- From Specification to Commercial Devices -

Yongdae Kim SysSec@KAIST

joint work with many of my students and collaborators

Cellular Security Publications (Selected)

5 NDSS, 4 Usenix Sec, 1 CCS, 1 S&P. 1 Mobicom, 1 EuroS&P, 1 TMC, 1 WISEC

- 1. Location leaks on the GSM Air Interface, NDSS'12
- 2. Gaining Control of Cellular Traffic Accounting by Spurious TCP Retransmission, NDSS' 14
- 3. Breaking and Fixing VoLTE: Exploiting Hidden Data Channels and Mis-implementations, CCS'15
- 4. When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks, EuroS&P'17
- 5. GUTI Reallocation Demystified: Cellular Location Tracking with Changing Temporary Identifier, NDSS'18
- 6. Peeking over the Cellular Walled Gardens: A Method for Closed Network Diagnosis, IEEE TMC'18
- 7. Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane, S&P'19
- 8. Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTE, Usenix Sec'19
- 9. BASESPEC: Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols, NDSS'21
- 10. DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices, Usenix Sec'22
- 11. Watching the Watchers: Practical Video Identification Attack in LTE Networks, Usenix Sec'22
- 12. Preventing SIM Box Fraud Using Device Fingerprinting, NDSS'23
- 13. LTESniffer: An Open-source LTE Downlink/Uplink Eavesdropper, ACM WISEC'23
- 14. BASECOMP: A Comparative Analysis for Integrity Protection in Cellular Baseband Software, Usenix Sec'23
- 15. Enabling Physical Localization of Uncooperative Cellular Devices, ACM Mobicom'24

Cellular Security Publications

- New Vulnerabilities/Attacks
 - Location/Identity leaks [NDSS'12, NDSS'18]
 - Accounting bypass [NDSS'14, EuroS&P'17]
 - Signal overshadowing [Usenix Sec'19]
 - Video fingerprinting [Usenix Sec'22]
 - Up-/Down-link sniffer [WISEC'23]
 - Physical Location Tracking [Mobicom'24]
- Test/Measurement
 - VoLTE [CCS'15]
 - Performance bug [TMC'18, Hotmobile'19]
 - Up-/Down-link negative Fuzzer [S&P'19]
 - Stateful Down-link Fuzzer [Usenix Sec'22]
 - UE Fingerprinting [NDSS'23]
- Static Analysis
 - Baseband Static Analysis [NDSS'21, Usenix Sec'23]

LTE Threat Model.

Security problems in baseband (UE)

* Secure specification does not necessarily lead to secure implementations

4G LTE Cellular Network Overview

KAIST

5G NSA vs. 5G SA

gNB (Next generation NodeB), eNB (Evolved Node B), MME (Mobility Management Entity), SPGW (Serving/Packet data network Gateway), HSS (Home Subscriber Server), IMS (IP Multimedia

Key Hierarchy

Source: ShareTechNote

Authentication

Finally, session keys are derived based on K_{ASME}

Testing

Why Implementation Vulnerabilities?

- New Generation (Technology) every 10 year

 - Generation Overlap, e.g. LTE CSFB, 5G NSA
- Cellular networks are different from each carrier, manufacturer, operator in terms of implementations and configurations
 - Therefore, vulnerabilities are different \rightarrow Need for global measurement
- Walled Garden
 - Carriers (smartphone vendors) don't talk to each other.
 - One vulnerability from a carrier will appear in other carriers.
- * Standards are not written in formal languages \rightarrow Hard for formal analysis
- * Leave many implementation details for vendors \rightarrow Bugs

VoLTE makes cellular network more complex

* Let's check potential attack vectors newly introduced in VoLTE

¹² Breaking and Fixing VoLTE: Exploiting Hidden Data Channels and Mis-implementations, CC

Free Data Channels		Free	Channel L			US-1	US	5-2	KR-1	KR-2	KR-3
Using VoLTE Protocol		SIP Tunneling				1	1	1	1	1	1
		Media Tunneling				1	1		1	1	1
Direct		Phone to Phone			✓	×		1	×	×	
Communication		Phone	to Internet 🗶 🗸			1	1	×	×		
Weak Point	Vulnerability		US-1	US-2	KR-1	KR-2	KR-3		Possible Attack		
	IMS No SIP Encryption No Voice Data Encryption No Authentication		0		6	0	0	Message manipulation			
			0	6	0	6	0	Wiretapping			
1115					0	0	•	Caller Spoofing			
	No Session Management		0	0	0		0	Denial of Service on Core Network		etwork	
4G-GW	IMS Bypassing		0				Caller Spoofing				
Phone	Phone Permission Mismatch		Vulnerable for all Android			Denial of Service on Call, Overbilling					

SysSec System Security Lab

🥌: Vulnerable 🙂: Secure

$\leftarrow \rightarrow$	C www.kb.cert.org/wwb/id/042167							
	Elevation Of Privilege Vulnerability in Telephony							
CERT Vulr	Software Engineerin A vulnerability in the Telephony component that can enable a local malicious application to pass unauthorized data to the restricted network interfaces, potentially impacting data charges. It could also prevent the device from receiving calls as well as allowing an attacker to control							
Advisory	Acknowledgements							
DATABA	We would like to thank these researchers for their contributions:							
	 Abhishek Arya, Oliver Chang and Martin Barbella, Google Chrome Security Team: CVE-2015-6608 							
	 Daniel Micay (daniel.micay@copperhead.co) at Copperhead Security: CVE-2015-6609 							
Vulne	 Dongkwan Kim of System Security Lab, KAIST (dkay@kaist.ac.kr): CVE-2015-6614 							
Voice	 Hongil Kim of System Security Lab, KAIST (hongilk@kaist.ac.kr): CVE-2015-6614 							
Original R	 Jack Tang of Trend Micro (@jacktang310): CVE-2015-6611 							
CWE-732	Peter Pi of Trend Micro: CVE-2015-6611							
CWE-284	 Natalie Silvanovich of Google Project Zero: CVE-2015-6608 							
CWE-287	 Qidan He (@flanker_hqd) and Wen Xu (@antlr7) from KeenTeam (@K33nTeam, http://k33nteam.org/): CVE-2015-661 							
CWE-384	Seven Shen of Trend Micro: CVE-2015-6610							

Worldwide Data Collection

Country	# of OP.	# of signalings	Country	# of OP.	# of signalings
U.S.A	3	763K	U.K.	1	41K
Austria	3	807K	Spain	2	51K
Belgium	3	372K	Netherlands	3	946K
Switzerland	3	559K	Japan	1	37K
Germany	4	841K	South Korea	3	1.7M
France	2	305K			

Data summary

of countries: 11
of operators: 28
of USIMs: 95
of voice calls: 52K
of signalings (control-plane message): 6.4M

Problem Diagnosis Overview

Identified Problems

Problem	Observation	Operator
LTE location update collision	Out-of-service about 11 sec.	US-II
Mismatch procedures	Delay of 3G detach. Worst case: 10.5 sec.	US-I, DE-I. DE-II, FR-I, FR-II
Allocation of incorrect frequency	Out-of-service 30 sec. and stuck in 3G for 100 sec.	DE-I
Redundant location update	Delay of LTE attach or call setup. Worst case: 6.5 sec.	US-I, DE-I, DE-III, FR-II
Redundant authentication	Delay of CSFB procedures for 0.4 sec.	FR-I, FR-II, DE-I, DE-III, FR-II
Security context sharing error	Out-of-service 1.5 sec.	ES-I
Core node handover misconfiguration	Delay of LTE attach (0.4 sec.)	US-II

LTEFuzz

Stateless Pre-authentication Up-/Down-link Negative Fuzzer

Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane, S&P'19

Test messages	Direction	Property 1-1	Property 1-2 (P)	Property 2-1 (I)	Property 2-2 (R)	Property 3	Affected component]
NAS								Index
Attach request (IMSI/GUTI)	UL	В	DoS	DoS	DoS	-	Core network (MME)	
Detach request (UE originating detach)	UL	-	DoS [1]	DoS	DoS	-	Core network (MME)	
Service request	UL	-	-	В	Spoofing	-	Core network (MME)	Specification
Tracking area update request	UL	-	DoS	DoS	FLU and DoS	-	Core network (MME)	problem
Uplink NAS transport	UL	-	SMS phishing and DoS	SMS phishing and DoS	SMS replay	-	Core network (MME)	
PDN connectivity request	UL	В	В	DoS	DoS	-	Core network (MME)	
PDN disconnect request	UL	_	В	DoS	selective DoS	-	Core network (MME)	MME vendors
Attach reject	DL	DoS [2]	DoS [3]	-	-	-	Baseband	
Authentication reject	DL	DoS [4]	-	-	-	-	Baseband	
Detach request (UE terminated detach)	DL	-	DoS [4]	-	-	-	Baseband	
EMM information	DL	-	Spoofing [5]	-	-	-	Baseband	Baseband
GUTI reallocation command	DL	-	В	В	ID Spoofing	-	Baseband	vendors
Identity request	DL	Info. leak [6]	В	В	Info. leak	-	Baseband	
Security mode command	DL	-	В	В	Location tracking [4]	-	Baseband	
Service reject	DL	-	DoS [3]	-	-	-	Baseband	Vuln From
Tracking area update reject	DL	-	DoS [3]	-	-	-	Baseband	difforent
RRC								
RRCConnectionRequest	UL	DoS and con. spoofing	-	-	-	-	Core network (eNB)	vendors
RRCConnectionSetupComplete	UL	Con. spoofing	-	-	-	-	Core network (eNB)	
MasterInformationBlock	DL	Spoofing	-	-	-	-	Baseband	B: Benign
Paging	DL	DoS [4] and Spoofing	-	-	-	-	Baseband	l ,
RRCConnectionReconfiguration	DL	-	MitM	DoS	В	-	Baseband	- : n/a
RRCConnectionReestablishment	DL	-	Con. spoofing	-	-	-	Baseband	
RRCConnectionReestablishmentReject	DL		DoS			-	Baseband	P: plain
RRCConnectionReject	DL	DoS	-	-	-	-	Baseband	
RRCConnectionRelease	DL	DoS [2]	-	-	-	-	Baseband	I: Invalid
RRCConnectionSetup	DL	Con. spoofing	-	-	-	-	Baseband	
SecurityModeCommand	DL	-	В	В	В	MitM	Baseband	
SystemInformationBlockType1	DL	Spoofing [4]	-	-	-	-	Baseband	R. Ronlay
SystemInformationBlockType 10/11	DL	Spoofing [4]	-	-	-	-	Baseband	
SystemInformationBlockType12	DL	Spoofing [4]	-	-	-		Baseband	SvsSec
UECapabilityEnquiry	DL	Info. leak	-	Info. leak	Info. leak	-	Baseband	System Security La

Attacks exploiting MME

- Result of dynamic testing against different MME types
 - Carrier 1: MME1, MME2, Carrier2: MME3 (MME1 & MME3: the same vendor)

Exploited	Implications							
NAS Messages	\mathbf{MME}_1	\mathbf{MME}_2	\mathbf{MME}_3					
Attach Request	DoS (P , I , R)	×	DoS (P , I , R)					
TAU Request	DoS (P, I, R)	×	DoS (I), False location update (R)					
Uplink NAS	DoS (P , I),	SMS phishing						
Transport	SMS phishing (R)	(P , I , R)	-					
PDN Connectivity	$D_{0}S(\mathbf{I})$	×	DoS, DosS (R)					
Request	$D03(\mathbf{I})$	^						
PDN Disconnect	$D_{0}S(\mathbf{I}) = D_{0}S(\mathbf{D})$	X	DosS (R)					
Request	$D03 (\mathbf{I}), D033 (\mathbf{K})$	×						
Detach Request	DoS (P , R)	DoS (P, I, R)	DoS (P, I, R)					
DosS: Denial of selective Service, P: Plain, I: Invalid MAC, R: Replay								

DoLTEst

Stateful In-depth Downlink-only Negative Fuzzer

DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices, Usenix Security'22

DoLTEst

Protocol	Message			State	;			Implication	Studied?
11010001	wiessage	No-SC	N-SC	NR-SC	REGI	All		Implication	Studicu:
	RRCConnectionReconfiguration	I1(2) [†]	, I1	M	2	-		AKA bypass (I1), Location leak (I1,M2)	[36], [52]
	RRCConnectionRelease	-	- M2 - Redirection attack (M2)		Redirection attack (M2)	[41]			
	SecurityModeCommand	I2†,1	I3	-		-		Eavesdropping (I2,I3)	[48]
RRC	UECapabilityEnquiry	-		M2		-		Information leak (M2)	[53]
	CounterCheck	M1		M2		-		Information leak (M2)	-
	UEInformationRequest	M1 [†]		M2		-		Location leak (M1,M2)	[52]
	DLInformationTransfer	-		M	2	-		-	-
	Identity Request	I2,I3		-		S1,S2(2)		Information leakage (S1,S2,I2,I3)	[43]
	Security Mode Command	I3		-		-	1	Eavesdropping (I3)	[48]
NAS	GUTI Reallocation Command		- S1 Identity spoofing (S1), Denial-of-Service		Identity spoofing (S1), Denial-of-Service (S1)	[36]			
INAS	EMM Information	-		S 1		-	S 3	NITZ spoofing (S1)	[45]
	Downlink NAS Transport	-			S 1	-		SMS phishing (S1)	[43]
	Attach Reject	S2,I2		-		S 1		Denial-of-Service (S1,S2,I2)	[52]
	Attach Accept			-		-		-	-

Detecting Undesired Context Transitions

- "If authentication procedure is not successful the MME shall maintain, if any, the EMM-context and EPS security context unchanged" [1, Section 4.4.4.3]
- Attack model: Fake UE
 - Identity spoofing: Impersonates legitimate UE
 - Can send invalid signaling messages to the network
 - Unauthenticated message

Mid-term DoS

OTA Memory Fuzzer

Downlink Baseband Memory Fuzzing

Conclusion (Testing)

- ✤ 5G OTA Downlink/Uplink testing/analysis
 - State-aware Negative Testing for implementation vulnerabilities
 - State-aware Testing for Undesired Context Transitions
 - State-aware Downlink/Uplink Memory Fuzzer

Attacks / Spec Vuln

Why Cellular Design Vulnerabilities Exist?

- New Generation (Technology) every 10 years
 - New Standards, Implementation, and Deployment → New vulnerabilities
 - Backward compatibility: e.g. supporting 2G
- ♦ Government > Carrier > Device vendors > Customers ☺
 - Or Government > GSMA > 3GPP > Customers
 - To be standardized, unanimous support is needed.
 - Too expensive, need insecurities, not a big deal, ...
- Complicated and huge standards
 - Multiple protocols co-work, but written in separate docs
- ✤ No visible attackers so far
- ✤ Papers presented, discussed in 3GPP, but forgotten later
 - What are patched/not patched? Why or why not?

Governments are exploiting it!

MOBILE IDENTITY CATCHING TRACKING AND LOCATION WIFI GRABBING TSCM CATCHING AND DIRECTION FINDING MS INTERCEPTION 4G, CDMA2000, 5G (NSA & SA) CAPABILITIES RIBER LOCATION TRACKING UNERABILITIES AND FIREWALL PACKET INSPECTION (DPI) ILE VIRTUAL NETWORK OPERATOR DATA ANALYSIS & INTERNET INTELLIGE

zzylogi

New Generation Vehicle Mounted IMSI Catcher

How can we secure 6G spec?

Cellular Metasploit Open-source Attacking Tools Exploiting Known or New Vulnerabilities

Private 5G?

- Definition: a dedicated cellular network deployed for a specific organization or enterprise
- ♦ Why private 5G?
 - Dedicated infrastructure, Enhanced security, Customizable, Improved reliability, Lower latency, Higher capacity
- Applications
 - Railroad, Medical, Critical Infrastructure, Defense, ...

Considering unpatched vulnerabilities and applications of private 5G, can private 5G provide sufficient security?

Location Privacy Leaks on GSM

- We have the victim's mobile phone number
- Can we detect if the victim is in/out of an area of interest?
 - Granularity? 100 km²? 1km²? Next door?
- No collaboration from service provider
 - i.e. How much information leaks from the HLR over broadcast messages?
- Attacks by passively listening
 - Paging channel
 - Random access channel

Location Privacy Leaks on GSM

Vulnerabilities in ID Management

- Deployed ID Managements at current ISPs are still vulnerable!
 - They changes GUTI value, But GUTI Pattern in Reallocation shows pattern
 - Fixed bytes in *GUTI Reallocation*

Fixed Bytes in GUTI Reallocation

✤ 19 operators have fixed bytes

Allocation Pattern	Operators
Assigning the same GUTI	BE-III, DE-II, FR-II, JP-I
Three bytes fixed	CH-II, DE-III, NL-I, NL-II
Two bytes fixed	BE-II, CH-I, CH-III, ES-I, FR-I, NL-III
One bytes fixed	AT-I, AT-II, AT-III, BE-I, DE-I

AT: Austria, BE: Belgium, CH: Switzerland, DE: Germany, ES: Spain, FR: France, JP: Japan, NL: Netherlands

Stress Testing

- ✤ Force the network to skip the GUTI reallocation
 - Perform experiments on US and Korean operators
 - Two US and two Korean operators

Operator	Weak Stress Testing	Hard Stress Testing
KR-I	0	0
KR-II	Х	0
US-I	Х	0
US-II	0	0

O: Network skips the *GUTI Reallocation* X: No noticeable change

Fake CMAS broadcast attack

Signal Overshadowing: SigOver Attack

- Signal injection attack exploits broadcast messages in LTE
 - Broadcast messages in LTE have never been integrity protected!
- Transmit time- and frequency-synchronized signal

Demonstration of Signal Injection attack

DATA RESTRICTIONS

LTESniffer

- Decoding LTE uplink-downlink control-data channels
 - Downlink: PDCCH, PDSCH (up to 256QAM)
 - Uplink: PUSCH (up to 256QAM)
- * Storing decoded packets in Pcap files for further analysis
- ✤ Supporting a security API with three functions
 - 1) Identity mapping2) IMSI collecting3) UE Capability Profiling
- Open-source*

Paper: LTESniffer: An Open-source LTE Downlink/Uplink Eavesdropper, Wisec 2023 * Open-source: https://github.com/SysSec-KAIS

Leaked Downlink Data Transmission Information

- eNB (base station) controls DL data transmission by broadcasting DCI
- Downlink Control Indicator (DCI)
 - Descriptions about DL data transmitted to the UE

This information is broadcast in plain text

- Data volume, modulation scheme, allocated resource blocks (RB)
- Distinguished by RNTI

Localization

Unauthorized Localization in Wild

- * Korean police plans to do unauthorized localization to defeat vishing
 - Track and seize illegal devices used in vishing fraud
 - Without control to UE and eNB
 - Using vehicle-mounted location tracker

Catching Voice Phisher's UE

Conclusion (Attack+Specification)

- Unpatched Design Vulnerabilities in 5G
 - 5G Sniffer, 5G Sigover, 5G FBS/MitM, ...
 - Cellular Metasploit → Used for IDS R&D
 - Attacks possible against private 5G application domains
 - Fixing them in 6G?
 - Developing applications utilizing design vulnerabilities (e.g. Location tracking)

Questions?

- Yongdae Kim
 - email: yongdaek@kaist.ac.kr
 - Home: <u>http://syssec.kaist.ac.kr/~yongdaek</u>
 - Facebook: <u>https://www.facebook.com/y0ngdaek</u>
 - Twitter: https://twitter.com/yongdaek
 - Google "Yongdae Kim"

This presentation was supported and funded by the Korean National Police Agency. (Project Name: Tracking and identifying devices and call traffic in voice phishing ecosystem / Project Number: PR10-03-020-22)

