EE 488 Introduction to Cryptography Engineering

Yongdae Kim

Homework & Quiz schedules

- Homework due dates
 - → 3/12 (note: due is updated)
 - → 3/26, 4/9, 5/7, 5/21, 6/4
 - Submit at least 10 minutes before each class
- Quiz
 - ▶ 3/17, 3/31, 5/12, 5/26
 - In-class quiz
- You can also check in course website

Math, Math, Math!

Prime

- \neg p \geq 2 is prime if
 - \rightarrow a | p \Rightarrow a = \pm 1 or \pm p
 - Hereafter, p is prime
- \Box [Euclid] p | ab \Rightarrow p | a or p | b
- [Euclid] There are infinite number of primes.
- Prime number theorem:
 - ▶ let $\pi(x)$ denote the number of prime numbers $\leq x$, then $\lim_{x\to x} \frac{\pi(x)}{(x/\ln x)} = 1$
- □ **Euler phi function**: For $n \ge 1$, let $\phi(n)$ denote the number of integers in [1, n] which are relatively prime to n.
 - ▶ if p is a prime then ϕ (p)=p-1
 - ▶ if p is a prime, then ϕ (p^r) = p^{r-1}(p-1).
 - ▶ f is multiplicative. That is if gcd(m,n)=1 then $\phi(m*n)=\phi(n)*\phi(m)$

Fundamental theorem of arithmetic

□ Every positive integer greater than 1 can be uniquely written as a prime or as the product of two or more primes where the prime factors are written in order of non-decreasing size

Examples

- \rightarrow 100 = 2 * 2 * 5 * 5
- \triangleright 182 = 2 * 7 * 13
- \triangleright 29820 = 2 * 2 * 3 * 5 * 7 * 71

Pairwise relative prime

- $lue{}$ A set of integers $a_1, a_2, \cdots a_n$ are pairwise relatively prime if, for all pairs of numbers, they are relatively prime
 - Formally: The integers a_1 , a_2 , \cdots a_n are pairwise relatively prime if $gcd(a_i, a_i) = 1$ whenever $1 \le i < j \le n$.
- Example: are 10, 17, and 21 pairwise relatively prime?
 - \rightarrow gcd(10,17) = 1, gcd (17, 21) = 1, and gcd (21, 10) = 1
 - Thus, they are pairwise relatively prime
- □ Example: are 10, 19, and 24 pairwise relatively prime?
 - ▶ Since $gcd(10,24) \neq 1$, they are not

Modular arithmetic

- □ If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a-b
 - ▶ Notation: $a \equiv b \pmod{m}$
 - ▶ Rephrased: m | a-b
 - ▶ Rephrased: $a \mod m = b$
 - ▶ If they are not congruent: $a \not\equiv b \pmod{m}$
- □ Example: Is 17 congruent to 5 modulo 6?
 - ▶ Rephrased: $17 \equiv 5 \pmod{6}$
 - As 6 divides 17-5, they are congruent
- □ Example: Is 24 congruent to 14 modulo 6?
 - Rephrased: $24 \equiv 14 \pmod{6}$
 - ▶ As 6 does not divide 24-14 = 10, they are not congruent

Example (World of mod n)

•••	-2n	-n	0	n	2n	3n	4n	 0
	-2n+1	-n+1	1	n+1	2n+1	3n+1	4n+1	 1
•••	-2n+2	-n+2	2	n+2	2n+2	3n+2	4n+2	 2
•••	•••			•••				
	-n-1	-1	n-1	2n-1	3n-1	4n-1	5n-1	 n-1

More on congruence

- \Box Every integer is either of the form 4k, 4k+1, 4k+2, 4k+3.
- Every integer is either of the form 0 mod 4, 1 mod 4, 2 mod 4, 3 mod 4
- $y^2 x^2 2 \equiv 0 \mod 4$ has no solution.
- □ Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$
- Example: Is 17 congruent to 5 modulo 6?
 - ▶ Rephrased: does $17 \equiv 5 \pmod{6}$?
 - ▶ 17 mod 6 = 5 mod 6
- □ Example: Is 24 congruent to 14 modulo 6?
 - ▶ Rephrased: $24 \equiv 14 \pmod{6}$
 - ≥ 24 mod 6 ≠ 14 mod 6

Even more on congruence

- □ Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km
- □ Example: 17 and 5 are congruent modulo 6
 - \rightarrow 17 = 5 + 2 * 6
 - 5 = 17 2 * 6
- □ Let a, b, c be integers.
 - \Rightarrow a = a mod n
 - $a ≡ b \mod n \Rightarrow b ≡ a \mod n$
 - ▶ $a \equiv b \mod n$ and $b \equiv c \mod n \Rightarrow a \equiv c \mod n$.

Even even more on congruence

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a+c \equiv (b+d) \pmod{m}$ and $ac \equiv bd \pmod{m}$

Example

- ▶ We know that $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$
- ▶ Thus, $7+11 \equiv (2+1) \pmod{5}$, or $18 \equiv 3 \pmod{5}$
- ▶ Thus, $7*11 \equiv 2*1 \pmod{5}$, or $77 \equiv 2 \pmod{5}$
- □ An integer x is congruent to one and only one of the integers 0, 1, 2, …, n-1 mod n.

The Caesar cipher

- Julius Caesar used this to encrypt messages
- □ A function f to encrypt a letter is defined as: $f(p) = (p + 3) \mod 26$
 - \triangleright Where p is a letter (0 is A, 1 is B, 25 is Z, etc.)
- □ Decryption: $f^{-1}(p) = (p 3) \mod 26$
- □ This is called a substitution cipher
 - You are substituting one letter with another

Arithmetic Inverse

- □ Let a be an integer. a* is an arithmetic inverse of a modulo n, if a* = 1 mod n.
- Suppose that gcd(a, n) =1. Then a has an arithmetic inverse modulo n.
- □ Suppose gcd(a, n) = 1. Then $ax \equiv ay \mod n \Rightarrow x \equiv y \mod n$.
- $x^2+1 \equiv 0 \mod 8$ has no solution.

Equations

- \square 2x \equiv 5 mod 3
 - \Rightarrow 2x \equiv 2 mod 3
 - \Rightarrow 2* 2 x \equiv 2* 2 mod 3
 - \Rightarrow x = 1 mod 3 (2* = 2 mod 3)
- \Box 3x \equiv 7 mod 5
 - \Rightarrow 3x \equiv 2 mod 5
 - \Rightarrow 3* 3x \equiv 3* 2 mod 5
 - \Rightarrow x = 4 mod 5 (3* = 2 mod 5)

Summary on Congruence

- □ Notation: $a \equiv b \pmod{m}$
 - ▶ Rephrased: m | a-b
 - ▶ Rephrased: $a \mod m = b$
 - ▶ Rephrased: $a = b + mk_1$ for some integer k_1
- Every integer is either of the form
 - \rightarrow 4k, 4k+1, 4k+2, or 4k+3.
 - → 0 mod 4, 1 mod 4, 2 mod 4, or 3 mod 4
- □ If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then
 - $b a+c \equiv (b+d) \pmod{m}$
 - $\rightarrow ac \equiv bd \pmod{m}$
- □ Suppose that gcd(a, n) = 1. Then a has an arithmetic inverse a^* modulo n, i.e. $a a^* \equiv a^*$ $a \equiv 1 \mod n$.

Cute Exercise

□ A number is divisible by 3, if sum of the all digits is divisible by 3. Why does this work?

Z_n , Z_n *

- $\Box Z_n = \{0, 1, 2, 3, \dots, n-1\}$
- $\Box Z_n^* = \{x \mid x \in Z_n \text{ and } gcd(x, n) = 1\}.$
- \square $Z_6 = \{0, 1, 2, 3, 4, 5\}$
- $\Box Z_6 * = \{1, 5\}$
- □ For a set S, |S| means the number of element in S.
- $\Box |Z_n| = n$
- $\Box |Z_n *| = \phi(n)$

Cardinality

□ For finite (only) sets, cardinality is the number of elements in the set

□ For finite and infinite sets, two sets A and B have the same cardinality if there is a one-to-one correspondence from A to B

Counting

Multiplication rule

- ▶ If there are n_1 ways to do task1, and n_2 ways to do task2
 - » Then there are $n_1 n_2$ ways to do both tasks in sequence.
- Example
 - » There are 18 math majors and 325 CS majors
 - » How many ways are there to pick one math major and one CS major?

Addition rule

- ▶ If there are n_1 ways to do task1, and n_2 ways to do task2
 - » If these tasks can be done at the same time, then…
 - » Then there are n_1+n_2 ways to do one of the two tasks
- How many ways are there to pick one math major or one CS major?
- The inclusion-exclusion principle
 - $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$

Permutation, Combination

- □ An r-permutation is an ordered arrangement of r elements of the set: P(n, r), $_{n}P_{r}$
 - How many poker hands (with ordering)?
 - P(n, r) = n (n-1)(n-2)···(n-r+1)= n! / (n-r)!
- □ Combination: When order does not matter…
 - In poker, the following two hands are equivalent:
 - » A♦, 5♥, 7♣, 10♠, K♠ » K♠, 10♠, 7♣, 5♥, A♦
 - The number of r-combinations of a set with n elements, where n is non-negative and $0 \le r \le n$ is: C(n, r) = n! / (r! (n-r)!)

Probability definition

- □ The probability of an event occurring is:
 - p(E) = |E| / |S|
 - Where E is the set of desired events (outcomes)
 - Where S is the set of all possible events (outcomes)
 - ▶ Note that $0 \le |E| \le |S|$
 - » Thus, the probability will always between 0 and 1
 - » An event that will never happen has probability 0
 - » An event that will always happen has probability 1

What's behind door number three?

- □ The Monty Hall problem paradox
 - Consider a game show where a prize (a car) is behind one of three doors
 - The other two doors do not have prizes (goats instead)
 - After picking one of the doors, the host (Monty Hall) opens a different door to show you that the door he opened is not the prize
 - Do you change your decision?
- Your initial probability to win (i.e. pick the right door) is 1/3
- What is your chance of winning if you change your choice after Monty opens a wrong door?
- After Monty opens a wrong door, if you change your choice, your chance of winning is 2/3
 - Thus, your chance of winning doubles if you change
 - ▶ Huh?

Assigning Probability

- □ S: Sample space
- \neg p(s): probability that s happens.
 - \triangleright 0 ≤ p(s) ≤ 1 for each s ∈ S
 - $\triangleright \quad \sum_{s \in S} p(s) = 1$
- The function p is called probability distribution
- Example
 - ▶ Fair coin: p(H) = 1/2, p(T) = 1/2
 - Biased coin where heads comes up twice as often as tail

$$p(H) = 2 p(T)$$

»
$$p(H) + p(T) = 1 \Rightarrow 3 p(T) = 1 \Rightarrow p(T) = 1/3, p(H) = 2/3$$

More...

Uniform distribution

▶ Each element $s \in S$ (|S| = n) is assigned with the probability 1/n.

□ Random

The experiment of selecting an element from a sample space with uniform distribution.

□ Probability of the event E

$$\triangleright p(E) = \sum_{S \in F} p(S).$$

Example

- A die is biased so that 3 appears twice as often as others
 » p(1) = p(2) = p(4) = p(5) = p(6) = 1/7, p(3) = 2/7
- p(O) where O is the event that an odd number appears p(O) = p(1) + p(3) + p(5) = 4/7.

Combination of Events

□ Still

```
p(E^c) = 1 - p(E)
```

$$\triangleright$$
 p(E₁ ∪ E₂) = p(E₁) + p(E₂) - p(E₁ ∩ E₂)

$$\rightarrow$$
 $E_1 \cap E_2 = \emptyset \Rightarrow p(E_1 \cup E_2) = p(E_1) + p(E_2)$

» For all
$$i \neq j$$
, $E_i \cap E_i = \emptyset \Rightarrow p(\bigcup_i E_i) = \sum_i p(E_i)$

Conditional Probability

□ Flip coin 3 times

- all eight possibility are equally likely.
- Suppose we know that the first coin was tail (Event F). What is the probability that we have odd number of tails (Event E)?
 - » Only four cases: TTT, TTH, THT, THH
 - \sim So 2/4 = 1/2.

Conditional probability of E given F

- We need to use F as the sample space
- ▶ For the outcome of E to occur, the outcome must belong to $E \cap F$.
- $p(E \mid F) = p(E \cap F) / p(F).$

Bernoulli Trials & Binomial Distribution

- Beronoulli trial
 - an experiment with only two possible outcomes
 - ▶ i.e. 0 (failure) and 1 (success).
 - If p is the probability of success and q is the probability of failure, p + q = 1.
- A biased coin with probability of heads 2/3
 - What is the probability that four heads up out of 7 trials?

Random Variable

- A random variable is a function from the sample space of an experiment to the set of real numbers.
 - Random variable assigns a real number to each possible outcome.
 - Random variable is not variable! not random!
- Example: three times coin flipping
 - Let X(t) be the random variable that equals the number of heads that appear when t is the outcome
 - X(HHH) = 3, X(THH) = X(HTH) = X(HHT) = 2, X(TTH) = X(THT) = X(HTT) = 1, X(TTT) = 0
- □ The distribution of a random variable X on a sample space S is the set of pairs (r, p(X=r)) for all $r \in X(S)$
 - ▶ where p(X=r) is the probability that X takes value r.
 - p(X=3) = 1/8, p(X=2) = 3/8, p(X=1) = 3/8, p(X=0) = 1/8

Expected Value

□ The expected value of the random variable X(s) on the sample space S is equal to

$$E(X) = \sum_{S \in S} p(S) X(S)$$

- □ Expected value of a Die
 - X is the number that comes up when a die is rolled.
 - What is the expected value of X?
 - \rightarrow E(X) = 1/6 1 + 1/6 2 + 1/6 3 + ··· 1/6 6 = 21/6 = 7/2
- Three times coin flipping example
 - X: number of heads
 - $E(X) = 1/8 \ 3 + 3/8 \ 2 + 3/8 \ 1 + 1/8 \ 0 = 12/8 = 3/2$

Security: Overview

The main players

Attacks, Mechanisms, Services

- Security Attack: Any action that compromises the security of information.
- Security Mechanism: A mechanism that is designed to detect, prevent, or recover from a security attack.
- Security Service: A service that enhances the security of data processing systems and information transfers. A security service makes use of one or more security mechanisms.

Attacks

Taxonomy of Attacks

- Passive attacks
 - Eavesdropping
 - Traffic analysis
- Active attacks
 - Masquerade
 - Replay
 - Modification of message content
 - Denial of service

Security Services

- Confidentiality or privacy
 - keeping information secret from all but those who are authorized to see it.
- Data Integrity
 - ensuring information has not been altered by unauthorized or unknown means.
- Entity authentication or identification
 - corroboration of the identity of an entity
- Message authentication
 - corroborating the source of information
- Signature
 - a means to bind information to an entity.
- Authorization, Validation, Access control, Certification, Timestamping, Witnessing, Receipt, Confirmation, Ownership, Anonymity, Non-repudiation, Revocation

Big picture

More details

- □ Little maths
- □ Taxonomy
- Definitions

Little Maths:-)

- Function
 - \rightarrow f: X \rightarrow Y is called a function f from set X to set Y.
 - » X: domain, Y: codomain.
 - ▶ for y = f(x) where $x \in X$ and $y \in Y$
 - » y: image of x, x: preimage of y
 - ▶ Im(f): the set that all $y \in Y$ have at least one preimage
- □ 1 − 1 if each element in Y is the image of at most one element in X.
- \Box onto if Im(f) =Y
- □ bijection if f is 1−1 and onto.

(Trap-door) One-way function

- one-way function if
 - ▶ f(x) is easy to compute for all $x \in X$, but
 - ▶ it is computationally infeasible to find any $x \in X$ such that f(x) = y.
- trapdoor one-way function if
 - \triangleright given trapdoor information, it becomes feasible to find an $x \in X$ such that f(x) = y.

Taxonomy of crypto primitives

Terminology for Encryption

- M denotes a set called the message space
 - M consists of strings of symbols from an alphabet
 - An element of M is called a *plaintext*
- C denotes a set called the ciphertext space
 - C consists of strings of symbols from an alphabet
 - An element of C is called a ciphertext
- K denotes a set called the key space
 - An element of K is called a key
- \Box E_e is an *encryption function* where $e \in K$
- \square D_d called a *decryption function* where d \in K

Encryption

- □ Why do we use key?
 - Or why not use just a shared encryption function?

Symmetric-key encryption

- Encryption scheme is symmetric-key
 - ▶ if for each (e,d) it is easy computationally easy to compute e knowing d and d knowing e
 - ▶ Usually e = d
- Block Cipher
 - Breaks plaintext into block of fixed length
 - Encrypts one block at a time
- Stream Cipher
 - Takes a plaintext string and produces a ciphertext string using keystream
 - Block cipher with block length 1

SKE with Secure channel

Public-key Encryption (Crypto)

- Every entity has a private key SK and a public key PK
 - Public key is known to all
 - It is computationally infeasible to find SK from PK
 - Only SK can decrypt a message encrypted by PK
- If A wishes to send a private message M to B
 - A encrypts M by B's public key, C = EBPK(M)
 - ▶ B decrypts C by his private key, M = DBSK(C)

PKE with Insecure Channel

Public Key should be authentic!

Digital Signatures

- Primitive in authentication and non-repudiation
- Signature
 - Process of transforming the message and some secret information into a tag
- Nomenclature
 - M is set of messages
 - S is set of signatures
 - S_A is signature transformation from M to S for A, kept private
 - V_A is verification transformation from M to S for A, publicly known

Definitions

- Digital Signature a data string which associates a message with some originating entity
- Digital Signature Generation Algorithm a method for producing a digital signature
- Digital signature verification algorithm a method for verifying that a digital signature is authentic (i.e., was indeed created by the specified entity).
- Digital Signature Scheme consists of a signature generation algorithm and an associated verification algorithm

Digital Signature with Appendix

- Schemes with appendix
 - Requires the message as input to verification algorithm
 - Rely on cryptographic hash functions rather than customized redundancy functions
 - DSA, ElGamal, Schnorr etc.

Digital Signature with Appendix

Hash function and MAC

A hash function is a function h

- compression h maps an input x of arbitrary finite bitlength, to an output h(x) of fixed bitlength n.
- \rightarrow ease of computation h(x) is easy to compute for given x and h
- Properties
 - » one-way: for a given y, find x' such that h(x') = y
 - » collision resistance: find x and x' such that h(x) = h(x')

MAC (message authentication codes)

- both authentication and integrity
- MAC is a family of functions h_k
 - » ease of computation (if k is known !!)
 - » compression, x is of arbitrary length, $h_k(x)$ has fixed length
 - » computation resistance: given $(x',h_k(x'))$ it is infeasible to compute a new pair $(x,h_k(x))$ for any new $x\neq x'$

Authentication

- How to prove your identity?
 - Prove that you know a secret information
- When key K is shared between A and Server
 - \rightarrow S: HMAC_K(M) where M can provide freshness
 - Why freshness?
- Digital signature?
 - \rightarrow A \rightarrow S: Sig_{SK}(M) where M can provide freshness
- Comparison?

Key Management Through SKE

- □ Each entity A_i shares symmetric key K_i with a TTP
- □ TTP generates a session key K_s and sends E_{Ki}(K_s)
- Pros
 - Easy to add and remove entities
 - Each entity needs to store only one long-term secret key
- Cons
 - Initial interaction with the TTP
 - TTP needs to maintain n long-term secret keys
 - TTP can read all messages
 - Single point of failure

Authentication

Authentication

- Message (Data origin) authentication
 - » provide to one party which receives a message assurance of the identity of the party which originated the message.
- Entity authentication (identification)
 - » one party of both the identity of a second party involved, and that the second was active at the time the evidence was created or acquired.

Key Management

- Key establishment
 - Process to whereby a shared secret key becomes available to two or more parties
 - Subdivided into key agreement and key transport.
- Key management
 - The set of processes and mechanisms which support key establishment
 - The maintenance of ongoing keying relationships between parties

Key Management Through SKE

Pros

- Easy to add and remove entities
- Each entity needs to store only one long-term secret key

Cons

- Initial interaction with the TTP
- TTP needs to maintain n long-term secret keys
- TTP can read all messages
- Single point of failure

Key Management Through PKE

0xDAD12345	Alice
0xBADD00D1	Bob

Advantages

- TTP not required
- Only *n* public keys need to be stored
- The central repository could be a local file

Problem

Public key authentication problem

Solution

 Need of TTP to certify the public key of each entity

Public Key Certificates

- □ Entities trust a third party, who issues a certificate
- Certificate = (data part, signature part)
 - Data part = (name, public-key, other information)
 - Signature = (signature of TTP on data part)
- □ If B wants to verify authenticity of A's public key
 - Acquire public key certificate of A over a secured channel
 - Verify TTP's signature
 - If signature verified A's public key in the certificate is authentic

Questions?

■ Yongdae Kim

- ▶ email: yongdaek@kaist.ac.kr
- ▶ Home: http://syssec.kaist.ac.kr/~yongdaek
- ▶ Facebook: https://www.facebook.com/y0ngdaek
- ▶ Twitter: https://twitter.com/yongdaek
- ▶ Google "Yongdae Kim"

