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Key Management

❑ Key establishment
▹ Process to whereby a shared secret key becomes available to two 

or more parties

▹ Subdivided into key agreement and key transport.

❑ Key management
▹ The set of processes and mechanisms which support key 

establishment  

▹ The maintenance of ongoing keying relationships between parties



Key Management Through SKE

❑ Pros

▹ Easy to add and remove 
entities

▹ Each entity needs to store 
only one long-term secret 
key

❑ Cons

▹ Initial interaction with the 
TTP

▹ TTP needs to maintain n
long-term secret keys

▹ TTP can read all messages

▹ Single point of failure
KA KB

KA, KB



Key Management Through PKE

❑ Advantages

▹ TTP not required

▹ Only n public keys 
need to be stored

▹ The central repository 
could be a local file 

❑ Problem
▹ Public key 

authentication 
problem

❑ Solution

▹ Need of TTP to certify 
the public key of each 
entity

0xBADD00D1 Bob

0xDAD12345 Alice

SKA,PKA SKB,PKB



Kerckhoff’s Principle

❑ Security should depend only on the key
▹ Don’t assume enemy won’t know algorithm

» Can capture machines, disassemble programs, etc.

» Too expensive to invent new algorithm if it might have been 
compromised

▹ Security through obscurity isn’t

» Look at history of examples

» Better to have scrutiny by open experts

❑ “The enemy knows the system being used.” (Claude 
Shannon)



Block Cipher
❑ E: Vn  K → Vn

▹ Vn = {0,1}n, K = {0, 1}k, n is called block length, k is called key size

▹ E(P, K) = C for K  K and P, C  Vn

▹ E(P, K) = EK(P) is invertible mapping from Vn to Vn

» EK: encryption function

▹ D(C, K) = DK(C) is the inverse of EK

» Dk: decryption function

P (plaintext)

E

C (ciphertext)

K
Key

P (plaintext)

EK

C (ciphertext)



Modes of Operation
❑ A block cipher encrypts plaintext in fixed-size n-bit blocks (often n 

=128). What happens if your message is greater than the block size?
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Modes of Operation
❑ ECB

▹ Encryption: cj EK(xj)

▹ Decryption: xj  E−1
K (cj)

❑ CBC

▹ Encryption: c0  IV, cj  EK(cj−1 xj)

▹ Decryption: c0  IV, xj  cj−1  E−1
K(cj)

❑ CFB
▹ Encryption: I1  IV, cj  xj  EK(Ij), Ij+1 = cj

▹ Decryption: I1  IV, xj  cj  EK(Ij), Ij+1 = cj

❑ OFB
▹ Encryption: I1  IV, oj = EK(Ij), cj  xj  oj, Ij+1 = oj

▹ Decryption: I1  IV, oj = EK(Ij), xj  cj  oj, Ij+1 = oj



Modes of Operation (CTR)
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CTR advantages

❑ Hardware efficiency
▹ Parallelizable

❑ Software efficiency
▹ Similar, modern processors support parallel computation

❑ Preprocessing
▹ Pad can be computed earlier

❑ Random-access
▹ Each ciphertext block can be encrypted independently

▹ important in applications like hard-disk encryption

❑ Provable security
▹ no worse than what one gets for CBC encryption

❑ Simplicity
▹ No decryption algorithm and key scheduling



Double DES

❑ C = EK2[EK1 [P]]

❑ P = DK1[DK2[C]]

❑ Reduction to single stage?
▹ EK2[EK1 [P]] =? EK3[P]

▹ It was proven that it does not hold



Meet-in-the-middle Attack

❑ Diffie 1977

❑ Exhaustively cracking it requires 2112?

❑ C = EK2[EK1 [P]]

▹ X = EK1 [P] = DK2[C]

❑ Given a known pair, (P, C)

▹ Encrypt P with all possible 256 values of K1

▹ Store this results and sort by X

▹ Decrypt C with all possible 256 K2, and check table

▹ If same, accept it as the correct key

❑ Are we done? &&#@!#(



Meet-in-the-middle Attack, cnt

❑ Little statistics
▹ For any P, there are 264 possible C

▹ DDES uses 112 bit key, so 2112 keys

▹ Given C, there are 2112/264 = 248 possible P

» So there are 248 false alarms

▹ If one more (P’, C’) pair, we can reduce it to 2-16

❑ So using two (plaintext, ciphertext) pairs, we can break 
DDES c * 256 encryption/decryption

❑ C = EK2[DK1 [P]] different?



Triple DES with two keys

❑ Obvious counter to DDES: Use three keys
▹ Complexity?

▹ 168 bit key

❑ Triple DES = EDE = encrypt-decrypt-encrypt
▹ C = EK1[DK2 [EK1[P]]]

❑ Attacks?
▹ No practical one so far



Product Cipher

❑ To build complex function to 
compose several simple operation 
offer complementary, but 
individually insufficient protection

❑ Basic operation: transposition, 
translation (XOR) and linear 
transformation, arithmetic 
operation, mod mult, simple 
substitution

❑ Substitution-permutation (SP) 
network is product cipher 
composed of a number of stages 
each involving substitution and 
permutation
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Feistel Cipher

❑ Virtually all conventional block ciphers
▹ by Horst Feistel of IBM in 1973

❑ The realization of a Feistel Network depends on the choice 
of the following parameters and features:
▹ Block size: larger block sizes mean greater security

▹ Key Size: larger key size means greater security

▹ Number of rounds:  multiple rounds offer increasing security

▹ Subkey generation algorithm: greater complexity will lead to 
greater difficulty of cryptanalysis.

▹ Fast software encryption/decryption: the speed of execution of the 
algorithm becomes a concern



Feistel Network

❑ iterated cipher mapping (L0, R0) to (Rr, Lr) through r-
round process, (Li−1, Ri−1) →Ki (Li, Ri) as follows
▹ Li = Ri−1, Ri = Li−1  f(Ri−1, Ki), Ki is derived from K

Li-1 Ri-1

Li Ri

f

Ki



Feistel Network – Why it works?

❑ 2 Round example

❑ Encryption

▹ L1 = R0, R1 = L0  f(K1, R0)

▹ L2 = R1 = L0  f(K1, R0), R2 = L1  f(K2, R1)

❑ Decryption

▹ R1 = L2, L1 = R2  f(K2, R1)

▹ R0 = L1, L0 = R1  f(K1, R0)

❑ Easily extensible to multi-round



DES History

❑ Originated with early 1970's IBM effort to develop 
banking security systems

❑ First result was Lucifer, most common variant has 128-bit 
key and block size
▹ Broken

❑ NBS (Currently NIST) called for Algorithms in 1973

❑ IBM submitted the best algorithm in 1977 and that 
became DES
▹ Original IBM key size = 128, DES = 56 :-)

▹ Design philosophy of S-Box was unknown

» Turned out to be strong



DES Overview
❑ |P|, |C| = 64, |K| = 56, 16 rounds, K ! sixteen 48-bit subkeys Ki are generated
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S-Box

❑ 6 bit input, 4 bit output

❑ 27 = 011011 = (01) (1101)

❑ S1-Box output for 27 = 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13



New Era!

❑ DES broken
▹ DES III Challenge by RSA

▹ Idle CPU time of around 100,000 computers

▹ In 22 hours

❑ Triple DES?
▹ Original DES was designed for H/W implementation

▹ 64 bit block size too small for security and efficiency

❑ Now what?



Advanced Encryption Standard

❑ In 1997, NIST issued a call for proposal
▹ Block length = 128 bit

▹ Key size = 128, 192, 256 bits

❑ In the first round, 15 algorithms were accepted

❑ Second round, 5 algorithms were selected

❑ In November 2001, final standard was published

▹ Rijndel, FIPS PUB 197

▹ http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf

▹ Joan Daemen and Vincent Rijmen



AES Evaluation Criteria
❑ Security

▹ Actual security: compared with other submissions

▹ Randomness: output is indistinguishable from random

▹ Soundness: of mathematical basis

▹ Other security factors: raised by security community

❑ Cost
▹ No licensing: World-wide, non-exclusive, royalty-free

▹ Computation efficiency: both S/W and H/W

▹ Memory requirements

❑ Algorithm and Implementation characteristics
▹ Flexibility: key-/block-size, wide variety of platforms

▹ Simplicity



Stream Cipher

❑ Definition
▹ encrypt individual characters of plaintext message one at a time, 

using encryption transformation which varies with time.

❑ Block vs. Stream

▹ Block ciphers

» process plaintext in relatively large blocks

» The same function is used to encrypt successive blocks  memoryless

▹ stream ciphers

» process plaintext in small blocks, and the encryption function may vary 
as plaintext is processed  have memory

» sometimes called state ciphers since encryption depends on not only 
the key and plaintext, but also on the current state.

▹ This distinction between block and stream ciphers is not definitive

» adding memory to a block cipher (as in CBC) results in a stream cipher



One-time Pad and Stream Cipher

❑ One-time pad
▹ Vernam cipher: ci=mi  xi for i = 1, 2, 3…

  key is generated independently and randomly

  Ciphertext contributes no information about plain text

  key should be as long as plaintext  key management

❑ Stream cipher tries to solve this problem having short key 
and generate pseudo-random sequence
▹ Not unconditionally secure, but try to be computationally secure



Questions?

❑ Yongdae Kim

▹ email: yongdaek@kaist.ac.kr 

▹ Home: http://syssec.kaist.ac.kr/~yongdaek 

▹ Facebook: https://www.facebook.com/y0ngdaek

▹ Twitter: https://twitter.com/yongdaek 

▹ Google “Yongdae Kim”
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