EE488 Intro to Cryptography Engineering (and Cryptocurrency)

Yongdae Kim SysSec @ KAIST

Who's who?

Some movies

NERY AS JAMES BOND
MABALIM JOHANNA HARWOOD JUNEL BART
HARRY SALTZMAN ALBERT R. BROCCOLL TERENCE YOUNG
TECHNICOLOR
UNITED ARTISTS

System Security Lab

Introduction

- Class Information
 - Title: Intro to Cryptography Engineering
 - Course Number: EE 488
 - Lectures: MW 10:30Am 11:45Am, N1 112
- Has been experimental and challenging to teach this course…
 - Trying to learn how to teach this course well

Instructor, TA, Office Hours

□ Instructor

- Yongdae Kim
 - » Taught this class 16 times in KAIST and U of Minnesota
- Email: yongdaek(at)kaist.ac.kr, yongdaek(at)gmail.com
 Please include [ee488] in the subject of your mail
- Office: N26 201
- Office Hours: By Appointment

□ TA

- Beomseok Oh, Sangmin Woo, Kwangmin Kim
- email: ee488ta (at) syssec.kaist.ac.kr
- Office hours: By Appointment

Class web page, e-mail

- https://syssec.kaist.ac.kr/~yongdaek/courses/ee488/
- Read the page carefully and regularly!
 - Read the Syllabus carefully.
 - Check calendar.
- □ KLMS
- □ E-mail policy
 - ▶ Include [ee488] in the subject of your e-mail

Textbook

- Handbook of Applied Cryptography by Alfred J. Menezes,
 Paul C. Van Oorschot, Scott A. Vanstone (Editor), CRC
 Press, ISBN 0849385237, (October 16, 1996) Available online at http://www.cacr.math.uwaterloo.ca/hac/
- Some readings from various sources

Prerequisite

- Recommended
 - Discrete Mathematics, Data Structure or Algorithm and some math
- Quiz this Wednesday
 - To understand your mathematical knowledge
 - Nothing to do with your grade

Pre Quiz Wednesday

- Not part of your grade
- Prepare an empty paper
- □ Write down your name and email address
- Write your answers
- □ Take pictures and send them to ee488ta (at) syssec.kaist.ac.kr

Course Objectives

□ To learn

- mathematical background for cryptographic techniques
- basic cryptographic techniques for computer and network security
- how secure these techniques are
- how to use these techniques securely
- how to apply these techniques

Student Expectations

- Keep up with material
 - complete relevant readings before class
 - browse lecture slides
 - » Slides will be on-line the same day, after class
- Attend lectures
 - Understanding lecture is as important as reading before class.
- □ Feedback!!!!
- Read your email regularly. No excuses!
- Quizzes, Exams and homework:
 - ▶ LLM policy: You can use it for your homework.
 - You are encouraged to discuss with your friends.
 - But, write your own answer!
 - Violators will be prosecuted

Class Information

- Lecture format
 - Slides (will try to post before class, but not guaranteed)
- Zoom courtesy
 - Turn you camera on (if you don't have a specific problem)
 - Turn your mic off
- □ Browse the course Web site often
 - check it regularly
 - news and lecture notes (in PDF, PPT) will all be there
- Please read your email!

Grading

Distribution

- Midterm: 24%
- Final: 30%. (In-class)
- ▶ 6 assignments: 12 %. (6 x 3 %) Hard
- 4 quizzes: 24 %. (4 x 6 % each) Easy
- ▶ Attendance: 5% (1 absent = -1%)
- Participation: 5% (1 Good Q or A = +1%)

Policy

- 90.0% or above yields an A, 87.0% an A-, 83% = B+, 80% = B, 75% = B-, 70% = C+, 65% = C, 60% = C-, 55% = D, and less than 50% yields an F.
- A+ will be curved.

Assignment

- Submission instruction
 - Type up your homework by text/pdf file.
 - Submit it through KLMS
 - ▶ Due time: 10:20 AM
 - Check Calendar.
 - » First homework due: Mar 17
 - » First quiz: Mar 22
 - No grading for late Homework/missing quizzes
 - » If you cannot submit/take it, let me know in advance.
 - » We will post the answer sheet immediately.

Course Topics - tentative

- Mathematics! Mathematics! Mathematics!
- Symmetric Ciphers
- Hash Functions and Integrity
- Public Key Encryption
- Digital Signatures
- Identification and Authentication
- Key Establishment and Management
- Cryptocurrency
 - Bitcoin, Ethereum, Consensus Algorithms

You may not be able to…

- □ Become expert (needs time…)
- Learn everything
- Break well-known encryption algorithm
- Wireless security, P2P security, …
- □ You may be able to (I hope)
 - be interested in security
 - have basic background needed to understand cryptography (number theory, ···)
 - Know technologies behind cryptocurrency

Math, Math, Math!

Divisibility

- \Box Z = {···· -2, -1, 0, 1, 2, ···}
- □ Let a, b be integers. Then a *divides* b (a|b)
 - ▶ if \exists c such that b = ac.
 - ▶ 16 | 32? 16 | 0?

Proof Techniques

- \Box p \Rightarrow q
 - When is this true?
 - How do you prove this?
 - What is this equivalent to?
 - Direct Proof
 - » Show that the square of an even number is an even number
 - Rephrased: if n is even, then n² is even
 - » Proof: Assume n is even
 - \Rightarrow Thus, n = 2k, for some k (definition of even numbers)
 - \Rightarrow n² = (2k)² = 4k² = 2(2k²)
 - \Rightarrow As n² is 2 times an integer, n² is thus even
 - Indirect Proof (Contrapositive)
 - » If n² is an odd integer then n is an odd integer
 - This is equivalent to: if n is even, then n² is even

Proof Techniques

- ▶ If n is an integer and n³+5 is odd, then n is even
 - » Which one do we need to use?
- Proof by contradiction
 - Theorem (by Euclid): There are infinitely many prime numbers.
- Proof by cases
 - ▶ Prove that $\lfloor n/2 \rfloor \cdot \lceil n/2 \rceil = \lfloor n^2/4 \rfloor$ for all integer n.
- □ Existence Proof: $\exists x P(x)$
 - Constructive: Find a specific value of c for which P(c) is true
 a square exists that is the sum of two other squares.
 - Nonconstructive: Show that such a c exists, but don't actually find it
 - » We will see examples.

Proof Techniques

- □ Universal Proof: ∀ x P(x)
- Uniqueness Proof
 - ▶ If the real number equation 5x+3=a has a solution then it is unique
- Induction
 - Quiz
- □ Prove or disprove that n^2 -79n+1601 is a prime whenever n is a positive integer

Forwards vs. Backwards reasoning

□ Example: Prove that $(a+b)/2>\sqrt{(ab)}$ when a+b, a>0, and b>0

$$(Pf)$$
 (a - b)² > 0

- \rightarrow a² + 2 ab + b² 4 ab > 0
- \rightarrow (a+b)² > 4ab
- \rightarrow ((a+b)/2)² > ab
- → $(a+b)/2 > \sqrt{(ab)}$

Divisibility

- □ Let a, b, c be integers.
 - a|a
 We need to find c such that a = ac.
 c = 1.
 - if a|b and b|c, then a|c
 Assume a | b and b | c.
 - $\Rightarrow \exists$ integers k_1 , k_2 such that $b = k_1 a$ and $c = k_2 b$
 - \Rightarrow c = k_1k_2 a. Since $k_1 \cdot k_2$ is an integer, a | c.
 - » Which proof technique we used?
 - ▶ if alb and alc, then al(bx+cy) for all $x,y \in Z$
 - \rightarrow if alb and bla, then a = \pm b

Quotient and remainder

□ Let a, b be integers and a>0. Then, there exist unique integers q and r such that

$$b = aq + r$$
, $0 \le r \le a$.

Proof) Assume that $b \ge 0$. It is clear that \exists n such that n a > b. Let q + 1 be the least such n. Then (q+1) a > b $\ge q$ a.

Let r=b-qa. Then, b>qa implies r=b-qa>0. Finally (q+1)a=qa+a>b implies that r=b-qa<a.

To show the uniqueness, suppose $\exists q_1$ and r_1 such that $b=qa+r=q_1a+r_1$, $0 \le r, r_1 < a$. Assume $r \ge r_1$. Then $0 \ge r - r_1 < a$, and $(q-q_1)a=r-r_1$. Then $a|r-r_1$. If $r-r_1>0$, $a \le r-r_1$ (since $a|r-r_1$). (*) Therefore, $r=r_1$. Then $q = q_1$.

Exercise

□ If a, b, c are nonzero integers, prove that ac | bc if and only if a | b.

Show that for any integer n, n² cannot be of the form 3 k
 + 2.

GCD, LCM

- c is a **common divisor** of a and b if cla and clb
- d = gcd(a,b) is the largest positive integer that divides both a and b, more formally
 - \rightarrow d > 0
 - d | a and d | b
 - ▶ e | a and e | b implies e | d
- Icm(a,b) is the smallest positive integer divisible by both a and b
- \Box lcm(a,b)=a*b/gcd(a,b)
- a and b are said to be *relatively prime* or *coprime* if gcd(a,b)=1

Existence of GCD

- Let a and b be integers (a or b is not zero). Then d = gcd
 (a, b) exist.
- Proof (non-constructive proof)

Let $S = \{ax + by \mid x, y \in Z\}$. Let d be the least positive integer in S. Then $d = ax_0 + by_0$.

Claim: d = gcd(a, b)

- i) d>0
- iii) ela and elb, then eld.
- ii) dla, dlb

Let a = dq+r, $0 \le r < d$. Then $r = a - qd = a - q(ax_0+by_0) = a$ $(1-qx_0) - qby_0$. Clearly $r \in S$. And r < d. Since d is the least positive integer in S, r = 0. Therefore, a = dq.

Proof (constructive proof) next page!

Existence of GCD (cnt.)

Constructive proof (Extended Eucledean Algorithm)

□ Constructive proof (Extended Eucledean Algorithm)
$$b = q_1 a + r_1, \quad 0 < r_1 < a$$

$$a = q_2 r_1 + r_2, \quad 0 < r_2 < r_1$$

$$r_1 = q_3 r_2 + r_3, \quad 0 < r_3 < r_2$$
...
$$r_{n-2} = q_n r_{n-1} + r_n, \quad 0 < r_n < r_{n-1}$$

$$r_{n-1} = q_{n+1} r_n, \quad (no \ remainder)$$
Since the remainder decreases and it is an integer, it will be 0 eventually.
$$Claim) \ r_n = gcd \ (a, b)$$

$$i) \ r_n > 0$$

$$ii) \ r_n \mid a, r_n \mid b$$

$$iii) \ e \mid a, e \mid b \Rightarrow e \mid r_n.$$

Example

$$51329 = 21\ 2437 + 1 = 5 - 2\ 2$$

 152 = 5 - 2 (152 - 30 * 5)
 $2437 = 16\ 152 + 5$ = -2 152 + 61 5
 $152 = 30\ 5 + 2$ = -2 152 + 61 (2437 - 16)
 $5 = 2\ 2 + 1$ 152)
 $2 = 2\ 1 + 0$ = 61 2437 - 978 152
 $= 61\ 2437 - 978\ (51329 - 21\ 2437)$
 $= -978\ 51329 + 20599$
 2437

Summary

- \Box d = gcd (a, b) $\Rightarrow \exists x$, y such that d = a x + b y.
- \Box gcd (a, 0) = ?

- Euclidean Algorithm to compute GCD
 - ▶ Input: a, b with a \geq b
 - Output: gcd (a, b)
 - Algorithm
 - » while $b \neq 0$
 - Set $r\leftarrow a \mod b$, $a \leftarrow b$, $b \leftarrow r$
 - » return (a)
 - Complexity?

A Few more useful stuffs

Let d = gcd (a, b)
 pcd (a/d, b/d) = ?
 a | bc and d = 1 ⇒ ?
 a | bc ⇒ (a/d) | c
 gcd (ma, mb) = md if m > 0
 gcd (n, n+1) ?
 gcd (a, b) = gcd (a + kb, b) ?

Prime

- \neg p \geq 2 is prime if
 - \rightarrow a | p \Rightarrow a = \pm 1 or \pm p
 - Hereafter, p is prime
- \Box [Euclid] p | ab \Rightarrow p | a or p | b
- [Euclid] There are infinite number of primes.
- Prime number theorem:
 - ▶ let $\pi(x)$ denote the number of prime numbers $\leq x$, then $\lim_{x\to x} \frac{\pi(x)}{(x/\ln x)} = 1$
- □ **Euler phi function**: For $n \ge 1$, let $\phi(n)$ denote the number of integers in [1, n] which are relatively prime to n.
 - ▶ if p is a prime then ϕ (p)=p-1
 - ▶ if p is a prime, then ϕ (p^r) = p^{r-1}(p-1).
 - ▶ f is multiplicative. That is if gcd(m,n)=1 then $\phi(m*n)=\phi(n)*\phi(m)$

Fundamental theorem of arithmetic

Every positive integer greater than 1 can be uniquely written as a prime or as the product of two or more primes where the prime factors are written in order of non-decreasing size

Examples

```
\rightarrow 100 = 2 * 2 * 5 * 5
```

$$\rightarrow$$
 182 = 2 * 7 * 13

$$\triangleright$$
 29820 = 2 * 2 * 3 * 5 * 7 * 71

Pairwise relative prime

- \square A set of integers $a_1, a_2, \cdots a_n$ are pairwise relatively prime if, for all pairs of numbers, they are relatively prime
 - Formally: The integers a_1 , a_2 , \cdots a_n are pairwise relatively prime if $gcd(a_i, a_j) = 1$ whenever $1 \le i < j \le n$.
- Example: are 10, 17, and 21 pairwise relatively prime?
 - \rightarrow gcd(10,17) = 1, gcd (17, 21) = 1, and gcd (21, 10) = 1
 - Thus, they are pairwise relatively prime
- □ Example: are 10, 19, and 24 pairwise relatively prime?
 - ▶ Since $gcd(10,24) \neq 1$, they are not

Modular arithmetic

- □ If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a-b
 - ▶ Notation: $a \equiv b \pmod{m}$
 - ▶ Rephrased: m | a-b
 - ▶ Rephrased: $a \mod m = b$
 - ▶ If they are not congruent: $a \not\equiv b \pmod{m}$
- □ Example: Is 17 congruent to 5 modulo 6?
 - ▶ Rephrased: $17 \equiv 5 \pmod{6}$
 - As 6 divides 17-5, they are congruent
- □ Example: Is 24 congruent to 14 modulo 6?
 - Rephrased: $24 \equiv 14 \pmod{6}$
 - ▶ As 6 does not divide 24-14 = 10, they are not congruent

Example (World of mod n)

•••	-2n	-n	0	n	2n	3n	4n	 0
	-2n+1	-n+1	1	n+1	2n+1	3n+1	4n+1	 1
•••	-2n+2	-n+2	2	n+2	2n+2	3n+2	4n+2	 2
•••	•••			•••				
	-n-1	-1	n-1	2n-1	3n-1	4n-1	5n-1	 n-1

More on congruence

- \Box Every integer is either of the form 4k, 4k+1, 4k+2, 4k+3.
- Every integer is either of the form 0 mod 4, 1 mod 4, 2 mod 4, 3 mod 4
- $y^2 x^2 2 \equiv 0 \mod 4$ has no solution.
- □ Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$
- Example: Is 17 congruent to 5 modulo 6?
 - ▶ Rephrased: does $17 \equiv 5 \pmod{6}$?
 - ▶ 17 mod 6 = 5 mod 6
- □ Example: Is 24 congruent to 14 modulo 6?
 - ▶ Rephrased: $24 \equiv 14 \pmod{6}$
 - ≥ 24 mod 6 ≠ 14 mod 6

Even more on congruence

- □ Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km
- Example: 17 and 5 are congruent modulo 6
 - \rightarrow 17 = 5 + 2*6
 - 5 = 17 2 * 6
- □ Let a, b, c be integers.
 - \Rightarrow a = a mod n
 - $a ≡ b \mod n \Rightarrow b ≡ a \mod n$
 - ▶ $a \equiv b \mod n$ and $b \equiv c \mod n \Rightarrow a \equiv c \mod n$.

Even even more on congruence

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a+c \equiv (b+d) \pmod{m}$ and $ac \equiv bd \pmod{m}$

Example

- ▶ We know that $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$
- ▶ Thus, $7+11 \equiv (2+1) \pmod{5}$, or $18 \equiv 3 \pmod{5}$
- ▶ Thus, $7*11 \equiv 2*1 \pmod{5}$, or $77 \equiv 2 \pmod{5}$
- □ An integer x is congruent to one and only one of the integers 0, 1, 2, …, n-1 mod n.

The Caesar cipher

- Julius Caesar used this to encrypt messages
- □ A function f to encrypt a letter is defined as: $f(p) = (p + 3) \mod 26$
 - \triangleright Where p is a letter (0 is A, 1 is B, 25 is Z, etc.)
- □ Decryption: $f^{-1}(p) = (p-3) \mod 26$
- □ This is called a substitution cipher
 - You are substituting one letter with another

Arithmetic Inverse

- □ Let a be an integer. a* is an arithmetic inverse of a modulo n, if a* = 1 mod n.
- □ Suppose that gcd(a, n) = 1. Then a has an arithmetic inverse modulo n.
- □ Suppose gcd(a, n) = 1. Then $ax \equiv ay \mod n \Rightarrow x \equiv y \mod n$.
- $x^2+1 \equiv 0 \mod 8$ has no solution.

Equations

 $2x ≡ 5 \mod 3$ $⇒ 2x ≡ 2 \mod 3$ $⇒ 2* 2 x ≡ 2* 2 \mod 3$ $⇒ x ≡ 1 \mod 3 \quad (2* ≡ 2 \mod 3)$ $3x ≡ 7 \mod 5$ $⇒ 3x ≡ 2 \mod 5$ $⇒ 3* 3x ≡ 3* 2 \mod 5$ $⇒ x ≡ 4 \mod 5 \quad (3* ≡ 2 \mod 5)$

Summary on Congruence

- □ Notation: $a \equiv b \pmod{m}$
 - ▶ Rephrased: m | a-b
 - ▶ Rephrased: $a \mod m = b$
 - ▶ Rephrased: $a = b + mk_1$ for some integer k_1
- Every integer is either of the form
 - \rightarrow 4k, 4k+1, 4k+2, or 4k+3.
 - → 0 mod 4, 1 mod 4, 2 mod 4, or 3 mod 4
- □ If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then
 - $b a+c \equiv (b+d) \pmod{m}$
 - $\rightarrow ac \equiv bd \pmod{m}$
- □ Suppose that gcd(a, n) = 1. Then a has an arithmetic inverse a^* modulo n, i.e. $a a^* \equiv a^*$ $a \equiv 1 \mod n$.

Cute Exercise

□ A number is divisible by 3, if sum of the all digits is divisible by 3. Why does this work?

Z_n , Z_n *

- \square $Z_n = \{0, 1, 2, 3, \dots, n-1\}$
- $\Box Z_n^* = \{x \mid x \in Z_n \text{ and } gcd(x, n) = 1\}.$
- \square Z₆ = {0, 1, 2, 3, 4, 5}
- $\Box Z_6 * = \{1, 5\}$
- □ For a set S, |S| means the number of element in S.
- $\Box |Z_n| = n$
- \Box $|Z_n *| = \phi(n)$

Cardinality

□ For finite (only) sets, cardinality is the number of elements in the set

For finite and infinite sets, two sets A and B have the same cardinality if there is a one-to-one correspondence from A to B

Counting

Multiplication rule

- ▶ If there are n_1 ways to do task1, and n_2 ways to do task2
 - » Then there are $n_1 n_2$ ways to do both tasks in sequence.
- Example
 - » There are 18 math majors and 325 CS majors
 - » How many ways are there to pick one math major and one CS major?

Addition rule

- ▶ If there are n_1 ways to do task1, and n_2 ways to do task2
 - » If these tasks can be done at the same time, then...
 - » Then there are n_1+n_2 ways to do one of the two tasks
- How many ways are there to pick one math major or one CS major?
- □ The inclusion-exclusion principle
 - $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$

Permutation, Combination

- □ An r-permutation is an ordered arrangement of r elements of the set: P(n, r), $_{n}P_{r}$
 - How many poker hands (with ordering)?
 - P(n, r) = n (n-1)(n-2)···(n-r+1)= n! / (n-r)!
- Combination: When order does not matter…
 - In poker, the following two hands are equivalent:

```
» A ◆, 5 ♥, 7 ♣, 10 ♠, K ♠
» K ♠, 10 ♠, 7 ♣, 5 ♥, A ◆
```

▶ The number of r-combinations of a set with n elements, where n is non-negative and $0 \le r \le n$ is:

```
C(n, r) = n! / (r! (n-r)!)
```

- (χ+y)ⁿ

Probability definition

- □ The probability of an event occurring is:
 - p(E) = |E| / |S|
 - Where E is the set of desired events (outcomes)
 - Where S is the set of all possible events (outcomes)
 - ▶ Note that $0 \le |E| \le |S|$
 - » Thus, the probability will always between 0 and 1
 - » An event that will never happen has probability 0
 - » An event that will always happen has probability 1

What's behind door number three?

- □ The Monty Hall problem paradox
 - Consider a game show where a prize (a car) is behind one of three doors
 - The other two doors do not have prizes (goats instead)
 - After picking one of the doors, the host (Monty Hall) opens a different door to show you that the door he opened is not the prize
 - Do you change your decision?
- Your initial probability to win (i.e. pick the right door) is 1/3
- What is your chance of winning if you change your choice after Monty opens a wrong door?
- After Monty opens a wrong door, if you change your choice, your chance of winning is 2/3
 - Thus, your chance of winning doubles if you change
 - ▶ Huh?

Assigning Probability

- □ S: Sample space
- \neg p(s): probability that s happens.
 - \triangleright 0 ≤ p(s) ≤ 1 for each s ∈ S
 - $\triangleright \quad \sum_{s \in S} p(s) = 1$
- The function p is called probability distribution
- Example
 - ▶ Fair coin: p(H) = 1/2, p(T) = 1/2
 - Biased coin where heads comes up twice as often as tail

$$p(H) = 2 p(T)$$

»
$$p(H) + p(T) = 1 \Rightarrow 3 p(T) = 1 \Rightarrow p(T) = 1/3, p(H) = 2/3$$

More...

Uniform distribution

▶ Each element $s \in S$ (|S| = n) is assigned with the probability 1/n.

□ Random

The experiment of selecting an element from a sample space with uniform distribution.

□ Probability of the event E

$$\triangleright p(E) = \sum_{S \in F} p(S).$$

Example

- A die is biased so that 3 appears twice as often as others
 » p(1) = p(2) = p(4) = p(5) = p(6) = 1/7, p(3) = 2/7
- p(O) where O is the event that an odd number appears p(O) = p(1) + p(3) + p(5) = 4/7.

Combination of Events

□ Still

```
p(E^c) = 1 - p(E)
p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)
p(E_1 \cap E_2) = \emptyset \Rightarrow p(E_1 \cup E_2) = p(E_1) + p(E_2)
p(E_1 \cap E_2) = \emptyset \Rightarrow p(E_1 \cup E_2) = p(E_1) + p(E_2)
p(E_1 \cap E_2) \Rightarrow p(E_1 \cap E_2) \Rightarrow p(E_1) = \Sigma_i p(E_i)
```


Conditional Probability

□ Flip coin 3 times

- all eight possibility are equally likely.
- Suppose we know that the first coin was tail (Event F). What is the probability that we have odd number of tails (Event E)?
 - » Only four cases: TTT, TTH, THT, THH
 - \sim So 2/4 = 1/2.

Conditional probability of E given F

- We need to use F as the sample space
- ▶ For the outcome of E to occur, the outcome must belong to $E \cap F$.
- $p(E \mid F) = p(E \cap F) / p(F).$

Bernoulli Trials & Binomial Distribution

- Beronoulli trial
 - an experiment with only two possible outcomes
 - ▶ i.e. 0 (failure) and 1 (success).
 - If p is the probability of success and q is the probability of failure, p
 + q = 1.
- □ A biased coin with probability of heads 2/3
 - What is the probability that four heads up out of 7 trials?

Random Variable

- A random variable is a function from the sample space of an experiment to the set of real numbers.
 - Random variable assigns a real number to each possible outcome.
 - Random variable is not variable! not random!
- Example: three times coin flipping
 - Let X(t) be the random variable that equals the number of heads that appear when t is the outcome
 - X(HHH) = 3, X(THH) = X(HTH) = X(HHT) = 2, X(TTH) = X(THT) = X(HTT) = 1, X(TTT) = 0
- □ The distribution of a random variable X on a sample space S is the set of pairs (r, p(X=r)) for all $r \in X(S)$
 - ▶ where p(X=r) is the probability that X takes value r.
 - p(X=3) = 1/8, p(X=2) = 3/8, p(X=1) = 3/8, p(X=0) = 1/8

Expected Value

□ The expected value of the random variable X(s) on the sample space S is equal to

$$E(X) = \sum_{S \in S} p(S) X(S)$$

- Expected value of a Die
 - X is the number that comes up when a die is rolled.
 - What is the expected value of X?
 - \rightarrow E(X) = 1/6 1 + 1/6 2 + 1/6 3 + ··· 1/6 6 = 21/6 = 7/2
- Three times coin flipping example
 - X: number of heads
 - $E(X) = 1/8 \ 3 + 3/8 \ 2 + 3/8 \ 1 + 1/8 \ 0 = 12/8 = 3/2$

Questions?

■ Yongdae Kim

- ▶ email: yongdaek@kaist.ac.kr
- ▶ Home: http://syssec.kaist.ac.kr/~yongdaek
- ▶ Facebook: https://www.facebook.com/y0ngdaek
- ▶ Twitter: https://twitter.com/yongdaek
- ▶ Google "Yongdae Kim"

