EE488 Introduction to Cryptography Engineering

Yongdae Kim

Kerberos (scalable)

Combining PKE and DS

- Assurances of X.509 strong authentication
 - identity of A, and the token received by B was constructed by A
 - the token received by B was specifically intended for B;
 - the token received by B has "freshness"
 - the mutual secrecy of the transferred key.
- X.509 strong authentication
 - $D_A = (t_A, r_A, B, data_1, P_B(k_1)), D_B = (t_B, r_B, A, r_A, data_2, P_A(k_2)),$
 - \rightarrow A \rightarrow B: cert_A, D_A, S_A(D_A)
 - ▶ B \rightarrow A: cert_B, D_B, S_B(D_B)
- Comments
 - ▶ Since protocol does not specify inclusion of an identifier within the scope of the encryption P_B within D_A, one cannot guarantee that the signing party actually knows (or was the source of) plaintext key

Bilinear map and ID-based Encryption $E_{kyd@cs.umn.edu}(m)_{???}$

Definition

Bilinear Map

- \triangleright G₁ and G₂ be two abelian groups of prime order q.
- additive notation for G₁: aP denotes the P added a times
- ▶ the multiplicative notation for G₂
- ▶ A map $e : G_1 \times G_1 \rightarrow G_2$ is called an admissible bilinear map if
 - » Bilinearity For any P, Q \in G₁ and a, b \in Z_q, e(aP, bQ) = e(P, Q)^{ab}
 - » Non-degeneracy $e(P, Q) \neq 1$ for at least one pair of $P, Q \in G_1$.
 - » Efficiency

Hash functions

- ▶ h: $\{0, 1\}* \rightarrow \{0, 1\}^n$: A collision-free hash function
- ▶ $H*: G_2 \rightarrow Z_q:$ A collision-free full domain hash function

Crypto Assumptions

- Playing with Bilinear maps
 - \rightarrow e(aP, bQ) = e(P, abQ) = e(P, Q)ab
 - \rightarrow e(aP, Q) e(cP, Q) = e((a+c) P, Q)
- Cryptographic Problems
 - DLP is hard on G₁ and G₂
 - » finding a from (P, aP) is hard
 - » finding a from e(P, P)^a is hard
 - DDH is easy
 - » c = ab if and only if e(aP, bP) = e(cP, P).
 - BDHP is hard
 - » finding e(P, P)^{abc} from aP, bP, cP is hard.

3-Way DH Key Agreement

- □ Let P be public generator of G1
- □ Three public keys: aP (Alice), bP (Bob), cP (Carol)
- □ Group key $G_{ABC} = e(P,P)^{abc}$
 - Alice computes e(bP,cP)^a=e(P,P)^{abc}
 - Bob computes e(aP,cP)^b=e(P,P)^{abc}
 - Carol computes e(aP,bP)^c=e(P,P)^{abc}
- Properties
 - No communication
 - Others cannot compute group key: BDH problem

Identity-Based Encryption

- □ ID=name+date of birth
- Trusted Third Party: secret s in Zq
- □ Public params: generator P of G₁ and sP
- Secret Key Generation
 - ▶ ID_{Alice}: Alice → TTP
 - ▶ sH(ID_{Alice}): TTP → Alice
- Encryption: Bob encrypts for Alice
 - ▶ Pick random r in Z_a
 - Compute g=e(H(ID_{Alice}), sP))
 - Compute

```
» g^r = e(H(ID_{Alice}), sP))^r = e(H(ID_{Alice}), rsP)) = e(rH(ID_{Alice}), sP))
```

▶ Ciphertext: $\langle rP, c = m XOR H_2(g^r) \rangle$

IBE (Cont'd)

- Decryption by Alice
 - Compute g^r=e(H(ID_{Alice}), rsP))=e(sH(ID_{Alice}), rP))
 - Compute H₂(g^r)
 - \rightarrow m = c XOR H₂(g^r)
- Why others cannot decrypt?
 - Others know only H(ID_{Alice}) and rP
 - It is hard to determine r from rP (DLP)
 - » thus they cannot compute g^r as $e(H(ID_{Alice}), sP))^r$
 - They don't know s
 - » cannot compute $e(H(ID_{Alice}), srP))$
 - They don't know sH(ID_{Alice})
 - » cannot compute e(sH(ID_{Alice}), rP))

Discussion (PKI vs. Kerberos vs. IBE)

- □ On-line vs. off-line TTP
 - Implication?
- Non-reputation?
- Revocation?
- Scalability?
- □ Trust issue?

Threshold Crypto

Motivating examples

- - » A secret key K is encrypted by a public key of a group G.
 - » Each group member M_i knows a share SS_i of the group private key.
 - » When t members out of n group members get together, they can find the secret key.
- - » To be a member of an on-line community, you need signature from at least t board members out of total n board members.
 - » (t, n) threshold signature allows the member has a single certificate, which is computed from t partial certificates.

Conceptually...

Threshold Cryptography

- □ A group < threshold size t cannot determine the secret/perform the function
- A group >= threshold size t can always reconstruct the secret/perform the function
- Scheme will tolerate t-1 compromised/misbehaving parties
 - No information leakage when t-1 members get together!

(t,n) threshold scheme

- □ A polynomial *f*
 - degree t-1
- \square Dealer gives each party *i* secret $K_i = f(i)$
 - \rightarrow f(0) is the secret S.

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{t-1} x^{t-1} \pmod{p}$$

$$f(x) = \sum_{s=1}^{t} K_{\pi_B(s)} \prod_{j=1, j \neq s}^{t} \frac{(x - x_{\pi_B(j)})}{(x_{\pi_B(s)} - x_{\pi_B(j)})} \pmod{p}$$

⊳
$$S = \Sigma_{i=1}^t c_i K_i$$
 where $c_i = \prod_{1 \le j \le t, j \ne i} x_j / (x_j - x_i)$

(t, n) Threshold ElGamal

Encryption

- ightharpoonup generate random integer k and compute $r = g^k \mod p$
- ▶ compute $c = my^k \mod p$
- Ciphertext (r, c)

Decryption

- $\rightarrow m = c r^{-a} \mod p$
- Threshold decryption
 - Note that private key $a = \sum_{i=1}^{t} c_i K_i (c_i = \prod_{1 \le j \le t, j \ne i} x_j / (x_j x_i))$
 - So 1) t members compute r^{Ki} 2) raise it to c_i to get r^{ciKi} and 3) mutiply all of them to get r^a.
- □ Threshold DSA Signature is similar…

How to prevent break-ins

- As time goes by more and more board members could be corrupted (or compromised)!
- Change shares but not the secret
- $\neg f'(x) = f(x) + g(x)$ where g(0) = 0.
- \Box f'(0) = S still.
- Attacker who compromises t-1 within the refresh interval has no information.
 - SS_i will be changed to f'(i).

Questions?

■ Yongdae Kim

- ▶ email: yongdaek@kaist.ac.kr
- ▶ Home: http://syssec.kaist.ac.kr/~yongdaek
- ▶ Facebook: https://www.facebook.com/y0ngdaek
- ▶ Twitter: https://twitter.com/yongdaek
- ▶ Google "Yongdae Kim"

