Hiding @ Depth:
Exploring & Subverting NAND Flash memory

Josh ‘mOnk’ Thomas

(A DARPA CFT Project by MonkWorks, LLC)
RIP 4.1.13 - Long Live CFT

Thx Mudge

Saturday, June 22, 13

My Path, And You Can Too!

$ cat /proc/partitions
major minor #blocks name

31 409600 mtdblock®
31 6144 mtdblockl
31 103936 mtdblock2
31 430080 mtdblock3
174" 7778304 mmcblkO

179 7777280 mmcblkOpl

$ cat /proc/mtd

dev: size erasesize name
mtdO: 19000000 00020000 "system”
mtdl: OO600000 20000 "appslog"
mtd2: 06580000 00020000 "cache™
mtd3: 13400000 00020000 "userdata"

Saturday, June 22, 13

My Path,And You Can Too!

® Kernel Modules: Side Loading Fun!

® Sure, I'll be a‘“test” case

<base kernel source>/kernel/drivers/mtd/tests/

obj-$(CONFIG_MTD_TESTS)

obj-$(CONFIG MTD TESTS)
obj-$(CONFIG MTD TESTS)

obj-$(CONFIG MTD TESTS)

4+

nandx find simple.o
nandx find complex.o
nandx hide.o

mtd oobtest.o

mtd pagetest.o

mtd readtest.o

mtd speedtest.o
mtd stresstest.o

mtd subpagetest.o
mtd torturetest.o

mtd erasepart.o

+ +

4

obj-$(CONFIG MTD TESTS)
obj-$(CONFIG _MTD TESTS)

obj-$(CONFIG MTD TESTS)
obj-$(CONFIG MTD TESTS)

obj-$(CONFIG MTD TESTS)
obj-$(CONFIG MTD TESTS)

obj-$(CONFIG MTD TESTS)

—+-

+ + + +

4
L I | | | A | AN | A | A | AN | S | B |

—+

Saturday, June 22, 13

My Path, And You Can Too!

® Almost everything | do is simply calling the API
in the wrong order

® The | exception is the OOB write
® Path to Winning!?
® Pick a block and wipe it
® Cover the entire block in OxXDEADBEEF
® Mark the Block as “Bad”

® 0x00 out the OOB in the case of Sony

® \Watch the reboot from collision!

nandx hide.c

/0D *x/
static void nandx_file_injector(int blockLocation, void *bufferToWrite)

{
/@D x/

//TODO: Grab and check return values here!!!!
/@D *x/
int err = 0;

//Moves all data out of the target block (no, it really doesn't)
nandx_move_data_from_block(blockLocation);

//Erases the targeted block
nandx_erase_block(blockLocation);

//Injects our buffer directly into the block
nandx_buffer write to _block(blockLocation, bufferToWrite);

//Marks the target block as bad
err = nandx_mark_bad_ framework(blockLocation);
if(terr){
printk(PRINT_PREF "First attempt at marking %d bad failed, going manual\n"
blockLocation);
err = nandx_mark_bad_manual(blockLocation);

Saturday, June 22, 13

nandx hide.c

/@D *x/
static int nandx_mark _bad framework(int blockLocation)
{

/@D *x/

int ret;

loff_t addr = blockLocation * mtd->erasesize;

' ' ' '
N N
[(== B V=] o0

printk(PRINT_PREF "Marking the block %d as BAD\n", blockLocation);

'
~
w

ret = mtd->block _markbad(mtd, addr):
if (ret)

printk(PRINT_PREF "Success - block %d has been marked bad\n", blockLocation);
else

printk(PRINT_PREF "Failure - Why U no mark block %d as bad?\n", blockLocation);

' ' ' ' ' '
~J ~J ~J ~J ~J ~J
O 00 ~N o n I

return ret;

'
o
o

-1
/
-
/
-
/
-
/
-
/
-
/
-
/
-
/
7172
-9
/
-
/
-
/
"1
/
-9
/
-
/
-
/
-
/
-
/

'
o
r

Saturday, June 22, 13

nandx hide.c

o
w
v

/@D *x/
static int nandx_mark _bad_manual(int blockLocation)

{

' ' '
O O O
w el w

/@D x/

NN
N -
o O

int ret;
loff_t ofs = blockLocation * mtd->erasesize;

no
N
—

no
N
w

// THIS CALL IS THE ENTIRE MAGIC OF NANDX-HIDE
ret = msm_nand_block markbad(mtd, ofs);

no no no
N o N
a un el

if(ret)
printk(PRINT_PREF "We call into the driver and make %d go away.\n", blockLocation);
else
printk(PRINT_PREF "0Odd.. even a RAW write on the 00B doesn't kill block: %d\n",
blockLocation);
return ret;

N no
N o
~J

-9
4 !
-9
/
-
i/
-
i/
-
/
-
i
-
i/
7222
-
/
-
i/
-
i/
-
/
-

/
-
i/
-
i/

no
o

Saturday, June 22, 13

BadUSB — On accessories that turn evil

Karsten Nohl <nohl@srlabs.de>

Sascha KriRRler <sascha@srlabs.de>
Jakob Lell <jakob@srlabs.de>

SECURITY
r RESEARCH
V LABS

USB devices include a micro-controller, hidden from the user

USB controller Flash

8051 CPU
Controller

firmware

Mass storage

\

The only part
visible to the user

P091533FA000021A, -

D SECURITY RESEARCHLABS

USB devices are identified

USB devices Connectors + hubs Host

E"E | Root

Tl L »
— hub | .
Examples
Identifier USB thumb drive Webcam
Interface class 8 — Mass Storage a. 1 —Audio
b. 14 -Video
End points 0 — Control 0 — Control
1 — Data transfers 1 — Video transfers
6 — Audio transfers
7 —Video interrupts
Serial number AA627090820000000702 0258A350

D SECURITY RESEARCHLABS

USB devices are initialized in several steps

USB device

- ~ USB plug-and-play

v

Register

Set address
Power-on + <
Firmware init Send descriptor

Set configuration

v

<

Normal operation

Optional: deregister

Register again ...

v

D RESEARCHLABS

v

Load driver

Load another
driver

Devices can have
several identities

= A device indicates
its capabilities
through a
descriptor

= A device can have
several
descriptors if it
supports multiple
device classes; like
webcam +
microphone

= Device can
deregister and
register again as a
different device

Agenda

= USB background
} Reprogramming peripherals
= USB attack scenarios

= Defenses and next steps

D RESEARCHLABS

Reversing and patching USB firmware took less than 2 months

Q Document firmware 9 . . G .
Reverse-engineer firmware Patch firmware
update process

1. Find leaked firmware and 1. Load into disassembler 1. Add hooks to firmware to
flash tool on the net (complication: MMU-like add/change functionality
2. Sniff update memory banking) 2. Custom linker script compiles
communication using 2. Apply heuristics C and assembly code and
Wireshark — Count matches between inj'eFts it .into unused areas of
3. Replay custom SCSI function start and call original firmware
commands used for instructions for different .
updates memory locations Other possible targets
4. (Reset bricked devices — Find known USB bit We focused on USB sticks,
through short-circuiting fields such as descriptors but the same approach
i hould k for:
Flash pins) 3. Apply standard software >houid-work for
reversing to find hooking * External HDDs
points = Webcams, keyboards

= Probably many more ...

D RESEARCHLABS g

Agenda

= USB background
= Reprogramming peripherals
} USB attack scenarios

= Defenses and next steps

D RESEARCHLABS

Keyboard emulation is enough for infection and privilege escalation

(w/o need for software vulnerability)

Challenge — Linux malware runs with limited user privileges, but needs
root privileges to infect further sticks

Approach - Steal sudo password in screensaver

Restart screensaver D
(or policykit) with
password stealer
added via an
LD_PRELOAD library

User enters password to
unlock screen

Malware intercepts
password and gains root
privileges using sudo

RESEARCHLABS

Privilege escalation
module will be
submitted to Metasploit

11

Network traffic can be diverted by “DHCP on USB”

DNS assignment in All DNS
DHCP over spoofed gueries go to
USB-Ethernet attacker’s DNS

“5 adapter server

»
»

1. USB stick spoofs 3. Internet traffic is still routed
Ethernet adapter through the normal Wi-Fi

2. Replies to DHCP query connection
with DNS server on the 4. However, DNS queries are sent to
Internet, but without the USB-supplied server, enabling
default gateway redirection attacks

D RESEARCHLABS

