EE515/IS523 Think Like an Adversary Lecture 2 Intro+Crypto

Yongdae Kim KAIST

Admin

- □ Homepage
 - http://security101.kr
- □ Survey
 - Find your group members and discuss about projects

Rules of Thumb

Be conservative: evaluate security under the best conditions for the adversary

□ A system is as secure as the weakest link.

□ It is best to plan for unknown attacks.

Security & Risk

- □ The risk due to a set of attacks is the expected (or average) cost per unit of time.
- One measure of risk is Annualized Loss

incidence

Risk Reduction

 \Box A defense mechanism may reduce the risk of a set of attacks by reducing L_A or p_A . This is the gross risk reduction (GRR):

$$\sum_{A} (p_A \times L_A - p'_A \times L'_A)$$
attack A

□ The mechanism also has a cost. The net risk reduction (NRR) is GRR – cost.

Bug Bounty Program

- Evans (Google): "Seeing a fairly sustained drop-off for the Chromium"
- McGeehan (Facebook): The bounty program has actually outperformed the consultants they hire.
- Google: Patching serious or critical bugs within 60 days
- □ Google, Facebook, Microsoft, Mozilla, Samsung, ...

Nations as a Bug Buyer

- ReVuln, Vupen, Netragard: Earning money by selling bugs
- "All over the world, from South Africa to South Korea, business is booming in what hackers call zero days"
- "No more free bugs."
- 'In order to best protect my country, I need to find vulnerabilities in other countries'
- Examples
 - Critical MS Windows bug: \$150,000
 - a zero-day in iOS system sold for \$500,000
 - Vupen charges \$100,000/year for catalog and bug is sold separately
 - ▶ Brokers get 15%.

Sony vs. Hackers

Patco Construction vs. Ocean Bank

- □ Hacker stole ~\$600K from Patco through Zeus
- The transfer alarmed the bank, but ignored
- "commercially unreasonable"
 - Out-of-Band Authentication
 - User-Selected Picture
 - Tokens
 - Monitoring of Risk-Scoring Reports

Auction vs. Customers

Auction's fault

- Unencrypted Personal Information
- It did not know about the hacking for two days
- Passwords
 - » 'auction62', 'auctionuser', 'auction'
- Malwares and Trojan horse are found in the server.

Not gulity, because

- Hacker utilized new technology, and were well-organized.
- Auctions have too many server.
- AVs have false alarms.
- For large company like auction, difficult to use.
- Causes massive traffic.

Cost of Data Breach

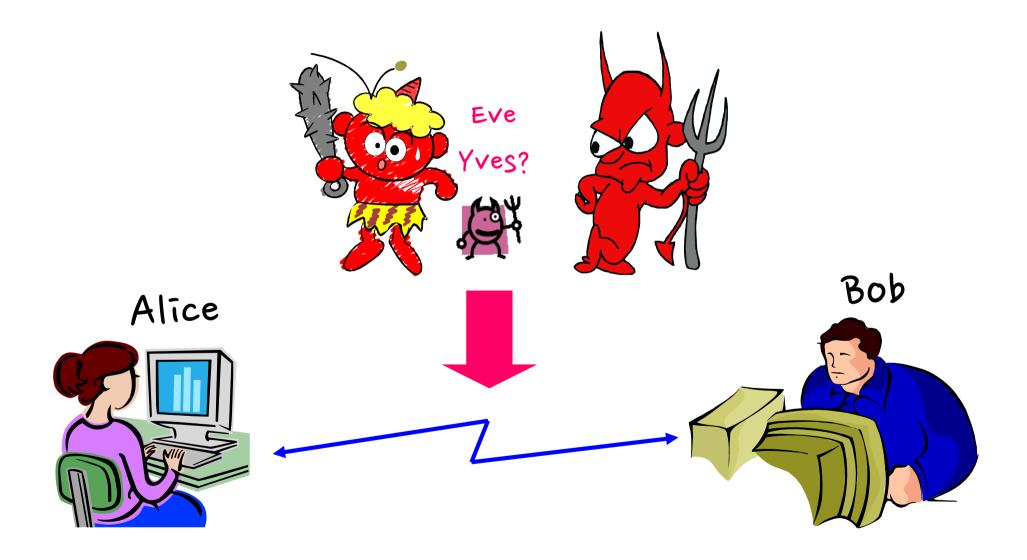
Ponemon Cost of Data Breach Study: 12th year in measuring cost of data breach

Company	Year	Data	Cost (USD)
Anthem	2015	80 M patient and employee records	100M
Ashley Madison	2015	33 M user accounts	850M
Ebay	2014	145M customer accounts	200M
JPMorgan Chase	2014	Financial/Personal Info of 76 M Personal, 7M Small B	1000M
Home Depot	2014	56 M credit card and 53 M email addresses.	80 M
Sony Pictures	2014	Personal Information of 3,000 employees	35 M
Target	2013	40 M credit and debit card, 70 M customer	252 M
Global Payments	2012	1.5M card accounts	90 M
Tricare	2011	5 M Tricare Military Beneficiary	130 M
Citi Bank	2011	360,000 Credit Card	19 M
Hearland	2009	130M Card	2800 M

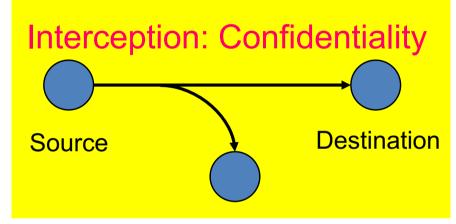
Security theater is the practice of

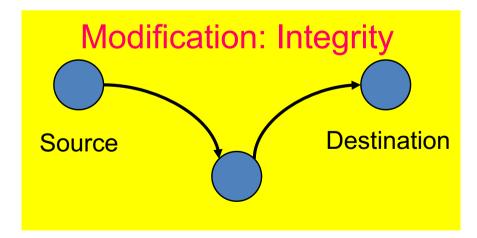
- investing in countermeasures intended to provide the feeling of improved security
- while doing little or nothing to actually achieve it
 - Bruce Schneier

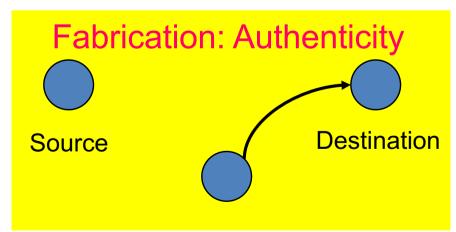
Security of New Technologies

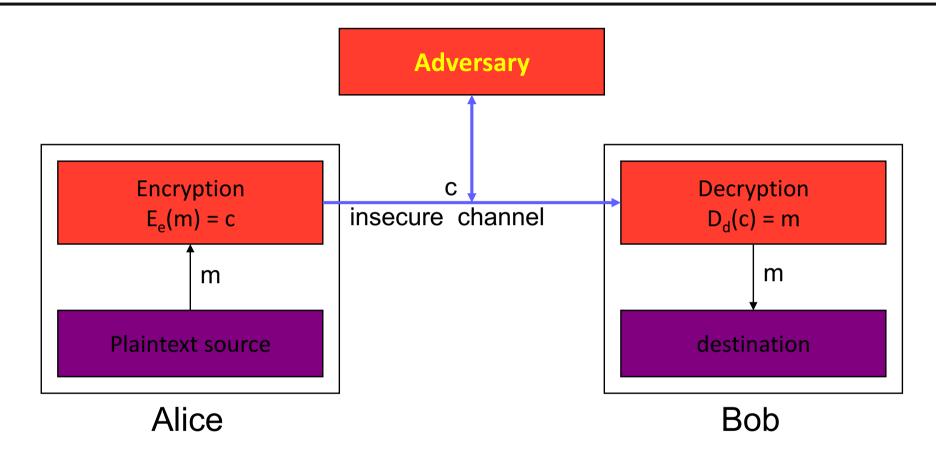

- Most of the new technologies come with new and old vulnerabilities.
 - Old vulnerabilities: OS, Network, Software Security, ...
 - Studying old vulnerabilities is important, yet less interesting.
 - e.g. Stealing Bitcoin wallet, Drone telematics channel snooping
- New Problems in New Technologies
 - Sensors in Self-Driving Cars and Drones
 - Security of Deep Learning
 - Block Chain Pool Mining Attacks
 - Brain Hacking

Basic Cryptography


The Main Players

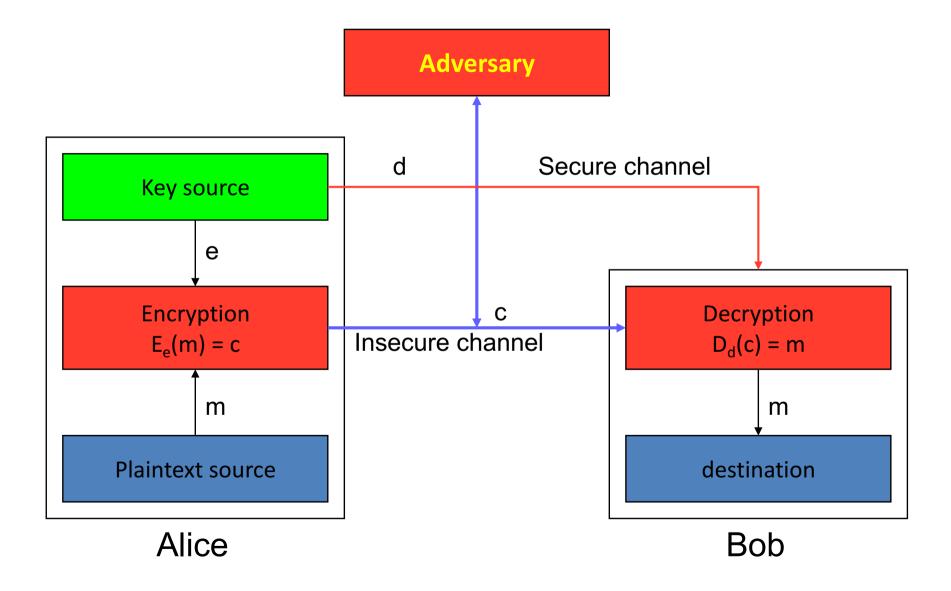


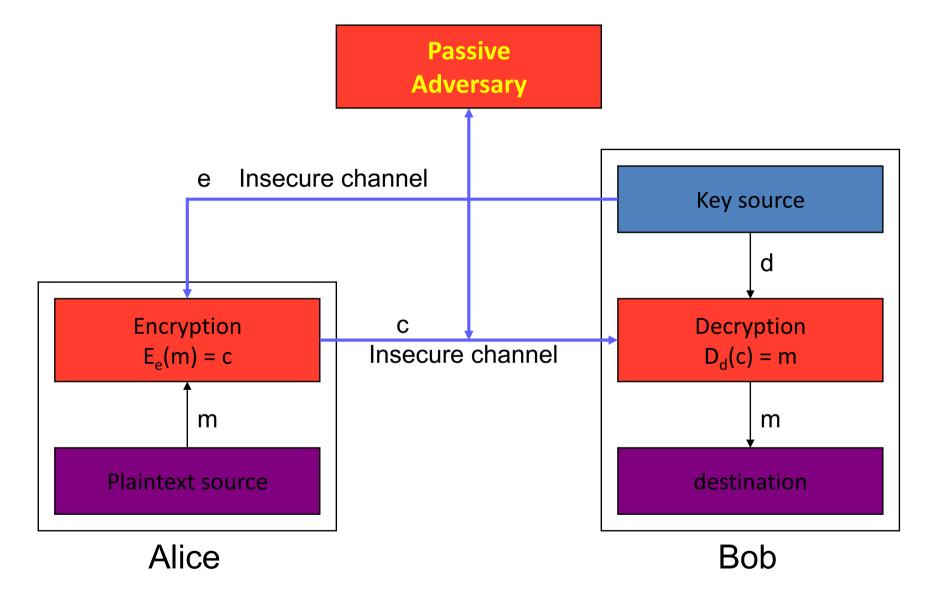

Attacks

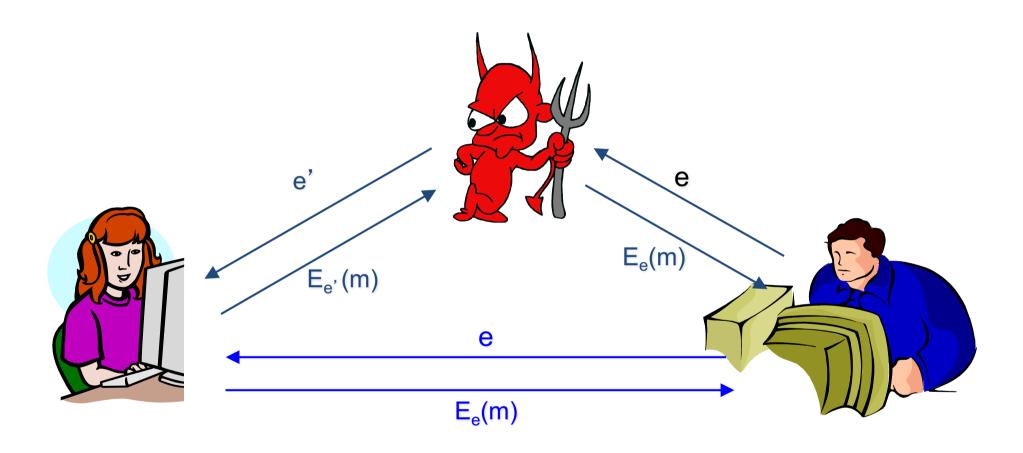

Taxonomy of Attacks

- □ Passive attacks
 - Eavesdropping
 - Traffic analysis

- □ Active attacks
 - Masquerade
 - Replay
 - Modification of message content
 - Denial of service

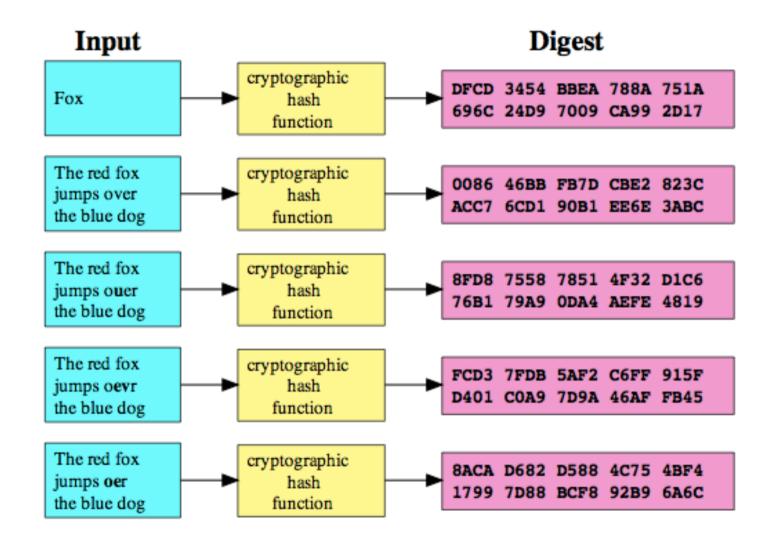

Encryption


- □ Why do we use key?
 - Or why not use just a shared encryption function?


SKE with Secure channel

PKE with Insecure Channel

Public Key should be authentic!



Hash Function

- A hash function is a function h satisfying
 - \rightarrow h:{0, 1}* \rightarrow {0, 1}k (Compression)
- A cryptographic hash function is a hash function satisfying
 - It is easy to compute y=h(x) (ease of computation)
 - For a given y, it is hard to find x' such that h(x')=y. (onewayness)
 - It is hard to find x and x' such that h(x)=h(x') (collision resistance)
- □ Examples: SHA-1, MD-5

How Random is the Hash function?

Applications of Hash Function

File integrity

- □ Digital signatureSign = S_{SK}(h(m))
- Password verificationstored hash = h(password)

- □ File identifier
- □ Hash table

Generating random numbers

Hash function and MAC

- A hash function is a function h
 - compression
 - ease of computation
 - Properties

```
» one-way: for a given y, find x' such that h(x') = y
```

- » collision resistance: find x and x' such that h(x) = h(x')
- Examples: SHA-1, MD-5
- MAC (message authentication codes)
 - both authentication and integrity
 - MAC is a family of functions h_k
 - » ease of computation (if k is known !!)
 - » compression, x is of arbitrary length, $h_k(x)$ has fixed length
 - » computation resistance
 - Example: HMAC

MAC construction from Hash

□ Prefix

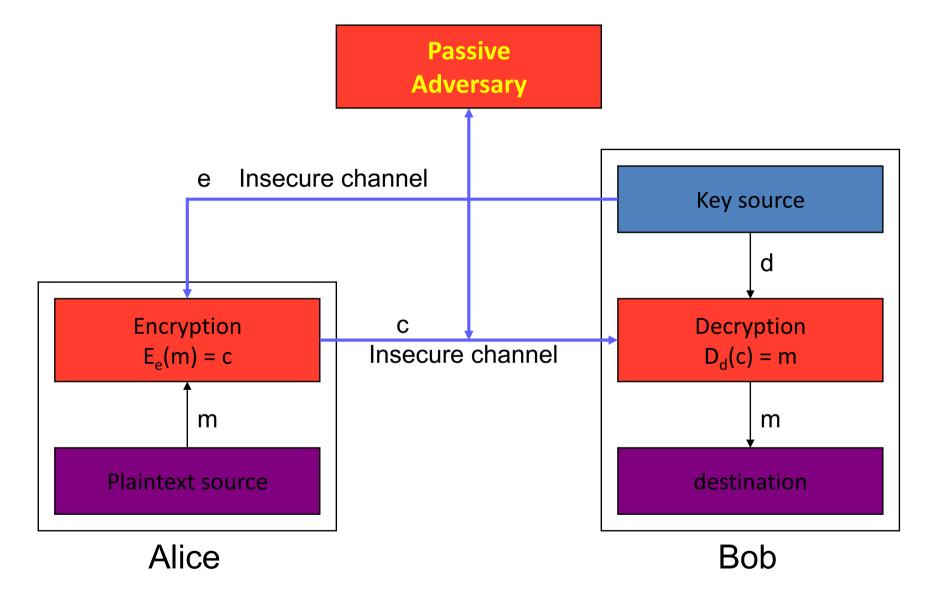
- M=h(k||x)
- appending y and deducing h(k||x||y) form h(k||x) without knowing k

□ Suffix

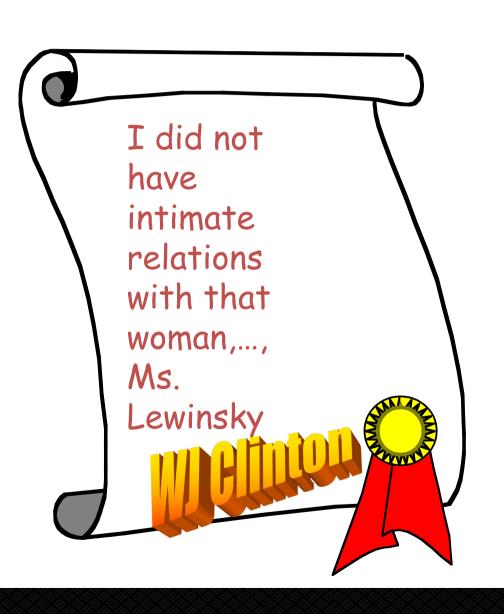
- M=h(x||k)
- possible a birthday attack, an adversary that can choose x can construct x' for which h(x)=h(x') in $O(2^{n/2})$

□ STATE OF THE ART: HMAC (RFC 2104)

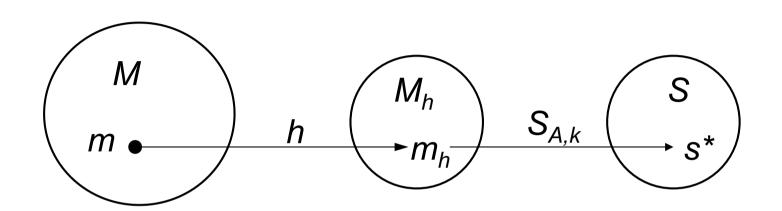
- ► HMAC(x)=h(k||p₁||h(k|| p₂||x)), p1 and p2 are padding
- The outer hash operates on an input of two blocks
- Provably secure

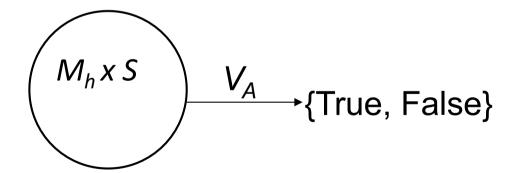


How to use MAC?


- □ A & B share a secret key k
- □ A sends the message x and the MAC
 M←H_k(x)
- □ B receives x and M from A
- \square B computes $H_k(x)$ with received M
- \Box B checks if M=H_k(x)

PKE with Insecure Channel


Digital Signature



- □ Integrity
- Authentication
- □ Non-repudiation

Digital Signature with Appendix

$$s^* = S_{A,k}(m_h)$$

$$u = V_A(m_h, s^*)$$

Authentication

- □ How to prove your identity?
 - Prove that you know a secret information
- □ When key K is shared between A and Server
 - A → S: HMAC_K(M) where M can provide freshness
 - Why freshness?
- □ Digital signature?
 - A → S: Sig_{SK}(M) where M can provide freshness
- □ Comparison?

Encryption and Authentication

 $\Box E_{K}(M)$

- \square Redundancy-then-Encrypt: $E_K(M, R(M))$
- □ Hash-then-Encrypt: E_K(M, h(M))
- \square Hash and Encrypt: $E_{K}(M)$, h(M)
- \square MAC and Encrypt: $E_{h1(K)}(M)$, HMAC_{h2(K)}(M)
- \square MAC-then-Encrypt: $E_{h1(K)}(M, HMAC_{h2(K)}(M))$

Challenge-response authentication

- □ Alice is identified by a *secret* she possesses
 - Bob needs to know that Alice does indeed possess this secret
 - Alice provides response to a time-variant challenge
 - Response depends on both secret and challenge

Using

- Symmetric encryption
- One way functions

Challenge Response using SKE

- □ Alice and Bob share a key *K*
- □ Taxonomy
 - Unidirectional authentication using timestamps
 - Unidirectional authentication using random numbers
 - Mutual authentication using random numbers
- Unilateral authentication using timestamps
 - ▶ Alice \rightarrow Bob: $E_K(t_A, B)$
 - Bob decrypts and verified that timestamp is OK
 - Parameter B prevents replay of same message in B → A direction

Challenge Response using SKE

- Unilateral authentication using random numbers
 - \rightarrow Bob \rightarrow Alice: r_h
 - ▶ Alice \rightarrow Bob: $E_{\kappa}(r_b, B)$
 - \triangleright Bob checks to see if r_b is the one it sent out
 - » Also checks "B" prevents reflection attack
 - r_b must be non-repeating
- Mutual authentication using random numbers
 - \triangleright Bob \rightarrow Alice: r_b
 - ▶ Alice \rightarrow Bob: $E_K(r_a, r_b, B)$
 - ▶ Bob \rightarrow Alice: $E_{\kappa}(r_a, r_b)$
 - \triangleright Alice checks that r_a , r_b are the ones used earlier

Challenge-response using OWF

- \square Instead of encryption, used keyed MAC h_K
- Check: compute MAC from known quantities, and check with message
- □ SKID3
 - \triangleright Bob \rightarrow Alice: r_b
 - ▶ Alice \rightarrow Bob: r_a , $h_K(r_a, r_b, B)$
 - ▶ Bob \rightarrow Alice: $h_K(r_a, r_b, A)$

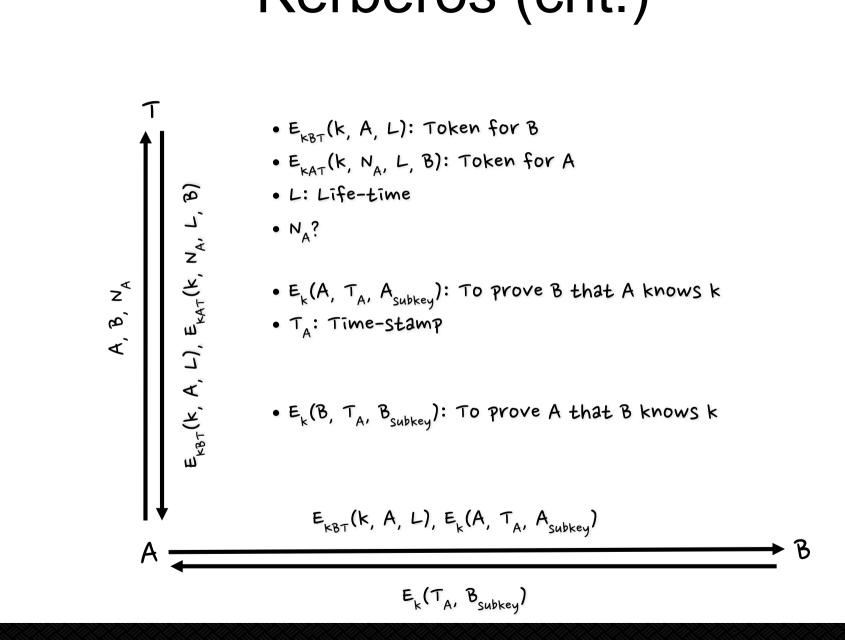
Key Establishment, Management

□ Key establishment

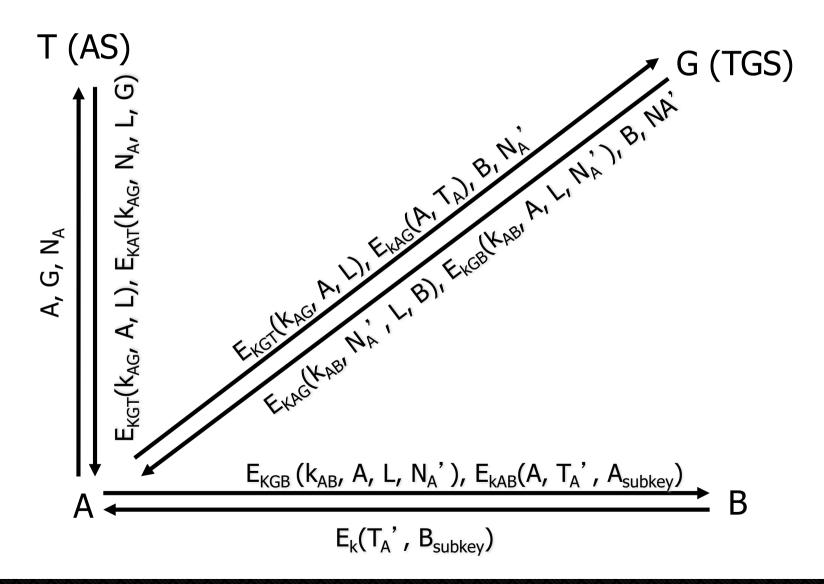
- Process to whereby a shared secret key becomes available to two or more parties
- Subdivided into key agreement and key transport.

□ Key management

- The set of processes and mechanisms which support key establishment
- The maintenance of ongoing keying relationships between parties



Kerberos vs. PKI vs. IBE


- □ Still debating ©
- □ Let's see one by one!

Kerberos (cnt.)

Kerberos (Scalable)

Public Key Certificate

- Public-key certificates are a vehicle
 - public keys may be stored, distributed or forwarded over unsecured media
- □ The objective
 - make one entity's public key available to others such that its authenticity and validity are verifiable.
- A public-key certificate is a data structure
 - data part
 - » cleartext data including a public key and a string identifying the party (subject entity) to be associated therewith.
 - signature part
 - » digital signature of a certification authority over the data part
 - » binding the subject entity's identity to the specified public key.

CA

- a trusted third party whose signature on the certificate vouches for the authenticity of the public key bound to the subject entity
 - The significance of this binding must be provided by additional means, such as an attribute certificate or policy statement.
- the subject entity must be a unique name within the system (distinguished name)
- The CA requires its own signature key pair, the authentic public key.
- □ Can be off-line!

ID-based Cryptography

- No public key
- □ Public key = ID (email, name, etc.)
- □ PKG
 - Private key generation center
 - \triangleright SK_{ID} = PKG_S(ID)
 - PKG's public key is public.
 - distributes private key associated with the ID
- \square Encryption: $C = E_{ID}(M)$
- \square Decryption: $D_{SK}(C) = M$

Discussion (PKI vs. Kerberos vs. IBE)

- □ On-line vs. off-line TTP
 - Implication?
- Non-reputation?
- □ Revocation?
- □ Scalability?
- □ Trust issue?

Questions?

□ Yongdae Kim

```
Pemail: yongdaek@kaist.ac.kr
Pemail: yon
```