
Baseband Attacks:  
Remote Exploitation of Memory Corruptions 

in Cellular Protocol Stacks
Author: Ralf-Philipp Weinmann

University of Luxembourg
WOOT, USENIX, 2012.

Presenter: Hyuntae Kim

Part 1. Introduction

!2

- GSM overview 
 - MS-BTS 
- Cellular Baseband Stack 
- Contribution

Introduction

• Global System for Mobile communications (GSM) 
- It is also known as 2G

• Long Term Evolution (LTE) and UMTS (3G) provide
backwards compatible with GSM

!3

GSM Overview

Introduction

GSM Overview

!4

Mobile
Station (MS)

Base
Transceiver

Station (BTS)

Links to Outside
World 

(BCS, MSC, VLR,
EIR, HLR, ...)

public
network

air
interface

receives/
transmits

radio
signals

cellular
baseband

stack

Introduction

GSM Overview - MS-BTS

!5

Mobile
Station (MS)

Base
Transceiver

Station (BTS)

air
interface

receives/
transmits

radio
signals

cellular
baseband

stack

MS-BTS interface (Um interface)

Introduction

GSM Overview - MS-BTS

!6

Base
Transceiver

Station (BTS)

air
interface

cellular
baseband

stack

Fake  
Base

Transceiver
Station (BTS)

no mutual
authentication

receives/
transmits

radio
signals

MS-BTS interface (Um interface)
Mobile

Station (MS)

Introduction

GSM Overview - MS-BTS

!7

Mobile
Station(MS)

Base
Transceiver
Station(BTS)

air interface

cellular
baseband

stack

MS-BTS interface (Um interface)

LAPDm (Layer 2)

Radio Interface (Layer 1)

Radio Resource (RR)

Mobility Management (MM)
Connection Management (CM)

Layer 3

LAPDm (Layer 2)

Radio Interface (Layer 1)

Radio Resource (RR)

Mobility Management (MM)

Connection Management (CM)

Layer 3

Introduction

• It's a part which is embedded in cellular phone 
- It's responsible for radio operations

• Smart phones have at least two CPU 
- Cellular processor (CP) for baseband software 
- Application processor (AP) for user interface and applications

!8

Cellular Baseband Stack

Figure. Qualcomm cellular processor & Intel Infineon baseband processor

Introduction

• It runs on RTOS separately from application processor 
- For radio performance/reliability 
- For government's law

!9

Cellular Baseband Stack

Figure. Qualcomm baseband processor & Intel Infineon baseband processor

Introduction

• Author analyzed GSM baseband stacks 
- Mainly iPhone 4 and HTC Dream G1 
- Remotely exploitable memory corruptions are found 
 - Due to programming error

• iPhone 4 (Intel infineon baseband) 
- heap-based buffer overflow

• HTC Dream G1 (Qualcomm baseband) 
- stack-based buffer overflow

• Bugs are patched

!10

Contribution

Part 2. Baseband Security

!11

- Baseband Security Overview 
- Layer 3 Message Format

Baseband Security

• Code-base baseband is introduced in 1990s.

• GSM protocols have many length field

• There's no exploit mitigations 
- Stack canary, heap protection (safe unlink), DEP, ASLR, ...

• Cellular phone/baseband's firmware is not open-source 
- But, in 2004, Vitelcom TSM 30 firmware was leaked 
 - It helps to understand GSM baseband stack architecture

!12

Baseband Security Overview

Baseband Security

!13

TI PD

Layer 3 Message Format
MT IE

4 bits 4 bits 8 bits V0

• Transaction Identifier (TI)

• Protocol Discriminator (PD)

• Message Type (MT): specify message type of given PD

• Information Elements (IE): contain information options and
data by given MT. V0 is different by MT and IE's option 
- IE can be combination of T, L and V. (V, LV, T, TV,TLV) 
 - T=tag (1 byte), L=length (1 byte), V=value

Part 3. How to Find Bug

!14

- Targets 
- Analysis methods 
 - Fuzzing 
 - Code auditing 
 - Reverse engineering

How to Find Bug

Apple iPhone 4
(Intel Infineon

baseband, iOS)

!15

Targets

HTC Dream G1
(Qualcomm
baseband,
Android)

How to Find Bug

!16

• Fuzzing 
- From a previous related work, numerous crashes occur 
 leading denial-of-service 
- But there was no easy way to find out whether the crash 
 can lead memory corruption

C. Miller and C. Mulliner, Fuzzing the phone in your phone, BlackHat, 2009.

send fu
zze

d m
essa

ge

Analysis methods - Fuzzing

How to Find Bug

!17

• There's no source code of the targets publicly available

• But there's source tree of Vitelcom TSM 30's firmware

Analysis methods - Code auditing

Find wide spread
memory

corruptions on
Vitelcom TSM 30

Other baseband
software(of

iPhone 4 and
HTC Dream G1)

Is there such a kind of memory corruptions
in target baseband software?

How to Find Bug

!18

Reverse engineering - Obtaining firmware
• iPhone 4 (iOS) 

- OTA update file 
 - It's .ipsw extension file 
 - Unpacking .ipsw is required

Figure. OTA update of iPhone

How to Find Bug

!19

Reverse engineering - Obtaining firmware

• HTC Dream G1 (Android) 
- By dumping memory/flash using JTAG 
 - Baseband image exist in the firmware It contains ELF
and loader 
- JTAG can be used to dynamic debugging

Figure. HTC Dream G1 JTAG pins on mainboard

How to Find Bug

!20

Reverse engineering - Analyzing binaries

• ARM binaries are supported by IDA Pro 
- Hex-Rays 
 - Decompiler plugin of IDA Pro

decompiled
by hex-rays

How to Find Bug

!21

Reverse engineering - Analyzing binaries

• Symbol identification 
- Zynamics's BinDiff, a binary diffing tool, can be used 
- Memory copy function symbols can be identified 
 - memcpy(), memmov(), bcopy() and so on

Similarity

How to Find Bug

!22

Reverse engineering - Analyzing binaries

• Analyzing iPhone 2G 
- iPhone 2G has no UMTS (3G) and GPS functions 
- The analyzed work can be ported to iPhone 4 through 
 BinDiff

iPhone 2G iPhone 4

too big!smaller than iPhone 4

GPSUMTS
(3G)

How to Find Bug

!23

Reverse engineering - Analyzing binaries

• Dynamic debugging 
- JTAG 
 - obtaining machine code, setting breakpoint, obtaining 
 register status, ... 
- In HTC Dream G1, second boot loader, which is OS boot
loader, doesn't allow JTAG 
- But the the before getting into second boot loader, we can
set breakpoint and can change the JTAG allowing flag

Part 4. Memory Corruptions Found

!24

- Types of bug found 
- Example in Intel Infineon baseband code (CVE-2010-3832) 
- Example in Qualcomm baseband code 
- Demo

Memory Corruptions Found

!25

Types of bug found

• Insufficient length checks for memory copy 
- it can be found more easily by identifying symbols of 
 memory copy functions

• Object lifecycle issue 
- GSM has complex state machine 
 - allocation/freeing pair mismatching 
 - use-after-free, uninitialized use, unhandled state

• Reaching code path not to be reached 
- code path for UMTS (3G) can be reached using GSM (2G)

Memory Corruptions Found

!26

Example in Intel Infineon baseband code (CVE-2010-3832)

• Temporary Mobile Subscriber Identifier (TMSI) 
- It's supposed to be always 32 bits long value 
- but variable length field (1 byte) is used for TMSI 
 - L in IE of layer 3 message

• No enough space to take TMSI (> 32 bits) 
- It trusts the variable length field and copies the TMSI 
 sent by fake BTS 
- Heap buffer overflow occurs

• CVE-2010-3832 
- It allows attackers to execute arbitrary code remotely

Memory Corruptions Found

!27

Example in Qualcomm baseband code

• During authentication, BTS send a challenge response 
- In GSM, RAND 16 bytes (which is constant) 
- In UMTS, AUTN 16 bytes (which has variable length field)

• Even if Qualcomm baseband in GSM mode accept AUTN 
- By changing RAND's IE type to AUTN

• Sending RAND (> 16 bytes) with AUTN IE type 
- Stack buffer overflow 
 - Program counter can be overwritten 
 - Saved registers can be overwritten 
- Remote code execution!

Memory Corruptions Found

!28

From bugs to exploitations - Qualcomm baseband code

control flow of copy_auth_IE()

Memory Corruptions Found

!29

From bugs to exploitations - Qualcomm baseband code

memcpy(dest, src, 0x10);

Memory Corruptions Found

!30

From bugs to exploitations - Qualcomm baseband code

memcpy(dest, src, variable_length);

Memory Corruptions Found

!31

From bugs to exploitations - Qualcomm baseband code

• FakeBTS 
- Ettus Research USRPv1 
 - It provides RF processing capability 
- Laptop with OpenBTS 
 - Software-defined GSM access point

• Payload 
- Changing return address --> ATS0=n handler 
- Changing saved R0 register value --> 1 (ON) 
--> ATS0(0); is executed 
--> Auto-answer feature is turned on 
--> control flow hijacking can be proved

Memory Corruptions Found

!32

From bugs to exploitations - Qualcomm baseband code

Saved Link Register (LR)
Saved Frame Pointer (FP)

Saved Registers

Local Space

high address

low address

other stack frame

stack
grows 
to low

address

copy_auth_IE() stack frame

After RAND 0x10
bytes are copied
to stack buffer

pointer

Saved Link Register (LR)
Saved Frame Pointer (FP)

Saved Registers

Local Variables

high address

low address

other stack frame

copy_auth_IE() stack frame

written 0x10 bytes

stack
grows 
to low

address

Memory Corruptions Found

!33

From bugs to exploitations - Qualcomm baseband code

Saved Link Register (LR)
Saved Frame Pointer (FP)

Saved Registers

Local Space

high address

low address

other stack frame

stack
grows 
to low

address

copy_auth_IE() stack frame

Saved Link Register (LR)
Saved Frame Pointer (FP)

Saved Registers

Local Variables

high address

low address

other stack frame

stack
grows 
to low

address

copy_auth_IE() stack frame

junk

0x00000001 for saved R0

junk

Addr of ATS0=n Handler

also overwritten

After AUTN,
which is exploit

payload 
is copied to stack

buffer

pointer

ATS0(0); is
executed!

Memory Corruptions Found

!34

From bugs to exploitations - Qualcomm baseband code

Part 5. Impact & Conclusion

!35

- Impact 
- Defense

Impact & Conclusion

!36

Impact
• Billing issue 

- By controlling compromised baseband, adversary can send
MMS or cause large data transfer

• Feasibility of eavesdropping 
- Audio routing is done by baseband stack

• Bricking phone 
- adversary can write something to NVRAM region which contain 
 important data like IMEI

• In case of shared memory design in which single RAM is used
for both application and baseband stack

• Replaying this attack somewhere crowded areas can gives
critical damage

Impact & Conclusion

!37

• Attack can be performed with reasonable budget 
-Laptop (with OpenBTS), USRP

• iPhone 4 (iOS 4.2) 
- TMSI overflow was assigned to CVE-2010-3832

• HTC Dream G1 
- No public documentation 
- But, length check is added for parsing AUTN

• 3G also is expected to be vulnerable 
- Malicious Femtocell 
- 1500 pages for layer 3 of 3G protocol specification

Conclusion

Impact & Conclusion

!38

Conclusion - Solutions

• Strict software security assessment 
- Vendors should find and patch the bugs by code auditing  
 and testing before attackers

• Mitigation techniques should be enabled 
- Stack canary, heap protections, DEP, ASLR, ...

• Mutual authentication between MS and BTS 
- But, SW/HW manufacturers agreement is required to 
 patch their products to add more authentication phase

Part 6. Related works & Future works

!39

- Related works 
- Future works

Related works & Future works

!40

Related works
• C. Mulliner, N. Golde, J. pierre Seifert, "SMS of Death:

From Analyzing to Attacking Mobile Phones on a Large
Scale", USENIX, 2011.

• F. van den Broek, B. Hond, A. Cedillo Torres, "Security
Testing of GSM Implementations", ESSoS, 2014.

• N. Golde, D. Komaromy, "Breaking Band: Reverse
Engineering and Exploiting The Shannon Base Band",
Recon, 2016.

Related works & Future works

!41

Future works
• Attack implementation for recent cellular phone 

- Recently, AP and CP have its own RAM respectively 
- Even in such hardened design 
 - Is escalation to application from baseband possible? 
 - With assumption baseband already is comprised 
 - Is there any attack vector from baseband to application?

Thank you

