
EE488
Introduction to

Cryptography Engineering

Yongdae Kim

Key Management

❑ Key establishment
▹ Process to whereby a shared secret key becomes available to two

or more parties

▹ Subdivided into key agreement and key transport.

❑ Key management
▹ The set of processes and mechanisms which support key

establishment

▹ The maintenance of ongoing keying relationships between parties

Key Management Through SKE

❑ Pros

▹ Easy to add and remove
entities

▹ Each entity needs to store
only one long-term secret
key

❑ Cons

▹ Initial interaction with the
TTP

▹ TTP needs to maintain n
long-term secret keys

▹ TTP can read all messages

▹ Single point of failure
KA KB

KA, KB

Key Management Through PKE

❑ Advantages

▹ TTP not required

▹ Only n public keys
need to be stored

▹ The central repository
could be a local file

❑ Problem
▹ Public key

authentication
problem

❑ Solution

▹ Need of TTP to certify
the public key of each
entity

0xBADD00D1 Bob

0xDAD12345 Alice

SKA,PKA SKB,PKB

Kerckhoff’s Principle

❑ Security should depend only on the key
▹ Don’t assume enemy won’t know algorithm

» Can capture machines, disassemble programs, etc.

» Too expensive to invent new algorithm if it might have been
compromised

▹ Security through obscurity isn’t

» Look at history of examples

» Better to have scrutiny by open experts

❑ “The enemy knows the system being used.” (Claude
Shannon)

Block Cipher
❑ E: Vn  K → Vn

▹ Vn = {0,1}n, K = {0, 1}k, n is called block length, k is called key size

▹ E(P, K) = C for K  K and P, C  Vn

▹ E(P, K) = EK(P) is invertible mapping from Vn to Vn

» EK: encryption function

▹ D(C, K) = DK(C) is the inverse of EK

» Dk: decryption function

P (plaintext)

E

C (ciphertext)

K
Key

P (plaintext)

EK

C (ciphertext)

Modes of Operation
❑ A block cipher encrypts plaintext in fixed-size n-bit blocks (often n

=128). What happens if your message is greater than the block size?

E

xj

k E-1 k

xj’
Ek

xj

Cj-1

D k

Cj-1

xj’

c0=IV

Ij

E

Oj

xj

Ij

E

Oj

k k

xj’

Ij

E

Oj

xj

Ij

E

Oj

k k

xj’

I1=IV

I1=IV

Modes of Operation
❑ ECB

▹ Encryption: cj EK(xj)

▹ Decryption: xj  E−1
K (cj)

❑ CBC

▹ Encryption: c0  IV, cj  EK(cj−1 xj)

▹ Decryption: c0  IV, xj  cj−1  E−1
K(cj)

❑ CFB
▹ Encryption: I1  IV, cj  xj  EK(Ij), Ij+1 = cj

▹ Decryption: I1  IV, xj  cj  EK(Ij), Ij+1 = cj

❑ OFB
▹ Encryption: I1  IV, oj = EK(Ij), cj  xj  oj, Ij+1 = oj

▹ Decryption: I1  IV, oj = EK(Ij), xj  cj  oj, Ij+1 = oj

Modes of Operation (CTR)

8

E

x1

k

CTR

c1

E

x2

k

CTR+1

c2

E

xN

k

CTR+N-1

cN

E

c1

k

CTR

x1

E

c2

k

CTR+1

x2

E

cN

k

CTR+N-1

xN

CTR advantages

❑ Hardware efficiency
▹ Parallelizable

❑ Software efficiency
▹ Similar, modern processors support parallel computation

❑ Preprocessing
▹ Pad can be computed earlier

❑ Random-access
▹ Each ciphertext block can be encrypted independently

▹ important in applications like hard-disk encryption

❑ Provable security
▹ no worse than what one gets for CBC encryption

❑ Simplicity
▹ No decryption algorithm and key scheduling

Double DES

❑ C = EK2[EK1 [P]]

❑ P = DK1[DK2[C]]

❑ Reduction to single stage?
▹ EK2[EK1 [P]] =? EK3[P]

▹ It was proven that it does not hold

Meet-in-the-middle Attack

❑ Diffie 1977

❑ Exhaustively cracking it requires 2112?

❑ C = EK2[EK1 [P]]

▹ X = EK1 [P] = DK2[C]

❑ Given a known pair, (P, C)

▹ Encrypt P with all possible 256 values of K1

▹ Store this results and sort by X

▹ Decrypt C with all possible 256 K2, and check table

▹ If same, accept it as the correct key

❑ Are we done? &&#@!#(

Meet-in-the-middle Attack, cnt

❑ Little statistics
▹ For any P, there are 264 possible C

▹ DDES uses 112 bit key, so 2112 keys

▹ Given C, there are 2112/264 = 248 possible P

» So there are 248 false alarms

▹ If one more (P’, C’) pair, we can reduce it to 2-16

❑ So using two (plaintext, ciphertext) pairs, we can break
DDES c * 256 encryption/decryption

❑ C = EK2[DK1 [P]] different?

Triple DES with two keys

❑ Obvious counter to DDES: Use three keys
▹ Complexity?

▹ 168 bit key

❑ Triple DES = EDE = encrypt-decrypt-encrypt
▹ C = EK1[DK2 [EK1[P]]]

❑ Attacks?
▹ No practical one so far

Product Cipher

❑ To build complex function to
compose several simple operation
offer complementary, but
individually insufficient protection

❑ Basic operation: transposition,
translation (XOR) and linear
transformation, arithmetic
operation, mod mult, simple
substitution

❑ Substitution-permutation (SP)
network is product cipher
composed of a number of stages
each involving substitution and
permutation

14

…S
…

S
…

S
…

S
…

P
… … … …

… … … …

…S
…

S
…

S
…

S
…

P
… … … …

… … … …
...

Feistel Cipher

❑ Virtually all conventional block ciphers
▹ by Horst Feistel of IBM in 1973

❑ The realization of a Feistel Network depends on the choice
of the following parameters and features:
▹ Block size: larger block sizes mean greater security

▹ Key Size: larger key size means greater security

▹ Number of rounds: multiple rounds offer increasing security

▹ Subkey generation algorithm: greater complexity will lead to
greater difficulty of cryptanalysis.

▹ Fast software encryption/decryption: the speed of execution of the
algorithm becomes a concern

Feistel Network

❑ iterated cipher mapping (L0, R0) to (Rr, Lr) through r-
round process, (Li−1, Ri−1) →Ki (Li, Ri) as follows
▹ Li = Ri−1, Ri = Li−1  f(Ri−1, Ki), Ki is derived from K

Li-1 Ri-1

Li Ri

f

Ki

Feistel Network – Why it works?

❑ 2 Round example

❑ Encryption

▹ L1 = R0, R1 = L0  f(K1, R0)

▹ L2 = R1 = L0  f(K1, R0), R2 = L1  f(K2, R1)

❑ Decryption

▹ R1 = L2, L1 = R2  f(K2, R1)

▹ R0 = L1, L0 = R1  f(K1, R0)

❑ Easily extensible to multi-round

DES History

❑ Originated with early 1970's IBM effort to develop
banking security systems

❑ First result was Lucifer, most common variant has 128-bit
key and block size
▹ Broken

❑ NBS (Currently NIST) called for Algorithms in 1973

❑ IBM submitted the best algorithm in 1977 and that
became DES
▹ Original IBM key size = 128, DES = 56 :-)

▹ Design philosophy of S-Box was unknown

» Turned out to be strong

DES Overview
❑ |P|, |C| = 64, |K| = 56, 16 rounds, K ! sixteen 48-bit subkeys Ki are generated

InputL0 R0

f

Input

IP

InputL1 R1

InputL15 R15

f

Output

Input

IP-1

f

K1

K2

K1

6
L16 R16

E

Ri-1 Ki

S1

P

S2 S3 S4 S5 S6 S7 S8

S-Box

❑ 6 bit input, 4 bit output

❑ 27 = 011011 = (01) (1101)

❑ S1-Box output for 27 = 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

New Era!

❑ DES broken
▹ DES III Challenge by RSA

▹ Idle CPU time of around 100,000 computers

▹ In 22 hours

❑ Triple DES?
▹ Original DES was designed for H/W implementation

▹ 64 bit block size too small for security and efficiency

❑ Now what?

Advanced Encryption Standard

❑ In 1997, NIST issued a call for proposal
▹ Block length = 128 bit

▹ Key size = 128, 192, 256 bits

❑ In the first round, 15 algorithms were accepted

❑ Second round, 5 algorithms were selected

❑ In November 2001, final standard was published

▹ Rijndel, FIPS PUB 197

▹ http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf

▹ Joan Daemen and Vincent Rijmen

AES Evaluation Criteria
❑ Security

▹ Actual security: compared with other submissions

▹ Randomness: output is indistinguishable from random

▹ Soundness: of mathematical basis

▹ Other security factors: raised by security community

❑ Cost
▹ No licensing: World-wide, non-exclusive, royalty-free

▹ Computation efficiency: both S/W and H/W

▹ Memory requirements

❑ Algorithm and Implementation characteristics
▹ Flexibility: key-/block-size, wide variety of platforms

▹ Simplicity

Stream Cipher

❑ Definition
▹ encrypt individual characters of plaintext message one at a time,

using encryption transformation which varies with time.

❑ Block vs. Stream

▹ Block ciphers

» process plaintext in relatively large blocks

» The same function is used to encrypt successive blocks  memoryless

▹ stream ciphers

» process plaintext in small blocks, and the encryption function may vary
as plaintext is processed  have memory

» sometimes called state ciphers since encryption depends on not only
the key and plaintext, but also on the current state.

▹ This distinction between block and stream ciphers is not definitive

» adding memory to a block cipher (as in CBC) results in a stream cipher

One-time Pad and Stream Cipher

❑ One-time pad
▹ Vernam cipher: ci=mi  xi for i = 1, 2, 3…

 key is generated independently and randomly

 Ciphertext contributes no information about plain text

 key should be as long as plaintext  key management

❑ Stream cipher tries to solve this problem having short key
and generate pseudo-random sequence
▹ Not unconditionally secure, but try to be computationally secure

Questions?

❑ Yongdae Kim

▹ email: yongdaek@kaist.ac.kr

▹ Home: http://syssec.kaist.ac.kr/~yongdaek

▹ Facebook: https://www.facebook.com/y0ngdaek

▹ Twitter: https://twitter.com/yongdaek

▹ Google “Yongdae Kim”

26

mailto:yongdaek@kaist.ac.kr
http://syssec.kaist.ac.kr/~yongdaek
http://www.facebook.com/y0ngdaek
https://twitter.com/yongdaek

	슬라이드 0: EE488 Introduction to Cryptography Engineering
	슬라이드 1: Key Management
	슬라이드 2: Key Management Through SKE
	슬라이드 3: Key Management Through PKE
	슬라이드 4: Kerckhoff’s Principle
	슬라이드 5: Block Cipher
	슬라이드 6: Modes of Operation
	슬라이드 7: Modes of Operation
	슬라이드 8: Modes of Operation (CTR)
	슬라이드 9: CTR advantages
	슬라이드 10: Double DES
	슬라이드 11: Meet-in-the-middle Attack
	슬라이드 12: Meet-in-the-middle Attack, cnt
	슬라이드 13: Triple DES with two keys
	슬라이드 14: Product Cipher
	슬라이드 15: Feistel Cipher
	슬라이드 16: Feistel Network
	슬라이드 17: Feistel Network – Why it works?
	슬라이드 18: DES History
	슬라이드 19: DES Overview
	슬라이드 20: S-Box
	슬라이드 21: New Era!
	슬라이드 22: Advanced Encryption Standard
	슬라이드 23: AES Evaluation Criteria
	슬라이드 24: Stream Cipher
	슬라이드 25: One-time Pad and Stream Cipher
	슬라이드 26: Questions?

