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Introduction

• Global System for Mobile communications (GSM) 
- It is also known as 2G


• Long Term Evolution (LTE) and UMTS (3G) provide 
backwards compatible with GSM
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Introduction

• It's a part which is embedded in cellular phone 
- It's responsible for radio operations


• Smart phones have at least two CPU 
- Cellular processor (CP) for baseband software 
- Application processor (AP) for user interface and applications
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Cellular Baseband Stack

Figure. Qualcomm cellular processor & Intel Infineon baseband processor



Introduction

• It runs on RTOS separately from application processor 
- For radio performance/reliability 
- For government's law
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Cellular Baseband Stack

Figure. Qualcomm baseband processor & Intel Infineon baseband processor



Introduction

• Author analyzed GSM baseband stacks 
- Mainly iPhone 4 and HTC Dream G1 
- Remotely exploitable memory corruptions are found 
  - Due to programming error


• iPhone 4 (Intel infineon baseband) 
- heap-based buffer overflow


• HTC Dream G1 (Qualcomm baseband) 
- stack-based buffer overflow


• Bugs are patched
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Contribution
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- Layer 3 Message Format



Baseband Security

• Code-base baseband is introduced in 1990s.


• GSM protocols have many length field


• There's no exploit mitigations 
- Stack canary, heap protection (safe unlink), DEP, ASLR, ...


• Cellular phone/baseband's firmware is not open-source 
- But, in 2004, Vitelcom TSM 30 firmware was leaked 
  - It helps to understand GSM baseband stack architecture
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Baseband Security Overview



Baseband Security

!13

TI PD

Layer 3 Message Format
MT IE

4 bits 4 bits 8 bits V0

• Transaction Identifier (TI)


• Protocol Discriminator (PD)


• Message Type (MT): specify message type of given PD 

• Information Elements (IE): contain information options and 
data by given MT. V0 is different by MT and IE's option 
- IE can be combination of T, L and V. (V, LV, T, TV,TLV) 
  - T=tag (1 byte), L=length (1 byte), V=value
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- Targets 
- Analysis methods 
  - Fuzzing 
  - Code auditing 
  - Reverse engineering
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• Fuzzing 
- From a previous related work, numerous crashes occur 
  leading denial-of-service 
- But there was no easy way to find out whether the crash 
  can lead memory corruption

C. Miller and C. Mulliner, Fuzzing the phone in your phone, BlackHat, 2009.
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• There's no source code of the targets publicly available


• But there's source tree of Vitelcom TSM 30's firmware

Analysis methods - Code auditing

Find wide spread 
memory 

corruptions on 
Vitelcom TSM 30

Other baseband 
software(of 

iPhone 4 and 
HTC Dream G1)

Is there such a kind of memory corruptions 
in target baseband software?
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Reverse engineering - Obtaining firmware
• iPhone 4 (iOS) 

- OTA update file 
  - It's .ipsw extension file 
    - Unpacking .ipsw is required

Figure. OTA update of iPhone
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Reverse engineering - Obtaining firmware

• HTC Dream G1 (Android) 
- By dumping memory/flash using JTAG 
  - Baseband image exist in the firmware It contains ELF 
and loader 
- JTAG can be used to dynamic debugging

Figure. HTC Dream G1 JTAG pins on mainboard
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Reverse engineering - Analyzing binaries

• ARM binaries are supported by IDA Pro 
- Hex-Rays 
  - Decompiler plugin of IDA Pro

decompiled 
by hex-rays
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Reverse engineering - Analyzing binaries

• Symbol identification 
- Zynamics's BinDiff, a binary diffing tool, can be used 
- Memory copy function symbols can be identified 
  - memcpy(), memmov(), bcopy() and so on

Similarity
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Reverse engineering - Analyzing binaries

• Analyzing iPhone 2G 
- iPhone 2G has no UMTS (3G) and GPS functions 
- The analyzed work can be ported to iPhone 4 through 
  BinDiff

iPhone 2G iPhone 4

too big!smaller than iPhone 4

GPSUMTS 
(3G)



How to Find Bug

!23

Reverse engineering - Analyzing binaries

• Dynamic debugging 
- JTAG 
  - obtaining machine code, setting breakpoint, obtaining 
    register status, ... 
- In HTC Dream G1, second boot loader, which is OS boot 
loader, doesn't allow JTAG 
- But the the before getting into second boot loader, we can 
set breakpoint and can change the JTAG allowing flag
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- Types of bug found 
- Example in Intel Infineon baseband code (CVE-2010-3832) 
- Example in Qualcomm baseband code 
- Demo
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Types of bug found

• Insufficient length checks for memory copy 
- it can be found more easily by identifying symbols of 
  memory copy functions


• Object lifecycle issue 
- GSM has complex state machine 
  - allocation/freeing pair mismatching 
    - use-after-free, uninitialized use, unhandled state


• Reaching code path not to be reached 
- code path for UMTS (3G) can be reached using GSM (2G)
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Example in Intel Infineon baseband code (CVE-2010-3832)

• Temporary Mobile Subscriber Identifier (TMSI) 
- It's supposed to be always 32 bits long value 
- but variable length field (1 byte) is used for TMSI 
  - L in IE of layer 3 message


• No enough space to take TMSI (> 32 bits) 
- It trusts the variable length field and copies the TMSI 
  sent by fake BTS 
- Heap buffer overflow occurs


• CVE-2010-3832 
- It allows attackers to execute arbitrary code remotely
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Example in Qualcomm baseband code

• During authentication, BTS send a challenge response 
- In GSM, RAND 16 bytes (which is constant) 
- In UMTS, AUTN 16 bytes (which has variable length field)


• Even if Qualcomm baseband in GSM mode accept AUTN 
- By changing RAND's IE type to AUTN


• Sending RAND (> 16 bytes) with AUTN IE type 
- Stack buffer overflow 
  - Program counter can be overwritten 
  - Saved registers can be overwritten 
- Remote code execution!
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From bugs to exploitations - Qualcomm baseband code

control flow of copy_auth_IE()
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From bugs to exploitations - Qualcomm baseband code

memcpy(dest, src, 0x10);
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From bugs to exploitations - Qualcomm baseband code

memcpy(dest, src, variable_length);
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From bugs to exploitations - Qualcomm baseband code

• FakeBTS 
- Ettus Research USRPv1 
  - It provides RF processing capability 
- Laptop with OpenBTS 
  - Software-defined GSM access point


• Payload 
- Changing return address --> ATS0=n handler 
- Changing saved R0 register value --> 1 (ON) 
--> ATS0(0); is executed 
--> Auto-answer feature is turned on 
--> control flow hijacking can be proved
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From bugs to exploitations - Qualcomm baseband code
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From bugs to exploitations - Qualcomm baseband code
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From bugs to exploitations - Qualcomm baseband code
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- Impact 
- Defense
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Impact
• Billing issue 

- By controlling compromised baseband, adversary can send 
MMS or cause large data transfer


• Feasibility of eavesdropping 
- Audio routing is done by baseband stack


• Bricking phone 
- adversary can write something to NVRAM region which contain 
  important data like IMEI


• In case of shared memory design in which single RAM is used 
for both application and baseband stack


• Replaying this attack somewhere crowded areas can gives 
critical damage
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• Attack can be performed with reasonable budget 
-Laptop (with OpenBTS), USRP


• iPhone 4 (iOS 4.2) 
- TMSI overflow was assigned to CVE-2010-3832


• HTC Dream G1 
- No public documentation 
- But, length check is added for parsing AUTN


• 3G also is expected to be vulnerable 
- Malicious Femtocell 
- 1500 pages for layer 3 of 3G protocol specification

Conclusion
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Conclusion - Solutions

• Strict software security assessment 
- Vendors should find and patch the bugs by code auditing  
  and testing before attackers


• Mitigation techniques should be enabled 
- Stack canary, heap protections, DEP, ASLR, ...


• Mutual authentication between MS and BTS 
- But, SW/HW manufacturers agreement is required to 
  patch their products to add more authentication phase
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Future works
• Attack implementation for recent cellular phone 

- Recently, AP and CP have its own RAM respectively 
- Even in such hardened design 
  - Is escalation to application from baseband possible? 
    - With assumption baseband already is comprised 
      - Is there any attack vector from baseband to application?
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