Hiding @ Depth:
Exploring & Subverting NAND Flash memory

Josh ‘mOnk’ Thomas

(A DARPA CFT Project by MonkWorks, LLC)
RIP 4.1.13 - Long Live CFT

Thx Mudge

Saturday, June 22, 13



My Path, And You Can Too!

$ cat /proc/partitions
major minor #blocks name

31 409600 mtdblock®
31 6144 mtdblockl
31 103936 mtdblock2
31 430080 mtdblock3
174" 7778304 mmcblkO

179 7777280 mmcblkOpl

$ cat /proc/mtd

dev: size erasesize name
mtdO: 19000000 00020000 "system”
mtdl: OO600000 20000 "appslog"
mtd2: 06580000 00020000 "cache™
mtd3: 13400000 00020000 "userdata"
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My Path,And You Can Too!

® Kernel Modules: Side Loading Fun!

® Sure, I'll be a‘“test” case

<base kernel source>/kernel/drivers/mtd/tests/

obj-$(CONFIG_MTD_TESTS)

obj-$(CONFIG MTD TESTS)
obj-$(CONFIG MTD TESTS)

obj-$(CONFIG MTD TESTS)

4+

nandx find simple.o
nandx find complex.o
nandx hide.o

mtd oobtest.o

mtd pagetest.o

mtd readtest.o

mtd speedtest.o
mtd stresstest.o

mtd subpagetest.o
mtd torturetest.o

mtd erasepart.o

+ +

4

obj-$(CONFIG MTD TESTS)
obj-$(CONFIG _MTD TESTS)

obj-$(CONFIG MTD TESTS)
obj-$(CONFIG MTD TESTS)

obj-$(CONFIG MTD TESTS)
obj-$(CONFIG MTD TESTS)

obj-$(CONFIG MTD TESTS)
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+ + + +
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My Path, And You Can Too!

® Almost everything | do is simply calling the API
in the wrong order

® The | exception is the OOB write
® Path to Winning!?
® Pick a block and wipe it
® Cover the entire block in OxXDEADBEEF
® Mark the Block as “Bad”

® 0x00 out the OOB in the case of Sony

® \Watch the reboot from collision!




nandx hide.c

/0D *x/
static void nandx_file_injector(int blockLocation, void *bufferToWrite)

{
/@D x/

//TODO: Grab and check return values here!!!!
/@D *x/
int err = 0;

//Moves all data out of the target block (no, it really doesn't)
nandx_move_data_from_block( blockLocation );

//Erases the targeted block
nandx_erase_block( blockLocation );

//Injects our buffer directly into the block
nandx_buffer write to _block( blockLocation, bufferToWrite );

//Marks the target block as bad
err = nandx_mark_bad_ framework( blockLocation );
if( terr ){
printk(PRINT_PREF "First attempt at marking %d bad failed, going manual\n"
blockLocation);
err = nandx_mark_bad_manual( blockLocation );
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nandx hide.c

/@D *x/
static int nandx_mark _bad framework(int blockLocation)
{

/@D *x/

int ret;

loff_t addr = blockLocation * mtd->erasesize;

' ' ' '
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printk(PRINT_PREF "Marking the block %d as BAD\n", blockLocation);

'
~
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ret = mtd->block _markbad(mtd, addr):
if (ret)

printk(PRINT_PREF "Success - block %d has been marked bad\n", blockLocation);
else

printk(PRINT_PREF "Failure - Why U no mark block %d as bad?\n", blockLocation);

' ' ' ' ' '
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return ret;
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nandx hide.c
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/@D *x/
static int nandx_mark _bad_manual(int blockLocation)

{

' ' '
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/@D x/
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int ret;
loff_t ofs = blockLocation * mtd->erasesize;

no
N
—

no
N
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// THIS CALL IS THE ENTIRE MAGIC OF NANDX-HIDE
ret = msm_nand_block markbad(mtd, ofs);

no no no
N o N
a un el

if(ret)
printk(PRINT_PREF "We call into the driver and make %d go away.\n", blockLocation);
else
printk(PRINT_PREF "0Odd.. even a RAW write on the 00B doesn't kill block: %d\n",
blockLocation);
return ret;
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BadUSB — On accessories that turn evil
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USB devices include a micro-controller, hidden from the user

USB controller Flash

8051 CPU
Controller

firmware

Mass storage

\

The only part
visible to the user

P091533FA000021A, -
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USB devices are identified

USB devices Connectors + hubs Host

E"E | Root

Tl L »
— hub | .
Examples
Identifier USB thumb drive Webcam
Interface class 8 — Mass Storage a. 1 —Audio
b. 14 -Video
End points 0 — Control 0 — Control
1 — Data transfers 1 — Video transfers
6 — Audio transfers
7 —Video interrupts
Serial number AA627090820000000702 0258A350
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USB devices are initialized in several steps

USB device

- ~ USB plug-and-play

v

Register

Set address
Power-on + <
Firmware init Send descriptor

Set configuration

v

<

Normal operation

Optional: deregister

Register again ...

v
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Load driver

Load another
driver

Devices can have
several identities

= A device indicates
its capabilities
through a
descriptor

= A device can have
several
descriptors if it
supports multiple
device classes; like
webcam +
microphone

= Device can
deregister and
register again as a
different device



Agenda

= USB background
} Reprogramming peripherals
= USB attack scenarios

= Defenses and next steps
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Reversing and patching USB firmware took less than 2 months

Q Document firmware 9 . . G .
Reverse-engineer firmware Patch firmware
update process

1. Find leaked firmware and 1. Load into disassembler 1. Add hooks to firmware to
flash tool on the net (complication: MMU-like add/change functionality
2. Sniff update memory banking) 2. Custom linker script compiles
communication using 2. Apply heuristics C and assembly code and
Wireshark — Count matches between inj'eFts it .into unused areas of
3. Replay custom SCSI function start and call original firmware
commands used for instructions for different .
updates memory locations Other possible targets
4. (Reset bricked devices — Find known USB bit We focused on USB sticks,
through short-circuiting fields such as descriptors but the same approach
i hould k for:
Flash pins) 3. Apply standard software >houid-work for
reversing to find hooking * External HDDs
points = Webcams, keyboards

= Probably many more ...
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Agenda

= USB background
= Reprogramming peripherals
} USB attack scenarios

= Defenses and next steps
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Keyboard emulation is enough for infection and privilege escalation

(w/o need for software vulnerability)

Challenge — Linux malware runs with limited user privileges, but needs
root privileges to infect further sticks

Approach - Steal sudo password in screensaver

Restart screensaver D
(or policykit) with
password stealer
added via an
LD_PRELOAD library

User enters password to
unlock screen

Malware intercepts
password and gains root
privileges using sudo
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Privilege escalation
module will be
submitted to Metasploit
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Network traffic can be diverted by “DHCP on USB”

DNS assignment in All DNS
DHCP over spoofed gueries go to
USB-Ethernet attacker’s DNS

“5 adapter server

»
»

1. USB stick spoofs 3. Internet traffic is still routed
Ethernet adapter through the normal Wi-Fi

2. Replies to DHCP query connection
with DNS server on the 4. However, DNS queries are sent to
Internet, but without the USB-supplied server, enabling
default gateway redirection attacks
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