling its security
features. This is critical for KSA, which must provide secu-
rity features precisely when needed. This effectively allows
attackers to neutralize KSA, making further attacks easier.

Table 3: Overview of memory corruption bugs
Name OS Type Tool

PRODUCT F Linux Buffer overflow AFL++
PRODUCT G Linux Buffer overflow AFLNET

Linux Buffer overflow AFLNET
Linux Null Dereference AFLNET
Linux Segmentation fault AFLNET

5.4 Enabling User Tracking

These days, browser privacy is increasingly recognized as a
crucial issue, as evidenced by suggestions like using Incognito
mode or removing third-party cookies. However, the current
design of KSA lacks deliberate consideration for privacy,
enabling various attacks like user tracking [57].
Case study: Device fingerpriting - PRODUCT E. In South
Korea, KSA for anomaly detection is essentially a solution for
fingerprint users. In particular, this KSA collects excessive
PC information, raising significant privacy concerns. Here are
the examples of information collected by this program:

• Network info: NAT IP, MAC address, IP, VPN IP
• OS info: Version, identification number, boot UUID
• Hardware info: Various hardware serial numbers
• Others: Firewall configuration, OS settings such as re-

mote access permissions
Because of this, some researchers have mentioned that it is
a nation-supported spyware [50]. Of course, users may be
required to agree to the terms before installing such KSA.
However, as we will discuss in §6, none of the participants
who installed the required KSA for Internet banking were
aware of its functionalities. These participants all utilized one
of the top-tier banks, and most top-tier banks (13 out of 17)

mandate at least one KSA with these capabilities.
More seriously, KSA allows not just banks but also attack-

ers to obtain such information. Notably, KSA transmits this
information to its server using public key encryption. Theo-
retically, this makes only the vendor of KSA, who has the
private key, able to access this information. However, we have
discovered a way to bypass this. It was possible through the
use of KSA’s test page. This page is for developers to test
KSA. This test page is publicly accessible by anyone without
any authentication. Therefore, an attacker can freely use it as
a decryption oracle to decrypt encrypted data.
Case study: User identification - PRODUCT A,
PRODUCT B, and PRODUCT C. Moreover, it is pos-
sible to deanonymize users using the certificate-based
authentication KSA. This KSA contains an API to access
the user’s certificate. This certificate includes various infor-
mation, such as certificate version, serial number, validity
period, issuing authority, electronic signature algorithm, and
user name. Among these, the user’s legal name is particularly
concerning as it can be used to identify the user, since it
can be accessed in plaintex on the web. Moreover, the serial
number can be used to track the user. These mechanisms
conflict with the privacy and security model currently pursued
by browsers. Recently, browsers have been putting a lot of
effort into preventing querying users’ identities to protect
their privacy (e.g. incognito mode) [1]. The crucial point is
that even when users utilize the incognito mode in browsers,
KSA attackers can still identify the users’ identities easily.

5.5 Responsible Disclosure
In early 2024, we conducted a closed meeting to inform gov-
ernment agencies and security vendors about the security
issues and vulnerabilities we discovered. While we could
have simply reported the vulnerabilities to security vendors
through government-operated vulnerability disclosure pro-
grams, we felt the need to address fundamental root causes
beyond mere code patches, as described in §5. Two govern-
ment agencies — the Financial Security Institute (FSI) and
the Korea Internet & Security Agency (KISA) — and one in-
dustry association — the Korea Information Security Industry
Association (KISIA) — attended the meeting. In the meet-
ing, we shared our opinions about the current state of KSA
and the vulnerabilities we had discovered, along with the rec-
ommendations outlined in §7.2. Subsequently, we submitted
detailed vulnerability reports to government agencies, who
then forwarded them to the security vendors for necessary
actions. For more details on the disclosure communication
process, see Ethics considerations.

During the process of responsible disclosure, we encoun-
tered several challenges related to the distribution ecosystem
and the responses from security vendors. These challenges,
summarized below, highlighted significant problems in ad-
dressing fundamental vulnerabilities.



Table 4: Found vulnerabilities and current patch status. Some vulnerabilities have been fully patched, but in many cases, they
were mitigated rather than completely patched. §5.5 explains the challenges of patching these vulnerabilities.

Current Status

Name Design Issue Vulnerability Impact Patched Mitigated

PRODUCT A §5.4 Information leak of Accredited Certificate (e.g., user’s name) User identification
PRODUCT B §5.4 Information leak of Accredited Certificate (e.g., user’s name) User identification

§5.3 Lack of password validation Encrypted private key leakage of Accredited Certificate
§5.3 Arbitrary file download & file move Remote code execution

PRODUCT C §5.4 Information leak of Accredited Certificate (e.g., user’s name) User identification
PRODUCT D §5.1 Non-encryption option of the API Keylogging

§5.1 Supporting deactivation API Disable security feature (anti-keylogging)
§5.1 Incorrect understanding of access control Origin check bypass

PRODUCT E §5.1 Using symmetric encryption Keylogging
§5.2 Insecure certificate generation Private key leakage of Root CA
§5.1 Supporting deactivation API Disable security feature (anti-keylogging)
§5.1 Fail to manage sessions Disable security feature (firewall)
§5.1 Incorrect threat model configuration Bypass anomaly detection
§5.4 Insecure operation of the test server Device fingerprinting

PRODUCT F §5.3 Memory corruption (1 found) Disable security features
PRODUCT G §5.3 Memory corruption (4 found) Disable security features

Complexity in applying patches. The first major issue is
that due to the unique ecosystem of KSA, it is challenging to
distribute proper patches.

To patch KSA, its binaries, as well as the JavaScript code
on each website of the service providers, should be updated.
While typical JavaScript dependencies can be updated through
established package management systems, KSA’s JavaScript
components are deeply integrated into service providers’ exist-
ing web infrastructure and business logic. Therefore, updates
cannot be treated as simple dependency updates.

Modifying JavaScript code requires significant changes to
server-side code, and service providers would be hesitant to
modify well-functioning production systems due to poten-
tial disruptions to their existing services. While conventional
software updates often maintain backward compatibility dur-
ing transition periods, the security-critical nature of KSA’s
vulnerabilities makes such gradual transitions problematic.
According to the government agency, many vendors’ clients
were reluctant to abandon existing web functionalities, fur-
ther complicating efforts to transition to updated systems.
In addition, the lack of a unified patch deployment process
exacerbates this challenge.

To address this, we reported the vulnerability to the secu-
rity vendor using the existing channels and provided suffi-
cient time for them to implement mitigations. However, these
challenges demonstrate why it is not trivial to patch vulner-
abilities that require changes to both KSA and JavaScript.
For instance, to fix the keylogging vulnerability mentioned in
§5.1, we need to remove the symmetric key feature of KSA.
However, if we remove this feature only at the binary level,
KSA may not work properly for services already using it. Due
to this issue, security vendors initially mitigated the vulnera-
bility by adding access control to restrict unauthorized access.
While this approach mitigates immediate risks, stronger secu-
rity models (e.g., origin spoofing attack [15]) may still allow
attackers to exploit the same vulnerability. This underscores

the need for a more comprehensive solution that effectively
addresses the binary and JavaScript components.

Another critical aspect is that KSA is distributed not di-
rectly by the security vendor but by the service provider. This
leads to significant version differences depending on the ser-
vice provider, as shown in Table 5. Such an ecosystem com-
plicates the timely deployment of patches, making it harder
to ensure that all users are running the latest, most secure ver-
sion. These issues are further amplified in certain government
services with low security awareness. In extreme cases, these
sites still use outdated technologies like ActiveX, prompting
users to rely on outdated browsers such as Internet Explorer,
which creates additional barriers to effective patching and
increases overall security risks.

Table 5: Versions and release dates of PRODUCT E provided
by financial institutions and public services

Institution Version Release date

Insurance company A 2019.2.20.1 2019-2-21
Bank A 2019.5.8.1 2019-5-8
Credit card company A 2020.6.21.1 2020-6-21
Credit card company B 2022.8.4.1 2022-8-4
Bank B 2023.1.9.2 2023-1-9
Insurance company B 2023.5.4.1 2023-5-4
Public service A 2023.6.30.9 2023-6-30
Public service B 2023.8.21.1 2023-8-21
Public service C 2023.8.22.9 2023-8-22

Lack of incentive for security vendors to improve prod-
uct safety. Despite receiving detailed vulnerability reports
and proof-of-concept (PoC) files, some security vendors ex-
hibited insufficient or unsatisfactory responses in addressing
the issues. For example, one security vendor responded to
a reported vulnerability by adding an origin check instead
of resolving the root cause despite there being a clear and
feasible approach to patching the vulnerability effectively.
More seriously, this mitigation was implemented incorrectly;



they blocked the localhost origin, used in our PoC, instead of
whitelisting their client domains. This can prevent our PoC
from working as it used the localhost origin, but it can not pre-
vent an attacker from exploiting the vulnerability using their
remote server. During our closed meeting with relevant agen-
cies, we discussed the importance of proper origin checks and
how to construct effective whitelists, and the agencies assured
us that this feedback was communicated to the vendors. De-
spite this, the issue was not resolved correctly. We identified
this issue and reported it through the established vulnerability
reporting process, and the vendor eventually fixed the issue
correctly.
Current status. With the cooperation of various institu-
tions, we consistently provided feedback on vulnerabilities
and patches to address the issues comprehensively. This has
been done through the established vulnerability disclosure
process. This collaboration led to the successful implementa-
tion of patches for all vulnerabilities that could be addressed
immediately. However, due to the unique ecosystem of KSA,
some tasks remain that require long-term efforts to address
fundamental vulnerabilities. In these cases, security vendors
have taken temporary measures by enhancing access con-
trol as an interim solution. This approach allows for imme-
diate risk reduction while they plan and implement more
comprehensive fixes over a longer period. Moreover, govern-
ment agencies are attempting to remove legacy systems and
security-risky features to address the issues identified in our
analysis. For that, we agreed to impose an embargo until May
2025 to fully resolve the issues we identified. For the current
patch status, see Table 4.

6 User Study

To understand the security implications of KSA in South
Korea, we conducted two complementary studies. First, we
conducted an online survey with 400 participants to assess the
prevalence of KSA adoption and users’ understanding of its
security features. Second, we performed a desktop analysis
study with 48 participants to precisely measure the number
and versions of KSA programs installed on users’ computers.
Through these studies, we aim to quantify both the scope of
vulnerabilities introduced by widespread KSA deployment
and the potential risks stemming from gaps in user compre-
hension and practices.

6.1 Online Survey Methodology

Research questions. This user study aimed to answer the
following research questions that complement our security
vulnerability analysis of KSA:

RQ1: How prevalent is the installation and use of KSA
among users?

RQ2: How well do users understand KSA’s functionality
and associated security risks?

RQ1 examines the extent of KSA 2.0 adoption among
South Korean Internet users. Due to the lack of official statis-
tics on KSA 2.0, our study provides an empirical estimate of
its prevalence. In RQ2, we focus on identifying gaps between
users’ understanding of KSA’s security features and their
actual practices that could increase vulnerability risks. This
involves assessing whether users recognize the potential secu-
rity risks of KSA while uncovering common misconceptions
about its security model that may leave them more susceptible
to the identified vulnerabilities.
Recruitment and demographics. We recruited participants
through Embrain (https://embrain.com/eng/), a profes-
sional survey company that maintains a diverse panel of re-
spondents. Our study included 400 participants: 208 male
(52%) and 192 female (48%). The age distribution spanned
multiple decades: 20–29 years (21.5%, n=86), 30–39 years
(26.75%, n=107), 40–49 years (26.5%, n=106), 50-59 years
(16%, n=64), and 60 years or older (9.25%, n=37). To ensure
the representativeness of our sample, we compared our demo-
graphic distributions against the national Internet user statis-
tics provided by Statistics Korea (https://kostat.go.kr/
anse/). Using Chi-square goodness of fit tests, we confirmed
that both gender (χ2 = 0.64, d f = 1, p > 0.99) and age (χ2 =
2.31, d f = 4, p > 0.99) distributions were not significantly
different from the population parameters.
Survey design. To ensure the clarity and accuracy of our
survey questions, we conducted three pilot studies to refine
the questionnaire. During our pilot test, we received feed-
back about the survey’s duration (10 minutes) and insuf-
ficient detail in explaining the purpose of the Knowledge
and Understanding section. We addressed this by provid-
ing a clearer and more comprehensive description of its ob-
jectives. The full survey questionnaire is available online
(https://zenodo.org/records/14738628). The final 10-
minute survey consisted of two main sections:

1. Knowledge and Understanding: This section assessed par-
ticipants’ knowledge and understanding of KSA. It in-
cluded questions about the definition and scope of KSA,
along with examples to provide clarity. Participants were
asked to identify service types and statements related to
KSA to gauge their level of familiarity with the subject.

2. Awareness and Experiences: This section focused on par-
ticipants’ hands-on experiences with KSA. It covered var-
ious aspects, including installation experiences, awareness
of KSA functions and operations, and uninstallation meth-
ods employed by users.

6.2 Online Survey Results
Our survey results, summarized in Table 6, reveal key findings
about KSA installation patterns and user awareness of its

https://embrain.com/eng/
https://kostat.go.kr/anse/
https://kostat.go.kr/anse/
https://zenodo.org/records/14738628


Table 6: Survey results on user demographics and KSA practicesa

Question Options Response

Gender Male 52% (208)
Female 48% (192)

Age

20s 21.5% (86)
30s 26.75% (107)
40s 26.5% (106)
50s 16% (64)
60+ 9.25% (37)

Experience with
Banking & Government

Banking & Government 90.5% (362)
Banking Only 4% (16)
Government Only 3% (12)
None 2.5% (10)

Bank KSA
Installation Experience

Installed 97.35% (368)
Not Installed 0% (0)
Unsure 2.65% (10)

Top-tier Bank Usage Yes 100% (378)
No 0% (0)

Uninstallation Methods

Windows Uninstaller 57% (228)
Built-in Uninstaller 8.75% (35)
Third-party Tool 6% (24)
Manual Deletion 4.5% (18)
Never Uninstalled 20.75% (83)
Other 0% (0)
Unsure 3% (12)

Understanding of
KSA Functions

Yes 40.75% (163)
No 59.25% (237)

Knowledge of
KSA Activation

Always Active 14.75% (59)
Active on Access 60.75% (243)
Active on Specific Access 20.75% (83)
Unsure 3.75% (15)

A We first asked participants about their experiences with government and bank services.
Specific questions regarding these services were directed only to those who had
experience with each service type. As a result, the total number of responses to these
specific questions may be less than the total number of survey participants (400).

security implications.
RQ1 - Prevalence of KSA installation. Our survey data
demonstrates extensive KSA adoption across banking and
government service users. Of our 400 participants, 90.5%
had experience with both services, while 4% used only bank-
ing services and 3% used only government services. Among
banking service users, KSA installation rates reached 97.35%,
with the remaining 2.65% being unsure about their installation
status. Notably, all 378 participants with banking experience
reported using at least one top-tier bank that employed the
target KSA analyzed in our work.

Our investigation of banking websites revealed that out
of 17 top-tier banks, 11 required KSA installation for login,
while six allowed access without it. However, 13 banks, in-
cluding some that did not mandate KSA, used phrases like
“installation is required” or “need to install” on their websites.
Figure 2 shows an example of such an installation page. This
practice, combined with the legacy of previous legal mandates,
has contributed to KSA’s widespread installation.
RQ2 - Understanding of security implications. Our anal-

ysis revealed significant gaps in users’ awareness of KSA’s
security features and operation. Among participants, 59.25%
reported not understanding KSA’s functions. Regarding ac-
tivation patterns, only 14.75% correctly identified that KSA
programs run continuously as active services, while 60.75%
believed they were active only during service access, and
20.75% thought they operated only during specific operations.
The remaining 3.75% were unsure about activation patterns.
Notably, no participants identified the anomaly detection capa-
bilities that most banks require, a feature that accesses various
information on users’ PCs (see §5.4).

The survey also revealed concerning patterns in uninstalla-
tion practices. While 57% of participants reported using the
Windows uninstaller and 8.75% used the built-in uninstaller,
these methods fail to completely remove KSA components,
particularly RootCA certificates. Only 10.5% of users em-
ployed methods capable of complete removal (6% using third-
party tools and 4.5% performing manual deletion). Moreover,
20.75% had never attempted to uninstall KSA, leaving out-
dated versions on their systems without automatic updates
(see §5.2). This combination of incomplete uninstallation
methods and retained outdated versions leaves 86.5% of users
exposed to potential security risks even after attempted unin-
stallation.

6.3 Desktop Analysis Study

Online surveys rely on self-reporting, which makes it dif-
ficult to verify the actual number of KSA programs in-
stalled on each user’s PC. To address this issue, we con-
ducted an additional user study. We installed a program called
HoaxEliminator [61], designed to remove unnecessary In-
ternet programs, including KSA, from participants’ PCs to
determine the number of KSA programs installed on each
computer (multiple products, each uniquely tied to one in-
stalled version). Since the online survey platform we com-
missioned did not allow the installation of programs on users’
PCs, we recruited additional participants who could volun-
tarily install the program through our institution’s bulletin
board and social networks. A total of 48 participants took
part in this study: 34 male (70.83%) and 14 female (29.17%).
The age distribution spanned multiple decades: 20–29 years
(91.67%, n=44), 30–39 years (6.25%, n=3), 40–49 years (0%,
n=0), 50-59 years (2.08%, n=1), and 60 years or older (0%,
n=0). Each participant installed HoaxEliminator on their
PC and confirmed the number of installed KSA programs. We
instructed HoaxEliminator to output a list of the identified
KSA programs. After the confirmation process, we assisted
each user in successfully removing HoaxEliminator. The
example response of the survey using HoaxEliminator is
available in Appendix C.

Figure 7 shows that, except for two participants, all partici-
pants had KSA installed on their PCs, with one participant
having as many as 24 KSA programs installed. The average



0

5

10

15

20

25

Nu
m

be
r o

f I
ns

ta
lle

d 
KS

A

All KSA programs installed
Target KSA programs in our work
Average of all KSA programs installed
Average of target KSA programs installed

Figure 7: Number of installed KSA programs per user

number of total KSA installations was 9.06, with a standard
deviation of 6.96, indicating a significant presence of KSA
on users’ computers. Focusing only on the specific KSA
programs of interest in this paper, the average number of in-
stallations was 4.1, with a standard deviation of 2.92. Note
that each installed KSA represents a distinct program, not
different versions of the same program, as only one version
per KSA can be installed on a user’s computer.

When we checked the installed versions of each KSA, we
found that many users have outdated versions of KSA in-
stalled. Out of 48 participants, 27 were using versions from
2022 or earlier. The oldest KSA found was installed on Febru-
ary 15, 2019. These findings suggest that old and insecure
KSA programs persist on users’ PCs.

6.4 Study Limitations

Our user studies provide essential insights into KSA usage
and its security implications while also recognizing significant
methodological limitations that require discussion.
Online survey limitations. Our survey faced two key
methodological challenges. First, the survey design may have
inadvertently influenced participant responses, particularly re-
garding mandatory installations and security perceptions. By
asking about installation requirements, we may have drawn
participants’ attention to aspects they had not previously
considered. To mitigate potential biases introduced by these
perception-based responses, our primary analysis focuses on
measurable factors such as installation status and usage pat-
terns. While we collected data about users’ views on manda-
tory installation requirements, we excluded these perception-
based findings from our primary analysis. For transparency,
these survey responses are available in Appendix B. Second,
translating from Korean to English required careful considera-
tion to preserve the original meaning. While we worked with
bilingual experts to maintain accuracy and cultural relevance,
some nuances may have been affected in translation.
Desktop analysis study limitations. The desktop analy-
sis study provides concrete data on KSA program installa-
tions but is limited by participant demographics. The sam-

ple consisted of 48 users, predominantly male and aged in
their 20s and 30s, recruited through institutional channels,
which may not be representative of the broader Korean pop-
ulation. Additionally, requiring participants to install the
HoaxEliminator tool might have introduced self-selection
bias, favoring technically proficient individuals.

Despite these limitations, the combination of our large-
scale online survey and focused desktop analysis provides
complementary perspectives that strengthen our findings
about KSA usage patterns and security implications in South
Korea.

7 Discussion

7.1 Lessons Learned

Dangers of web security solutions controlling client de-
vices. Our study demonstrates that KSA’s design conflicts
with fundamental web browser security principles. Specif-
ically, KSA grants web pages control over high-privileged
system actions, allowing them access to system resources
that browsers typically restrict. The developers implemented
this through web APIs that communicate with local services,
bypassing browser security controls. This design not only
contradicts browser security models but also creates an envi-
ronment where security vendors may implement features that
browsers explicitly prohibit for security reasons. This archi-
tectural approach introduces significant vulnerabilities. When
web pages can execute high-privileged operations, attackers
might exploit these privileges to perform actions typically pre-
vented by browsers, such as keylogging or accessing sensitive
files on client devices. Our security analysis demonstrates that
such privileged access can create new attack vectors without
requiring browser vulnerabilities. This challenge extends be-
yond KSA to other security solutions, particularly in remote
management tools. For example, the 2021 Kaseya VSA inci-
dent [19] demonstrated how attackers could exploit a remote
management tool’s privileged access to deploy ransomware
across thousands of businesses globally. Such incidents em-
phasize why security solutions should carefully balance func-
tionality with the principle of least privilege, particularly when
implementing web-based management interfaces that control
client devices.
Risks of solutions deviating from standards. Web standards
implemented by commercial web browsers undergo thorough
review and verification by various experts and communities.
Through open discussions, these standards address potential
security issues before implementation and maintain systems
for responding to discovered vulnerabilities. For instance, dis-
cussions about APIs for accessing host machine resources,
such as WebHID and WebUSB, have led to careful consider-
ation of security implications. The WebKit community has
raised specific concerns about the WebUSB API’s security



and privacy implications [63], prompting further expert discus-
sions before full implementation. Our analysis suggests that
deviating from these established standards may introduce se-
curity risks. For example, KSA’s use of vendor-specific CAs
could potentially weaken TLS security by enabling MITM
attacks if a vendor’s CA certificate is compromised or im-
properly managed on user systems. Given KSA’s widespread
deployment across South Korea, such vulnerabilities could po-
tentially enable nationwide supply chain attacks. Furthermore,
as we observed, the security patch process lacks standardized
procedures, with each company implementing different levels
of responses to security issues.
Risks of mandating security solutions. Our analysis of
KSA revealed several vulnerabilities that could be exploited
by abusing existing functionalities or leveraging well-known
exploit methods. Despite its widespread use, the persistence
of these issues in KSA may be attributed to its mandatory
requirement, compounded by the absence of effective roll-
back and patching mechanisms. These findings suggest that
mandating specific technologies should be accompanied by
robust maintenance and update policies to address emerging
security concerns. The potential risks of mandating specific
security technologies are particularly evident when examining
state-level security incidents. Several documented cases show
North Korean actors exploiting vulnerabilities in KSA [5–9].
Similar concerns have emerged in other countries. In 2009,
China withdrew its mandate for Green Dam Youth Escort
software due to security flaws [47]. In 2019, Kazakhstan’s at-
tempt to enforce root certificate installation faced opposition
from tech companies [43], while Russia’s Sovereign Internet
Law raised technical concerns [39]. These cases demonstrate
how mandated software requirements necessitate careful con-
sideration of security implications.

7.2 Recommendations
The issues discussed in §5 reveal that both implementation
problems and design flaws can lead to significant security
vulnerabilities. Based on the lessons in §7.1, it is crucial to
fundamentally rethink the design of a secure ecosystem for
online banking services. Achieving this goal requires the
combined efforts and clearly defined roles of security vendors
and the government.
Recommendations for security vendors. Based on our se-
curity analysis of KSA, we propose several recommendations
for security vendors developing web-based security solutions.
First, our findings in §3.1 demonstrate the need for robust
access control mechanisms. While implementing proper ori-
gin validation and maintaining whitelists cannot prevent all
attacks, these measures can increase the complexity required
for successful exploits. Second, our analysis revealed how
combining multiple privileged APIs enabled serious vulnera-
bilities like RCE attacks (§5.1). To mitigate such risks, ven-
dors should implement privilege separation by restricting file

system operations to specific directories and requiring explicit
user consent for elevated privileges. This approach aligns with
the principle of least privilege while maintaining necessary
functionality. Third, our investigation of TLS security models
(§5.2) showed how reliance on outdated mixed content poli-
cies can introduce vulnerabilities. Vendors should align their
implementations with current browser security standards, par-
ticularly regarding localhost connections and content policies.
For web-based authentication, standards like WebAuthn [3]
offer secure alternatives that maintain compatibility with mod-
ern browsers while eliminating the need for custom security
mechanisms.
Recommendations for governments. Our analysis of KSA
highlights the importance of establishing comprehensive secu-
rity frameworks for widely deployed security solutions. Based
on the challenges observed in our vulnerability disclosure pro-
cess (§5.5), governments should establish clear protocols for
vulnerability reporting and remediation across vendors to ad-
dress the inconsistent security patch responses we observed.
The persistence of outdated versions and varying patch man-
agement practices revealed in our study indicates the need for
structured maintenance policies. Our desktop analysis found
that many users were running KSA versions from 2022 or
earlier, highlighting systemic challenges in security update
deployment. Governments could establish guidelines for secu-
rity updates, version management, and regular security assess-
ments. For example, frameworks like EU’s GDPR [48] and
CISA’s VDP [20] demonstrate how structured security man-
agement approaches can be implemented while maintaining
flexibility in technical implementation. Given that security
solutions in critical sectors like banking and government ser-
vices can significantly impact national digital infrastructure,
our findings suggest that governments should establish regu-
latory frameworks that ensure vendors maintain robust vul-
nerability management processes and timely security updates.
Such frameworks should include clear guidelines for security
assessments and reporting mechanisms to verify compliance.

8 Related Work

Security analysis for KSA. There have been a few stud-
ies about KSA previously. Kim et al. [25] highlighted the
vulnerabilities of KSA 1.0 to advanced malware and phish-
ing attacks, while also mentioning usability issues. Despite
the transition to KSA 2.0, the same issues mentioned in this
study still persisted. Palant delved into KSA 2.0 and wrote
several technical articles. He criticized South Korea’s banking
security with conventional features [50–55]. Our work dif-
fers from Palant’s by systematically identifying threat models,
uncovering a broader range of vulnerabilities, and highlight-
ing design issues in KSA 2.0. We also emphasize issues not
only in online banking services but also in the mandatory
use of software and related problems. Additionally, we con-



duct a user study to address widespread use and awareness,
providing recommendations for improved security.
Security analysis for other security applications. Besides
KSA, numerous security applications are becoming integral
to our daily lives. Consequently, much research has been
devoted to evaluating the security of these applications. In
the case of keyboard security, Yim et al. [34, 35] and Liang
et al. [36] showed that commercial solutions cannot perfectly
protect user input against the attacker. Chatzoglou et al. [17]
and Haffejee et al. [25] proposed diverse techniques to bypass
antivirus detection, and Min et al. [41] successfully achieved
the local privilege escalation in various antivirus software
via new attack vectors. However, none of these works dealt
with applications mandated by law or those with design issues
similar to KSA.
Access control issues with untrusted sources. Three recent
studies have examined software vulnerabilities, focusing on
access control issues and the risks associated with untrusted
sources. Kim et al. (2023) [29] explored security weaknesses
in browser extensions, revealing critical vulnerabilities in 40
extensions, including privilege escalation attacks and theft of
sensitive information. Lin et al. (2024) [37] focused on Visual
Studio Code (VS Code) extensions, identifying security issues
arising from untrusted sources, such as code injection and file
integrity attacks. Koishybayev et al. [31] analyzed the secu-
rity of GitHub CI by examining approximately 447k GitHub
workflows. They discovered that 99.8% of these workflows
were overprivileged, and 23.7% of them allowed attackers to
execute arbitrary code. These works highlight the crucial role
of access control in addressing security issues in software
handling untrusted sources.

9 Conclusion

While KSA 2.0, a suite of software mandated for online bank-
ing and public services in South Korea, aimed to bolster se-
curity, its flawed design and implementation highlight the
risks of over-reliance on security solutions without rigorous
testing. Motivated by real-world hacking incidents exploit-
ing KSA 2.0 from North Korea in 2023, we investigated its
major vulnerabilities. Our analysis uncovered four critical
design issues: inconsistencies in threat models between KSA
and web browsers, improper use of TLS, violation of browser
sandboxing, and enabling user tracking. We examined KSA
programs used by all top-tier banks in South Korea and iden-
tified 19 vulnerabilities posing significant security risks, such
as keylogging, MITM attacks, private key leakage, remote
code execution, and device fingerprinting.

The lessons from KSA 2.0 are crucial for building secure
and trustworthy Internet services. Our findings suggest that
extensive control over client devices, often advocated by pol-
icymakers and security vendors for secure services, should
be approached with caution, as these solutions may introduce

new attack surfaces. Although the implementation vulnerabil-
ities we reported have been fixed, the current KSA 2.0 design
still violates web security principles, potentially compromis-
ing systems.

As Ross Anderson aptly notes [27], “Proprietary security
software offers at best a modest improvement and certainly
cannot provide the Holy Grail of a trustworthy user plat-
form. We have recommended that banks should minimize the
use of external plugins.” Our empirical analysis of KSA 2.0
validates this observation through concrete evidence, demon-
strating that mandated technologies, though initially benefi-
cial, can eventually become the Achilles’ heel against rapidly
evolving attackers, leaving systems vulnerable to unforeseen
threats.

Acknowledgments

We sincerely thank the reviewers and shepherd for their valu-
able feedback. We are also deeply grateful to the late Ross
Anderson, whose work on Korean banking security and prac-
tical guidelines helped shape the security community’s under-
standing of this critical area. His legacy continues to inspire
us. We would also like to thank Wladimir Palant for moti-
vating us to explore the security issues in KSA. This work
was supported by the Institute for Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. RS-2024-00400302,
RS-2024-00438686, and RS-2022-II221199).

Ethics considerations

We ensure ethical conduct throughout our study, adhering to
established protocols for vulnerability disclosure and user
research.
Responsible Disclosure. To ensure the ethical handling of
vulnerabilities discovered during our technical analysis, we
adhere to a structured and detailed responsible disclosure pro-
cess. This process involved multiple stages of communication
and verification between our team, a government agency, and
the vendors, ensuring that vulnerabilities were responsibly
addressed without exposing users to undue risks.

1. Initial Reporting: This section assessed participants’
knowledge and understanding of KSA. It included ques-
tions about the definition and scope of KSA, along with
examples to provide clarity. Participants were asked to
identify service types and statements related to KSA to
gauge their level of familiarity with the subject.

2. Vendor Communication: The government agency for-
warded our report to the respective vendors. Based on
the provided details, vendors reviewed the vulnerabilities
and implemented patches to address them. After complet-
ing the initial patching, vendors reported their patching



progress and implementation details back to the govern-
ment agency.

3. Cross-Verification: The government agency shared the
patched software and information about the applied fixes
with us. Our team then conducted cross-checks to verify
the efficacy of the implemented patches. This included
testing for remaining vulnerabilities, evaluating the cor-
rectness of the fixes, and ensuring adherence to the recom-
mended patching methods.

4. Follow-Up and Additional Guidance: During the cross-
verification process, we identified cases where additional
patches were required or where initial patches were in-
correctly implemented. For instance, some fixes failed to
address the root cause of the vulnerability or introduced
secondary issues. In these instances, we provided detailed
feedback and further recommendations to vendors, ensur-
ing that all vulnerabilities were adequately addressed.

5. Timeline and Progress: The entire process was coordinated
with a patch timeline agreed to extend until May 2025. Ven-
dors typically implemented initial patches and provided
reports within two months of disclosure. This timeline en-
sured sufficient time for thorough patching and verification
while maintaining the security of affected systems.

By following this multi-stage process, we ensured that vul-
nerabilities were addressed comprehensively, minimizing po-
tential risks to users and systems. This detailed approach not
only prioritized ethical standards but also helped foster trust
and accountability among all stakeholders involved.
Online Survey. Our user study fully adhered to ethical stan-
dards, and we obtained Institutional Review Board (IRB) ap-
proval. Participants were informed about the survey’s pur-
pose, content, and procedures and were made aware that they
could withdraw from the study at any time without any con-
sequences. Participation was voluntary and limited to adults,
and anonymity was strictly maintained by collecting only non-
identifiable information, such as gender and age. For surveys
requiring program installation, we provided participants with
clear instructions on installation, program functionality, and
uninstallation. Responses were limited to screenshots of fi-
nal outputs to minimize data collection risks. Data collected
during the study was securely stored and accessible only to
authorized researchers to ensure participant privacy and data
integrity.
Desktop Analysis Study. An additional user study was con-
ducted to collect information about KSA 2.0 programs actu-
ally installed by users, providing insights into their prevalence
and usage patterns in real-world environments. This study
adhered to the same ethical standards as the online survey,
including IRB approval, participant anonymization, voluntary
participation, and secure data handling protocols.
Embargo and Research Integrity. To protect the confiden-
tiality of identified vulnerabilities, the findings remain under

embargo until vendors have fully addressed the reported is-
sues. The embargo period is set to extend until May 2025,
ensuring sufficient time for patch implementation. The public
release of the USENIX paper will occur after this embargo
period, eliminating the risk of prematurely exposing vulner-
abilities to potential attackers. This timeline aligns with es-
tablished ethical research practices and prioritizes user safety.
By adhering to these principles, we ensured ethical integrity
in both the technical analysis and user research components
of our study.

Open science

As outlined in the §5.5, our study adheres to principles of
responsible disclosure while balancing open science com-
mitments with security considerations. We are bound by an
embargo, coordinated through government agencies, that re-
stricts the release of high-level details about identified vulner-
abilities until May 2025. However, as the public release of the
USENIX paper is scheduled for after this embargo period, the
paper’s publication timeline is unaffected by the embargo.

Even after the embargo period, government agencies have
stipulated that certain sensitive details, such as proof-of-
concept (PoC) exploits, detailed vulnerability analyses, and
product identifiers, cannot be disclosed due to ongoing se-
curity threats, including state-sponsored attacks from North
Korea. Despite these restrictions, our research findings have
been approved for inclusion in the paper, provided that all
sensitive details are omitted.

While these constraints limit the granularity of our public
disclosures, we believe this approach prioritizes user safety
and aligns with ethical standards, enabling us to share mean-
ingful insights without compromising security.

In addition to the above commitments, and in response
to feedback from our shepherd, we have decided to include
both the Korean and English versions of our user survey as
part of our artifact submission. The inclusion of the Korean
survey addresses the challenge of obtaining user studies from
Asia and offers a valuable resource for future research ef-
forts, particularly in contexts where translating surveys into
the venue’s language is a significant hurdle. This contribu-
tion aligns with our open-science principles and supports
the broader community by fostering accessibility and repro-
ducibility in cross-cultural research.

References

[1] Privacy on the web. https://
developer.mozilla.org/en-US/docs/Web/
Privacy.

[2] Same-origin policy. https://
developer.mozilla.org/en-US/docs/Web/
Security/Same-origin_policy.

https://developer.mozilla.org/en-US/docs/Web/Privacy
https://developer.mozilla.org/en-US/docs/Web/Privacy
https://developer.mozilla.org/en-US/docs/Web/Privacy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy


[3] W3c - web authentication: An api for accessing pub-
lic key credentials, April. https://www.w3.org/TR/
webauthn/.

[4] For world‘s most wired country, breaking inter-
net monopoly is hard. The Korea Times, april
2012. https://www.koreatimes.co.kr/www/news/
biz/2012/04/123_109059.html.

[5] Dream security ‘security certification s/w (magi-
cline)’ vulnerability fix recommendation. National
Cyber Security Center of the Republic of Korea,
June 28 2023. https://www.ncsc.go.kr:4018/
main/cop/bbs/selectBoardArticle.do?bbsId=
SecurityAdvice_main&nttId=
54336&pageIndex=2&searchCnd2=.

[6] Initech ‘inisafe’ latest security update recommendation.
National Cyber Security Center of the Republic of Korea,
March 30 2023. https://www.ncsc.go.kr:4018/
main/cop/bbs/selectBoardArticle.do?bbsId=
SecurityAdvice_main&nttId=
32172&pageIndex=2&searchCnd2=.

[7] North korea s/w supply chain attack-related joint
cyber security recommendation. National Cyber
Security Center of the Republic of Korea, Novem-
ber 23 2023. https://www.ncsc.go.kr:4018/
main/cop/bbs/selectBoardArticle.do?bbsId=
SecurityAdvice_main&nttId=
93471&pageIndex=1&searchCnd2=.

[8] Rok-uk joint cyber security advisory (dprk s/w
supply chain attacks). National Cyber Security
Center of the Republic of Korea, November 23
2023. https://www.ncsc.go.kr:4018/main/
cop/bbs/selectBoardArticle.do?bbsId=
SecurityAdvice_main&nttId=
93472&pageIndex=1&searchCnd2=.

[9] Security certification s/w old version security
measures guide. National Cyber Security
Center of the Republic of Korea, November 7
2023. https://www.ncsc.go.kr:4018/main/
cop/bbs/selectBoardArticle.do?bbsId=
SecurityAdvice_main&nttId=
88018&pageIndex=1&searchCnd2=.

[10] Mixed content, 2024. https://
developer.mozilla.org/en-US/docs/Web/
Security/Mixed_content.

[11] W3techs - usage statistics of http strict transport security
for websites, January 2024. https://w3techs.com/
technologies/details/ce-hsts.

[12] Bank of Korea. Types of financial institutions in
south korea, 2023. https://www.bok.or.kr/portal/
main/contents.do?menuNo=200580.

[13] Adam Barth, Collin Jackson, Charles Reis, and Google
Chrome Team. The security architecture of the
chromium browser. In Technical report. Stanford Uni-
versity, 2008.

[14] boYon Hwang. “cancerous regulations” still
complicate online shopping. Hankyoreh,
2014. https://english.hani.co.kr/arti/
english_edition/e_business/631104.html.

[15] Yinzhi Cao, Vaibhav Rastogi, Zhichun Li, Yan Chen,
and Alexander Moshchuk. Redefining web browser
principals with a configurable origin policy. In 2013
43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 1–12.
IEEE, 2013.

[16] Robert N. Charette. Diginotar certificate au-
thority breach crashes e-government in the
netherlands. IEEE Spectrum, September 2011.
https://spectrum.ieee.org/diginotar-
certificate-authority-breach-crashes-
egovernment-in-the-netherlands.

[17] Efstratios Chatzoglou, Georgios Karopoulos, Georgios
Kambourakis, and Zisis Tsiatsikas. Bypassing antivirus
detection: old-school malware, new tricks. In Proceed-
ings of the 18th International Conference on Availability,
Reliability and Security, pages 1–10, 2023.

[18] Chrome Developers. Sandbox. https:
//chromium.googlesource.com/chromium/src/+/
master/docs/design/sandbox.md.

[19] Cybersecurity and Infrastructure Security Agency
(CISA). Kaseya ransomware attack: Guid-
ance for affected msps and their customers.
https://www.cisa.gov/news-events/news/
kaseya-ransomware-attack-guidance-
affected-msps-and-their-customers, 2021.

[20] Cybersecurity and Infrastructure Security Agency
(CISA). Vulnerability disclosure policy (vdp) plat-
form. https://www.cisa.gov/resources-tools/
services/vulnerability-disclosure-policy-
vdp-platform, 2023.

[21] Chris Evans and Tom Sepez. Trying to end
mixed scripting vulnerabilities. google blog, June
2011. https://security.googleblog.com/2011/
06/trying-to-end-mixed-scripting.html.

[22] Financial Services Commission. Regulation on su-
pervision of electronic financial transactions. https:
//www.fsc.go.kr/eng/pr010101/21742.

https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://www.koreatimes.co.kr/www/news/biz/2012/04/123_109059.html
https://www.koreatimes.co.kr/www/news/biz/2012/04/123_109059.html
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=54336&pageIndex=2&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=54336&pageIndex=2&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=54336&pageIndex=2&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=54336&pageIndex=2&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=32172&pageIndex=2&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=32172&pageIndex=2&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=32172&pageIndex=2&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=32172&pageIndex=2&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=93471&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=93471&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=93471&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=93471&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=93472&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=93472&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=93472&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=93472&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=88018&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=88018&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=88018&pageIndex=1&searchCnd2=
https://www.ncsc.go.kr:4018/main/cop/bbs/selectBoardArticle.do?bbsId=SecurityAdvice_main&nttId=88018&pageIndex=1&searchCnd2=
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://w3techs.com/technologies/details/ce-hsts
https://w3techs.com/technologies/details/ce-hsts
https://www.bok.or.kr/portal/main/contents.do?menuNo=200580
https://www.bok.or.kr/portal/main/contents.do?menuNo=200580
https://english.hani.co.kr/arti/english_edition/e_business/631104.html
https://english.hani.co.kr/arti/english_edition/e_business/631104.html
https://spectrum.ieee.org/diginotar-certificate-authority-breach-crashes-egovernment-in-the-netherlands
https://spectrum.ieee.org/diginotar-certificate-authority-breach-crashes-egovernment-in-the-netherlands
https://spectrum.ieee.org/diginotar-certificate-authority-breach-crashes-egovernment-in-the-netherlands
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://www.cisa.gov/news-events/news/kaseya-ransomware-attack-guidance-affected-msps-and-their-customers
https://www.cisa.gov/news-events/news/kaseya-ransomware-attack-guidance-affected-msps-and-their-customers
https://www.cisa.gov/news-events/news/kaseya-ransomware-attack-guidance-affected-msps-and-their-customers
https://www.cisa.gov/resources-tools/services/vulnerability-disclosure-policy-vdp-platform
https://www.cisa.gov/resources-tools/services/vulnerability-disclosure-policy-vdp-platform
https://www.cisa.gov/resources-tools/services/vulnerability-disclosure-policy-vdp-platform
https://security.googleblog.com/2011/06/trying-to-end-mixed-scripting.html
https://security.googleblog.com/2011/06/trying-to-end-mixed-scripting.html
https://www.fsc.go.kr/eng/pr010101/21742
https://www.fsc.go.kr/eng/pr010101/21742


[23] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++: Combining incremental steps of
fuzzing research. In 14th USENIX Workshop on Offen-
sive Technologies (WOOT 20). USENIX Association,
August 2020.

[24] Erwan Grelet. unlicense. https://github.com/
ergrelet/unlicense.

[25] Jameel Haffejee and Barry Irwin. Testing antivirus en-
gines to determine their effectiveness as a security layer.
In 2014 Information Security for South Africa, pages
1–6. IEEE, 2014.

[26] Chico Harlan. Explorer for online shopping because
of security law. The Whashington Post, November
2013. https://www.washingtonpost.com/world/
asia_pacific/due-to-security-law-south-
korea-is-stuck-with-internet-explorer-
for-online-shopping/2013/11/03/ffd2528a-
3eff-11e3-b028-de922d7a3f47_story.html.

[27] Hyoungshick Kim, Junho Huh, and Ross Anderson. On
the security of internet banking in south korea. CS-
RR 10-01, Computer Science Group, Oxford University
Computing Laboratory, 2010.

[28] Young-Myung Kim. Korea to allow adoption
of international standard encryption aes from 2026.
Boan News, 2024. https://m.boannews.com/html/
detail.html?tab_type=1&idx=132764.

[29] YoungMin Kim and Byoungyoung Lee. Extending a
hand to attackers: browser privilege escalation attacks
via extensions. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 7055–7071, 2023.

[30] Donghwan Ko. North korea’s lazarus hacked 61
s. korean agencies: police. The Korea Times,
April 2023. https://www.koreatimes.co.kr/www/
nation/2024/05/103_349281.html.

[31] Igibek Koishybayev, Aleksandr Nahapetyan, Raima
Zachariah, Siddharth Muralee, Bradley Reaves, Alexan-
dros Kapravelos, and Aravind Machiry. Characterizing
the security of github ci workflows. In 31st USENIX
Security Symposium (USENIX Security 22), pages 2747–
2763, 2022.

[32] Korean Legislation Research Institute. Digital signa-
ture act. https://elaw.klri.re.kr/eng_service/
lawView.do?hseq=48669&lang=ENG.

[33] Jaemyoung Lee. An internet banking hacking and rob-
bery. donga, June 2005. https://www.donga.com/
en/article/all/20050604/241683/1.

[34] Kyungroul Lee and Kangbin Yim. Keyboard security:
A technological review. In 2011 Fifth International
Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing, pages 9–15. IEEE, 2011.

[35] Kyungroul Lee and Kangbin Yim. Vulnerability analysis
and security assessment of secure keyboard software to
prevent ps/2 interface keyboard sniffing. volume 23,
page 3501. MDPI, 2023.

[36] Xinyue Liang and Jun Ma. A study on screen log-
ging risks of secure keyboards of android financial apps.
In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages
101–111. IEEE, 2022.

[37] Elizabeth Lin, Igibek Koishybayev, Trevor Dunlap,
William Enck, and Alexandros Kapravelos. Untrustide:
Exploiting weaknesses in vs code extensions. In Sym-
posium on Network and Distributed System Security
(NDSS), 2024.

[38] Moxie Marlinspike. New tricks for defeating ssl in
practice. Black Hat DC, 2, 2009.

[39] Sam Meredith. Russia’s controversial ‘sovereign
internet’ law goes into force. CNBC, 2019.
https://www.cnbc.com/2019/11/01/russia-
controversial-sovereign-internet-law-
goes-into-force.html.

[40] Microsoft Edge Team. A break from the
past, part 2: Saying goodbye to activex, vb-
script, attachevent. May 2015. https:
//blogs.windows.com/msedgedev/2015/05/
06/a-break-from-the-past-part-2-saying-
goodbye-to-activex-vbscript-attachevent/.

[41] Byungho Min, Vijay Varadharajan, Udaya Tupakula, and
Michael Hitchens. Antivirus security: naked during up-
dates. Software: Practice and Experience, 44(10):1201–
1222, 2014.

[42] Ministry of the Interior and Safety. All that digital
gov. korea. Technical report, Government of South
Korea, 2022. https://www.innovation.go.kr/
en/bbs/resources/resDetail.do?bbsId=
B0000062&nttId=9518.

[43] Elizabeth Montalbano. Kazakh government will
intercept the nation’s https traffic. ITPro, 2019.
https://www.itpro.com/network-internet/
34051/kazakh-government-will-intercept-
the-nation-s-https-traffic.

[44] Mozilla. Mixed content blocking in fire-
fox. https://developer.mozilla.org/en-
US/docs/Web/Security/Mixed_content/
How_to_fix_website_with_mixed_content.

https://github.com/ergrelet/unlicense
https://github.com/ergrelet/unlicense
https://www.washingtonpost.com/world/asia_pacific/due-to-security-law-south-korea-is-stuck-with-internet-explorer-for-online-shopping/2013/11/03/ffd2528a-3eff-11e3-b028-de922d7a3f47_story.html
https://www.washingtonpost.com/world/asia_pacific/due-to-security-law-south-korea-is-stuck-with-internet-explorer-for-online-shopping/2013/11/03/ffd2528a-3eff-11e3-b028-de922d7a3f47_story.html
https://www.washingtonpost.com/world/asia_pacific/due-to-security-law-south-korea-is-stuck-with-internet-explorer-for-online-shopping/2013/11/03/ffd2528a-3eff-11e3-b028-de922d7a3f47_story.html
https://www.washingtonpost.com/world/asia_pacific/due-to-security-law-south-korea-is-stuck-with-internet-explorer-for-online-shopping/2013/11/03/ffd2528a-3eff-11e3-b028-de922d7a3f47_story.html
https://www.washingtonpost.com/world/asia_pacific/due-to-security-law-south-korea-is-stuck-with-internet-explorer-for-online-shopping/2013/11/03/ffd2528a-3eff-11e3-b028-de922d7a3f47_story.html
https://m.boannews.com/html/detail.html?tab_type=1&idx=132764
https://m.boannews.com/html/detail.html?tab_type=1&idx=132764
https://www.koreatimes.co.kr/www/nation/2024/05/103_349281.html
https://www.koreatimes.co.kr/www/nation/2024/05/103_349281.html
https://elaw.klri.re.kr/eng_service/lawView.do?hseq=48669&lang=ENG
https://elaw.klri.re.kr/eng_service/lawView.do?hseq=48669&lang=ENG
https://www.donga.com/en/article/all/20050604/241683/1
https://www.donga.com/en/article/all/20050604/241683/1
https://www.cnbc.com/2019/11/01/russia-controversial-sovereign-internet-law-goes-into-force.html
https://www.cnbc.com/2019/11/01/russia-controversial-sovereign-internet-law-goes-into-force.html
https://www.cnbc.com/2019/11/01/russia-controversial-sovereign-internet-law-goes-into-force.html
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://www.innovation.go.kr/en/bbs/resources/resDetail.do?bbsId=B0000062&nttId=9518
https://www.innovation.go.kr/en/bbs/resources/resDetail.do?bbsId=B0000062&nttId=9518
https://www.innovation.go.kr/en/bbs/resources/resDetail.do?bbsId=B0000062&nttId=9518
https://www.itpro.com/network-internet/34051/kazakh-government-will-intercept-the-nation-s-https-traffic
https://www.itpro.com/network-internet/34051/kazakh-government-will-intercept-the-nation-s-https-traffic
https://www.itpro.com/network-internet/34051/kazakh-government-will-intercept-the-nation-s-https-traffic
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content/How_to_fix_website_with_mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content/How_to_fix_website_with_mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content/How_to_fix_website_with_mixed_content


[45] Mozilla. Origin. https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Origin.

[46] Kyungdon Nam. Internet banking customers
up 8.5% in 2022. The Korea Herald, 2023.
https://www.koreaherald.com/view.php?ud=
20230322000824.

[47] BBC News. China defends ’green dam’ software. BBC
News, 2009. http://news.bbc.co.uk/2/hi/asia-
pacific/8091044.stm.

[48] Council of the European Union. The gen-
eral data protection regulation. https:
//www.consilium.europa.eu/en/policies/data-
protection/data-protection-regulation/,
2024.

[49] Oreans Technologies. Themida overview. https://
www.oreans.com/themida.php.

[50] Wladimir Palant. Ipinside: Korea’s mandatory spy-
ware, 2023. https://palant.info/2023/01/25/
ipinside-koreas-mandatory-spyware/.

[51] Wladimir Palant. South korea’s banking secu-
rity: Intermediate conclusions, 2023. https:
//palant.info/2023/02/20/south-koreas-
banking-security-intermediate-conclusions.

[52] Wladimir Palant. South korea’s online security dead end,
2023. https://palant.info/2023/01/02/south-
koreas-online-security-dead-end/.

[53] Wladimir Palant. Touchen nxkey: The keylog-
ging anti-keylogger solution, 2023. https:
//palant.info/2023/01/09/touchen-nxkey-
the-keylogging-anti-keylogger-solution/.

[54] Wladimir Palant. Veraport: Inside korea’s
dysfunctional application management, 2023.
https://palant.info/2023/03/06/veraport-
inside-koreas-dysfunctional-application-
management/.

[55] Wladimir Palant. Weakening tls protection, south ko-
rean style, 2023. https://palant.info/2023/02/
06/weakening-tls-protection-south-korean-
style/.

[56] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoud-
hury. Aflnet: A greybox fuzzer for network protocols.
2020.

[57] Reason Cybersecurity Ltd. What is user track-
ing? https://cyberpedia.reasonlabs.com/EN/
user%20tracking.html.

[58] Shreyas Reddy. North korean hackers target pop-
ular banking software in south korea: Nis. March
2023. https://www.nknews.org/2023/03/north-
korean-hackers-target-popular-banking-
software-in-south-korea-nis/.

[59] Simon Sharwood. South korea kills activex-based gov-
ernment digital certificate service. The Register, Decem-
ber 2020. https://www.theregister.com/2020/
12/10/south_korea_activex_certs_dead/.

[60] Mike Ter Louw, JinSoon Lim, and Venkat N Venkatakr-
ishnan. Enhancing web browser security against mal-
ware extensions. Journal in Computer Virology, 4:179–
195, 2008.

[61] TEUS. Hoaxeliminator 7.25, 2024. https://teus.me/
hoaxeliminator/HoaxEliminator7.25/.

[62] The Korea Times. Card firms to scrap ac-
tivex for convenience. The Korea Times, 2024.
https://www.koreatimes.co.kr/www/biz/2024/
07/602_175761.html.

[63] Webkit. Webusb api. https://github.com/WebKit/
standards-positions/issues/68, 2022.

A History of KSA
Table 7: Comparison of KSA 1.0 and KSA 2.0

KSA 1.0 KSA 2.0

Usage duration 2002 - 2015 2015 - Current
Framework ActiveX C / C++
Operation method ActiveX control Local server (EXE)
Mandating entity Law Policies of each company

This section explores the detailed background and evolu-
tion of KSA.
Introduction of Accredited Certificate and ActiveX. The
use of KSA began with the Digital Signature Act [32]. In
1997, the government of South Korea promoted the construc-
tion of e-government [42]. The government enacted the Digi-
tal Signature Act in 1999 as part of these efforts. This law en-
abled electronic signatures, implemented with public-key cer-
tificates issued by nationally designated certificate authorities,
to have the same legal effect as handwritten signatures. We
refer to these kinds of certificates as Accredited Certificate1

in South Korea. During the expansion of electronic signatures,
Accredited Certificate became legally mandatory in extensive

1In more detail, as of December 10, 2020, the legal status of
Accredited Certificate has been abolished and renamed to Joint Certificate
with the revision of the Digital Signature Act. These changes have allowed
for the issuance of various private certificates and enabled them to compete
on an equal footing with Accredited Certificate in the marketplace. However,
there is no difference regarding KSA, so in this paper, we refer to all as
Accredited Certificate.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin
https://www.koreaherald.com/view.php?ud=20230322000824
https://www.koreaherald.com/view.php?ud=20230322000824
http://news.bbc.co.uk/2/hi/asia-pacific/8091044.stm
http://news.bbc.co.uk/2/hi/asia-pacific/8091044.stm
https://www.consilium.europa.eu/en/policies/data-protection/data-protection-regulation/
https://www.consilium.europa.eu/en/policies/data-protection/data-protection-regulation/
https://www.consilium.europa.eu/en/policies/data-protection/data-protection-regulation/
https://www.oreans.com/themida.php
https://www.oreans.com/themida.php
https://palant.info/2023/01/25/ipinside-koreas-mandatory-spyware/
https://palant.info/2023/01/25/ipinside-koreas-mandatory-spyware/
https://palant.info/2023/02/20/south-koreas-banking-security-intermediate-conclusions
https://palant.info/2023/02/20/south-koreas-banking-security-intermediate-conclusions
https://palant.info/2023/02/20/south-koreas-banking-security-intermediate-conclusions
https://palant.info/2023/01/02/south-koreas-online-security-dead-end/
https://palant.info/2023/01/02/south-koreas-online-security-dead-end/
https://palant.info/2023/01/09/touchen-nxkey-the-keylogging-anti-keylogger-solution/
https://palant.info/2023/01/09/touchen-nxkey-the-keylogging-anti-keylogger-solution/
https://palant.info/2023/01/09/touchen-nxkey-the-keylogging-anti-keylogger-solution/
https://palant.info/2023/03/06/veraport-inside-koreas-dysfunctional-application-management/
https://palant.info/2023/03/06/veraport-inside-koreas-dysfunctional-application-management/
https://palant.info/2023/03/06/veraport-inside-koreas-dysfunctional-application-management/
https://palant.info/2023/02/06/weakening-tls-protection-south-korean-style/
https://palant.info/2023/02/06/weakening-tls-protection-south-korean-style/
https://palant.info/2023/02/06/weakening-tls-protection-south-korean-style/
https://cyberpedia.reasonlabs.com/EN/user%20tracking.html
https://cyberpedia.reasonlabs.com/EN/user%20tracking.html
https://www.nknews.org/2023/03/north-korean-hackers-target-popular-banking-software-in-south-korea-nis/
https://www.nknews.org/2023/03/north-korean-hackers-target-popular-banking-software-in-south-korea-nis/
https://www.nknews.org/2023/03/north-korean-hackers-target-popular-banking-software-in-south-korea-nis/
https://www.theregister.com/2020/12/10/south_korea_activex_certs_dead/
https://www.theregister.com/2020/12/10/south_korea_activex_certs_dead/
https://teus.me/hoaxeliminator/HoaxEliminator7.25/
https://teus.me/hoaxeliminator/HoaxEliminator7.25/
https://www.koreatimes.co.kr/www/biz/2024/07/602_175761.html
https://www.koreatimes.co.kr/www/biz/2024/07/602_175761.html
https://github.com/WebKit/standards-positions/issues/68
https://github.com/WebKit/standards-positions/issues/68


online domains such as Internet banking and online shop-
ping malls in 2002 [42]. At that time, Accredited Certificate
was stored on the hard disk, including their public key and
encrypted private key with a password. Consequently, they
required operations involving access to system resources (e.g.,
reading and writing files) through the web. This led the South
Korean government to adopt a method based on ActiveX2

technology, which is dependent on Internet Explorer (IE) [26],
due to high reliance on Microsoft’s browser. This technology
enables web pages to access system resources, such as files
and devices, which is not possible with ordinary web pages.
KSA 1.0: ActiveX-based security mechanisms. In 2005, an
incident led to the mandatory use of security mechanisms [33].
In 2024, a hacker in South Korea installed a keylogger and ob-
tained the password of Accredited Certificate. Subsequently,
the hacker successfully embezzled funds from the bank, mark-
ing South Korea’s first hacking incident in Internet banking. In
response to this event, the government amended the Electronic
Financial Supervisory Regulations in 2006 to enhance the se-
curity of Internet banking [22]. This regulation mandated
the installation of security programs, including intrusion pre-
vention systems and anti-keylogging software. Consequently,
various security companies developed and deployed ActiveX-
based solutions for Internet banking, which had already gained
popularity for certificate-based authentication.
Towards KSA 2.0. South Korea experienced signifi-
cant changes in its security mechanism in 2015. Firstly,
foreigners faced issues accessing South Korea’s Internet
banking services as they were unable to obtain a Ko-
rean Accredited Certificate [14]. As a result, the Korean
government decided to remove the mandatory use of
Accredited Certificate in Internet banking. Additionally, Mi-
crosoft introduced Microsoft Edge as the successor to Internet
Explorer, completely abandoning support for ActiveX [40].
Adapting to these changes, the South Korean government
initiated the phase-out of KSA 1.0, based on ActiveX [59].
As part of these changes, the legal obligation to install se-
curity programs or use Accredited Certificate was removed.
However, transforming a market that has been rigid under
government-led security policies for a long time into one that
allows for diversity is not easy. As a result, even though there
is no longer a legal obligation, almost all financial companies
and some public services have continued to compel users to
install security solutions based on their policies, which have
evolved into KSA 2.0.

B Survey Results Reflecting Users’ Opinions

Table 8 shows the results for all our survey questions.
User perception and experience with KSA installation
and usage. We asked participants who used banking and gov-

2ActiveX is a technology that allows web pages to execute native code
on the client side.

ernment services about their perception of how often KSA in-
stallation is mandated. For banking users, 50.53% believed it
was always mandatory, and 24.87% thought it was frequently
required. For government services, 42.78% perceived it as
always mandatory, and 28.34% believed it was frequently re-
quired. Only 1.06% and 1.07% of users, respectively, thought
installation was never mandated. Additionally, when asked if
they would have used KSA if it were not mandatory, 52.25%
indicated they would not have.

Despite findings that KSA does not significantly enhance
security and may pose threats, 5.75% of participants believe
KSA is very helpful, and 38.25% believe it is somewhat
helpful. Only 11.25% of participants responded that KSA is
not helpful at all. However, given that only 40.75% of users
reported understanding the functions provided by KSA, and
no participant could accurately identify the specific functions
offered in practice, it is questionable whether their responses
regarding the security benefits of KSA are based on a clear
understanding of the programs.

C Example Response from the Survey using
HoaxEliminator

Figure 8 is a sample response from the online survey partici-
pants. We blurred the product names to ensure confidentiality.

Hoax Eliminator (x64) v7.32.24.5

What Hoaxes are…

Found Hoaxes: 24

Ref. Download Date

Check Boot Camp and fingerprint device on next startup

Do not remove nProt*** Firew*** Co*** Dri***

Also remove any hidden hoaxes 
not listed above

Do not remove work-related programs

Manage work-related 
program

Re-read the list
Remove selected 

items
Remove all Exit

v3.6.8.4

Figure 8: Example screenshot provided by respondents

D Other Vulnerabilities in KSA

D.1 Anomaly Detection Bypass
The anomaly detection KSA actively collects a wide array
of information from internet banking users’ PCs, including
hardware specifications, real IP addresses, and proxy IPs, be-
fore transmitting this data to the bank’s server. This collected
data is crucial for identifying abnormal transactions, such as
blocking transactions originating from high-risk countries or
detecting unusual IP address changes. However, this design
suffers from a fundamental flaw stemming from an oversight
in the initial threat model setup. The vulnerability lies in the
system’s reliance on executable files installed on attackers’
PCs to gather data on potentially illicit transactions. The data
exchanged between KSA and the server is encrypted using



Table 8: Entire Survey Results
Question Options Response

Gender Male 52% (208)
Female 48% (192)

Age

20s 21.5% (86)
30s 26.75% (107)
40s 26.5% (106)
50s 16% (64)
60+ 9.25% (37)

Experience with
Banking & Government

Banking & Government 90.5% (362)
Banking Only 4% (16)
Government Only 3% (12)
None 2.5% (10)

Bank KSA
Installation Experience

Installed 97.35% (368)
Not Installed 0% (0)
Unsure 2.65% (10)

Government KSA
Installation Experience

Installed 94.39% (353)
Not Installed 0.27% (1)
Unsure 5.35% (20)

Top-tier Bank Usage Yes 100% (378)
No 0% (0)

Bank KSA
Enforcement Frequency

Always 50.53% (191)
Frequently 24.87% (94)
Occasionally 18.78% (71)
Rarely 4.76% (18)
Never 1.06% (4)

Government KSA
Enforcement Frequency

Always 42.78% (160)
Frequently 28.34% (106)
Occasionally 21.93% (82)
Rarely 5.88% (22)
Never 1.07% (4)

Willingness to Use
If Not Mandated

Yes 47.75% (191)
No 52.25% (209)

Uninstallation Methods

Windows Uninstaller 57% (228)
Built-in Uninstaller 8.75% (35)
Third-party Tool 6% (24)
Manual Deletion 4.5% (18)
Never Uninstalled 20.75% (83)
Other 0% (0)
Unsure 3% (12)

Understanding of
KSA Functions

Yes 40.75% (163)
No 59.25% (237)

Knowledge of
KSA Activation

Always Active 14.75% (59)
Active on Access 60.75% (243)
Active on Specific Access 20.75% (83)
Unsure 3.75% (15)

Perceived Helpfulness

Not Helpful 11.25% (45)
Slightly Helpful 17.75% (71)
Moderately Helpful 27% (108)
Somewhat Helpful 38.25% (153)
Very Helpful 5.75% (23)

asymmetric keys, ostensibly safeguarding its integrity from
unauthorized access. However, attackers can maliciously ma-
nipulate the data by hooking or binary patching it while it’s
still in plaintext before encryption within KSA’s internal
processes. To validate this vulnerability, we conducted exper-
iments by intercepting the plaintext data pre-encryption and
verifying the modifications post-decryption on a demo site.
Our findings underscore the system’s inability to effectively
block transactions originating from countries flagged as high-
risk by individual banks or to prevent attackers engaging in
abnormal transactions from concealing their identities.

D.2 Accredited Certificate Key Leakage
We also found that a certain KSA (PRODUCT B) has a vul-
nerability in its implementation that lead to the leakage of
private keys of Accredited Certificate. These certificates are
used for authentication, and thus, they can be used to identify
the user. Certificate management KSA includes an API for
copying certificates. With this API, users can copy local cer-
tificates to the browser’s storage. During this process, users
must input the certificate password for validation before trans-
mitting the certificate key pair to the browser. However, we
discovered that PRODUCT B transmits the certificate key pair
to the browser even if password validation fails. Although
this private key is encrypted with an additional password,
if we combine this vulnerability with the aforementioned
keylogging attack, we can steal the user’s private key and
impersonate the user. This allows us to bypass the certificate-
based authentication and gain full access to the user’s bank
account, leading to serious financial damage. Notably, such
data are originally inaccessible via the browser due to the
sandbox but become accessible through KSA.

D.3 Other Issues

Flaws in origin check. We also found several issues in ori-
gin checks in KSA. Firstly, some KSA verify the Origin just
once after booting up the computer, subsequently permitting
unrestricted access. This KSA operates with normal privi-
leges until they successfully verify the Origin, at which point
they load high-privileged software. In this case, attackers can
bypass Origin checks by redirecting to allowed web pages
and then proceed with the attack.

Secondly, some security vendors uses cryptography incor-
rectly for origin checks. In particular, KSA validates origin
by comparing it with a list of whitelisted origins. This list is
encrypted with a secret key known only to the security vendor.
Unfortunately, KSA uses plain RSA encryption using PKCS
#1 padding, which does not provide any integrity. As a result,
attackers can perform brute-force attacks (within a reasonable
time) to break this origin check.
Install management KSA. In this paper, we focused on
mandatory KSA, but in South Korea, there are many other
KSA, which can also lead to various security issues. One of
them is the install management KSA. To use services, users
must install multiple KSA, which can be challenging for those
unfamiliar with computers. Thus, there is another KSA called
an integrated install management KSA. This receives a list of
KSA from customer companies and installs them for users.
We also have analyzed this KSA and found that it does not
validate the code signatures of downloaded programs. As a
result, if the download server is compromised and malicious
code is installed, this KSA does not provide defense against it.
This vulnerability also demonstrates a lack of consideration
for security in the design of this KSA.


	Introduction
	Overview of KSA
	Design Goals
	Technical Issues
	Early Design: KSA 1.0
	Current Design: KSA 2.0
	Current Status of KSA 2.0

	Threat Models based on Access Control
	Access Control
	Threat Models
	Comparison with Browser Extensions

	Analysis
	Dataset
	Analysis Approach

	Security Problems in KSA
	Inconsistencies in Threat Models between KSA and Web Browser
	Disregard for the TLS Security Models
	Violation of Browser Sandbox
	Enabling User Tracking
	Responsible Disclosure

	User Study
	Online Survey Methodology
	Online Survey Results
	Desktop Analysis Study
	Study Limitations

	Discussion
	Lessons Learned
	Recommendations

	Related Work
	Conclusion
	History of KSA
	Survey Results Reflecting Users' Opinions
	Example Response from the Survey using HoaxEliminator
	Other Vulnerabilities in KSA
	Anomaly Detection Bypass
	Accredited Certificate Key Leakage
	Other Issues


