EE488 Introduction to Cryptography Engineering

Yongdae Kim

Digital Signature

Digital Signature

- Integrity
- Authentication
- Non-repudiation

Digital Signature with Appendix

- Schemes with appendix
 - Requires the message as input to verification algorithm
 - Rely on cryptographic hash functions rather than customized redundancy functions
 - DSA, ElGamal, Schnorr etc.

Desirable Properties

- □ For each $k \in \mathbb{R}$, S_{SKA} should be efficient to compute
- \square V_{PKA} should be efficient to compute
- □ It should be computationally infeasible for an entity other than the *signer* to find an $m \in M$ and an $s \in S$ such that $V_{PKA}(m', s*) = true$, where m' = h(m)

Types of Attacks

- □ Key-only: adversary knows only the public key
- Message attacks
 - Known-message attack: adversary has signatures for a set of messages which are known to the adversary but not chosen by him
 - Chosen-message attack: adversary obtains valid signatures from a chosen list of his choice (non adaptive)
 - Adaptive chosen-message attack: adversary can use the signer as an oracle

RSA Signature

- □ Key generation *n*, *p*, *q*, *e*, *d*
- □ Sign
 - ▶ Compute $s = h(m) d \mod n$
 - Signature: (m, s)
- Verify
 - ▶ Obtain authentic public key (n, e)
 - Verify h(m) = se mod n

DSA (US Standard)

- DSA Algorithm: key generation
 - select a prime q of 160 bits
 - 2. 1024 bit p with qlp-1
 - Select g' in Z_p^* , and $g = g^k = g'^{(p-1)/q} \mod p$, $g \ne 1$
 - 4. Select $1 \le x \le q-1$, compute $y=g^x \mod p$
 - 5. public key (p, q, g, y), private key x

DSA (cont)

- DSA signature generation
 - Select a random integer k, 0 < k < q</p>
 - Compute r=(g^k mod p) mod q
 - compute k⁻¹ mod q
 - ► Compute $s = k^{-1} * (h(m) + xr) \mod q$
 - signature = (r, s)
- DSA signature verification
 - Verify 0<r<q and 0<s<q, if not, invalid</p>
 - Compute w= s⁻¹mod q and h(m)
 - ► Compute $u_1=w*h(m) \mod q$, $u_2=r*w \mod q$
 - ► Compute $v = (g^{u_1}y^{u_2} \mod p) \mod q$
 - Valid iff v=r

DSA (cont)

- $H(m) = -xr + ks \pmod{q}$
- \square w h(m) + xrw = k mod q
- $u_1 + x u_2 = k \mod q$
- \Box (g^{u1} y^{u2} mod p) mod q = (g^k mod p) mod q
- Security of DSA
 - ▶ two distinct DL problems: Z_P*, cyclic subgroup order q
- Parameters:
 - → q~160bits, p 768~1Kb, p, q, g can be system wide

DSA (cont)

Performance

- Signature Generation
 - » One modular exponentiation
 - » Several 160-bit operations (if p is 1024 bits)
 - » The exponentiation can be precomputed
- Verification
 - » Two modular exponentiations

Comparison: RSA vs. DSA

- □ Speed
 - Signature generation
 - » RSA
 - » DSA
 - Signature verification
 - » RSA
 - » DSA
- Memory
 - ▶ RSA
 - DSA
- □ Which one do you want to use?

Blind signature scheme

- Chaum for Electronic Cash
- Sender A; Signer B
- B's RSA public and private key are as usual. k is a random secret integer chosen by A, satisfying 0 ≤ k < n</p>
- Protocol actions
 - b (blinding) A: comp m* = mke mod n, to B Note: (mke)d = mdk
 - ▶ (signing) B comp $s^* = (m^*)^d \mod n$, to A
 - ▶ (unblinding) A: computes $s = k^{-1}s^* \mod n$

Identification

Basis of identification

- Something known passwords, PINs, keys…
 a^*ehk3&(dAs
- Something possessed cards, handhelds…

Something inherent - biometrics

PINs and keys

- □ Long key on physical device (card), short PIN to remember
- □ PIN unlocks long key
- Need possession of both card and PIN
- Provides *two-level* security (or two-factor authentication)

Other password: graphical

Lamport's One Time Passwords

□ User has a secret w

- ▶ Using a OWF h, create the password sequence: w, h(w), h(h(w)), \cdots , $h^t(w)$
- ▶ Bob knows only h t(w)
- ▶ Password for *i*-th identification is: $w_i = h^{t-i}(w)$

Attacks

- Pre-play attack Eve intercepts an unused password and uses it later
- Make sure you're giving password to the right party
- Bob must be authenticated

Another one-time password

- Stores actual passwords on system side
- Alice and Bob share a password P
- □ Alice: generate *r*, send to Bob: (*r*, *h*(*r*, *P*))
- Check: Bob computes h(r, P), from given r, and local copy of P.
- Security
 - Works only if r is something that will only be accepted once (else replay attack!)
 - Any other?

Challenge-response authentication

- Alice is identified by a secret she possesses
 - Bob needs to know that Alice does indeed possess this secret
 - Alice provides response to a time-variant challenge
 - Response depends on both secret and challenge

Using

- Symmetric encryption
- One way functions
- Public key encryption
- Digital signatures

Challenge Response using SKE

- □ Alice and Bob share a key *K*
- Taxonomy
 - Unidirectional authentication using timestamps
 - Unidirectional authentication using random numbers
 - Mutual authentication using random numbers
- Unilateral authentication using timestamps
 - ▶ Alice \rightarrow Bob: $E_K(t_A, B)$
 - Bob decrypts and verified that timestamp is OK
 - ▶ Parameter B prevents replay of same message in B \rightarrow A direction

Challenge Response using SKE

- Unilateral authentication using random numbers
 - ▶ Bob \rightarrow Alice: r_b
 - ▶ Alice \rightarrow Bob: $E_K(r_b, B)$
 - \triangleright Bob checks to see if r_b is the one it sent out
 - » Also checks "B" prevents reflection attack
 - r_b must be non-repeating
- Mutual authentication using random numbers
 - ▶ Bob \rightarrow Alice: r_b
 - ▶ Alice \rightarrow Bob: $E_K(r_a, r_b, B)$
 - ▶ Bob \rightarrow Alice: $E_K(r_a, r_b)$
 - \rightarrow Alice checks that r_a , r_b are the ones used earlier

Challenge-response using OWF

- \square Instead of encryption, used keyed MAC h_K
- Check: compute MAC from known quantities, and check with message
- □ SKID3
 - ▶ Bob \rightarrow Alice: r_b
 - ▶ Alice \rightarrow Bob: r_a , $h_K(r_a, r_b, B)$
 - ▶ Bob \rightarrow Alice: $h_K(r_a, r_b, A)$

Challenge-response using PKE

- Mutual Authentication based on PK decryption
 - ▶ Alice \rightarrow Bob: $P_B(r_A, B)$
 - ▶ Bob \rightarrow Alice: $P_A(r_A, r_B)$
 - ▶ Alice \rightarrow Bob: r_B

Challenge-response using DS

- Timestamp-based
 - ▶ Alice \rightarrow Bob: cert_A, t_A, B, S_A(t_A, B)
 - Bob checks:
 - » Timestamp OK
 - » Identifier "B" is its own
 - » Signature is valid (after getting public key of Alice using certificate)
- Mutual Authentication using Signatures
 - ▶ Bob \rightarrow Alice: r_B
 - ▶ Alice → Bob: $cert_A$, r_A , B, $S_A(r_A, r_B, B)$
 - ▶ Bob → Alice: $cert_B$, A, $S_B(r_A, r_B, A)$

Questions?

Yongdae Kim

- ▶ email: yongdaek@kaist.ac.kr
- ▶ Home: http://syssec.kaist.ac.kr/~yongdaek
- ▶ Facebook: https://www.facebook.com/y0ngdaek
- ▶ Twitter: https://twitter.com/yongdaek
- ▶ Google "Yongdae Kim"

