Baseband Attacks:
Remote Exploitation of Memory Corruptions
in Cellular Protocol Stacks

Author: Ralf-Philipp Weinmann
University of Luxembourg
WOOT, USENIX, 2012.

Presenter: Hyuntae Kim

Part 1. Introduction

- GSM overview

- MS-BTS
- Cellular Baseband Stack
- Contribution

Introduction

GSM Overview

e Global System for Mobile communications (GSM)
- It is also known as 2G

e |Long Term Evolution (LTE) and UMTS (3G) provide
backwards compatible with GSM

Introduction

GSM Overview

Mobile d cellular receives/
Station (MS)W,,2ceband transmits
stack I‘adiO
T, signals
e . Links to Outside
air) World

interface . (BCS, MSC, VLR,

A’) EIR, HLR, ..
Transceiver

Base
Station (BTS)

Introduction

GSM Overview - MS-BTS

----- rfaCe(U
............. M interfaae
IRELTI el ace):
receives/ TTtteee ce)
transmits
radio
........ signals
air 00 "t
Interface Base
Transceliver

Station (BTS)

Introduction

GSM Overview - MS-BTS

:.MS- ------: ------------
.""""'B-.-':ﬁ.'.'?.te"face (U o,
=,,.’??_gnte,-fa%)"_.-
- receives/ Tttveeall7Y, :
IV!ObIIe : cellular transmits
Station (MS)¥.seband cadio
stac.k signals
no mutual .°. e
authentication air

Interface

((A}) Transceiver

Station (BTS)

Base
Transceiver

Station (BTS)

Introduction

GSM Overview - MS-BTS

Mobile :MS-BTS interface (Um interface): _ B3se
Statlon(MS) ... * Transceiver
Station(BTS)
. (tg)
| cellular
baseband A
stack
Connection Management (CM) / Connection Management (CM)
Mobility Management (MM) | Layer 3 Layer 3| Mobility Management (MM)
Radio Resource (RR) Radio Resource (RR)
LAPDm (Layer 2) LAPDm (Layer 2)
Radio Interface (Layer 1) Radio Interface (Layer 1)
. air interface .

v

Introduction

Cellular Baseband Stack

e |t's a part which is embedded in cellular phone
- It's responsible for radio operations

e Smart phones have at least two CPU
- Cellular processor (CP) for baseband software
- Application processor (AP) for user interface and applications

Figure. Qualcomm cellular processor & Intel Infineon baseband processor

Introduction

Cellular Baseband Stack

e |t runs on RTOS separately from application processor
- For radio performance/reliability
- For government's law

Figure. Qualcomm baseband processor & Intel Infineon baseband processor

Introduction

Contribution

e Author analyzed GSM baseband stacks
- Mainly iPhone 4 and HTC Dream G1
- Remotely exploitable memory corruptions are found
- Due to programming error

e {Phone 4 (Intel infineon baseband)
- heap-based buffer overflow

e HTC Dream G1 (Qualcomm baseband)
- stack-based buffer overflow

e Bugs are patched

10

Part 2. Baseband Security

- Baseband Security Overview
- Layer 3 Message Format

11

Baseband Security

Baseband Security Overview
e Code-base baseband is introduced in 1990s.
e GSM protocols have many length field

e There's no exploit mitigations
- Stack canary, heap protection (safe unlink), DEP, ASLR, ...

e Cellular phone/baseband's firmware is not open-source
- But, in 2004, Vitelcom TSM 30 firmware was leaked
- It helps to understand GSM baseband stack architecture

12

Baseband Security

Layer 3 Message Format

\TI PD)\)\ /‘

4 bits 4 bits 8 bits

Transaction Identifier (TI)
Protocol Discriminator (PD)
Message Type (MT): specify message type of given PD

Information Elements (IE): contain information options and
data by given MT. VO is different by MT and IE's option
- |[E can be combinationof T, Land V. (V, LV, T, TV,TLV)

- T=tag (1 byte), L=length (1 byte), V=value

13

Part 3. How to Find Bug

- Targets
- Analysis methods
- Fuzzing
- Code auditing
- Reverse engineering

14

How to Find Bug

Targets

Apple iPhone 4 HTC Dream G1
(Intel Infineon (Qualcomm
baseband, i0OS) baseband,

Android)

15

How to Find Bug

Analysis methods - Fuzzing

* Fuzzing
- From a previous related work, numerous crashes occur
leading denial-of-service
- But there was no easy way to find out whether the crash
can lead memory corruption

Fuzzing the Phone in Your Phone

Charlie Mlller Collin-Mulliner
Independent Security: Evaluators TU-Berlin

cmiller@securityevaluators.com collin@mulliner.org

C. Miller and C. Mulliner, Fuzzing the phone in your phone, BlackHat, 2009.

16

How to Find Bug

Analysis methods - Code auditing

e There's no source code of the targets publicly available

e But there's source tree of Vitelcom TSM 30's firmware

Is there such a kind of memory corruptions
in target baseband software?

Find wide spread Other baseband
memory software(of

corruptions on iIPhone 4 and
Vitelcom TSM 30 HTC Dream G1)

17

How to Find Bug

Reverse engineering - Obtaining firmware

e iPhone 4 (i0S)
- OTA update file
- It's .ipsw extension file
- Unpacking .ipsw is required

NoSMm < G6:09 PM B+ NoSM ¥ 6209 PM B+ NoSM = 6:09 PM =

Settings < Settings General { General Software Update
Notifications

About 0S¢
8 Control Centre @ Apple Inc.
Software Update S 242M8

Do Not Disturb 0s HOVIIES 3N ITPOetant securty Lpdate 1o
your iPhone or Pad and is recommendced for all
Usars,
Siri

For indormation on the security content of Apple
Spotlight Search PEIRpponay Ven-awHic0ie
Display & Brightness
Wallpaper

Sounds
_ﬂd —

Handoff & Suggested Apps

CarPlay Download and Install

Figure. OTA update of iPhone

18

How to Find Bug

Reverse engineering - Obtaining firmware

e HTC Dream G1 (Android)
- By dumping memory/flash using JTAG
- Baseband image exist in the firmware It contains ELF

and loader
- JTAG can be used to dynamic debugging

u ~ - e
(= L ' - - FO

EERIEELE)

ﬂﬂﬂﬂﬂﬂﬂ

Figure. HTC Dream G1 JTAG pins on mainboard
19

How to Find Bug

Reverse engineering - Analyzing binaries

e ARM binaries are supported by IDA Pro
- Hex-Rays

- Decompiler plugin of IDA Pro

NN LT 2T

©0010FB4
©0010FB8
©O10FBC
©0010FCO
©0O10FCO
©0010FCO
©O010FC4
©OO10FC8
©OO10FCC
©0010FDO
©0010FD4
©OO10FD8
©010FD8
©0010FDC
©0010FDC
©0010FDC

loc_10FCeo

STMFD sp!, {R11,LR}
ADD R11, SP, #4

BL init

BL menu

BL read_int

MOV R3, RO

SUB R3, R3, #1

CMP R3, #4

LDRLS PC, [PC,R3,LSL#2
B loc 11018

DCD loc_10FF@
DCD loc_10FF8

DCD loc_11000

decompiled
by hex-rays

—

20

int v3; // ro
int v4; // ro

{

\//]
\/ &3
V |

_ init(argc
while (1)

UQ

|

=2

F_J\)o
/)

= menu (V3

argv, envp);

switch (read_int(v4))

{

case 1:

v3 = infO()S

break;
case 2:

v3 = 1ogin()3

break;

. T

Reverse engineering - Analyzing binaries

How to Find Bug

e Symbol identification
- Zynamics's BinDiff, a binary diffing tool, can be used

- Memory copy function symbols can be identified

- memcpy(), memmov(), bcopy() and so on

Similarity 4 | address Primary Name Address | Secondary Name ||Type |Basic Blocks| Jumps

_i 0.76 0.78 | 00438C.. |/ sub _438C3C .. | 00650518 §| sub_650518 MNo... |0 3 0 0 3 0|~
_: 0.76 0.78 |00438C... §| sub 438CEBC .| 006DD4... § sub 6DD4B4 MNo... |0 3 00 3 0=
_f 0.76 078 |004A7948)| sub 4A7948 .. | 004CSB... | sub 4CY9B7C MNo... |0 3 0 0 3 0
_: 0.76 0.78 |004AAG38)| sub 4AAG38 .. | 00G4F3EB) sub 64F3ES MNo... | 0 3 00 3 0

"l 076 0.78 |004CAAS4)| sub 4CAALR4 .. | 00550284) sub 5502B4 MNo... | 0 3 00 3 0
_: 0.76 0.78 |004D1B... §| sub_4D1BS0 .. | 006492E0) sub 6492E0 Mo... |0 3 00 3 0
076 0.78 |004CA1... §| sub 4CA1CO .. | 004D5B... | sub_4D5B4AC Mo... |0 3 00 3 0
_: 0.77 0.78 |004B40... §| sub _4B40C4 .. | 004CAB... §| subh _4CAB38 Mo... |0 3 0 0 3 0
4: 0.81 0.95 | 0060B6... || sub_60BG5C .. | 0060BS... § sub_60BY9CC Mo...| 0 6 22 i]
_: 0.85 085 |0062B6... §| sub 62B61C .. | 00551C... §l sub _551CD8 MNo... | 0 3 0 0 3 0
_: 0.86 092 |0062305CY sub 62305C .. | 004CA2A4) sub 4CAZA4 MNo... |0 3 00 3 0

"l 087 092 (00532534} sub 532534 ... | 0065043C§ sub 65043C MNo... |0 4 0 0 5 0

" 0.88 092 | 004D1788} sub _4D1788 .. | 004C7D... §l sub _4C7DEC MNo... |0 5 00 6 0
'l 0.89 098 |004DFFGOR| sub 4DFFED .| 004E0044) sub _4E0044 MNo... |1 10 058 12 4

| 091 | 082 |006C49. |l sub 6C49BS 006060 | sub 6DEOCC INo. [0 & 0lo 6 O

21

How to Find Bug

Reverse engineering - Analyzing binaries

e Analyzing iPhone 2G
- iPhone 2G has no UMTS (3G) and GPS functions
- The analyzed work can be ported to iPhone 4 through
BinDiff

UMTS

iPhone 2G iIPhone 4

(3G)

smaller than iPhone 4 too big!

22

How to Find Bug

Reverse engineering - Analyzing binaries

 Dynamic debugging
- JTAG
- obtaining machine code, setting breakpoint, obtaining
register status, ...
- In HTC Dream G1, second boot loader, which is OS boot
loader, doesn't allow JTAG
- But the the before getting into second boot loader, we can
set breakpoint and can change the JTAG allowing flag

23

Part 4. Memory Corruptions Found

- Types of bug found
- Example in Intel Infineon baseband code (CVE-2010-3832)

- Example in Qualcomm baseband code
- Demo

24

Memory Corruptions Found

Types of bug found

e |nsufficient length checks for memory copy

- It can be found more easily by identifying symbols of
memory copy functions

e Obiject lifecycle issue
- GSM has complex state machine
- allocation/freeing pair mismatching
- use-after-free, uninitialized use, unhandled state

e Reaching code path not to be reached
- code path for UMTS (3G) can be reached using GSM (2G)

25

Memory Corruptions Found

Example in Intel Infineon baseband code (CVE-2010-3832)

e Temporary Mobile Subscriber Identifier (TMSI)
- It's supposed to be always 32 bits long value
- but variable length field (1 byte) is used for TMSI
- L in IE of layer 3 message

e No enough space to take TMSI (> 32 bits)

- It trusts the variable length field and copies the TMSI
sent by fake BTS
- Heap buffer overflow occurs

e CVE-2010-3832
- It allows attackers to execute arbitrary code remotely

20

Memory Corruptions Found

Example in Qualcomm baseband code

e During authentication, BTS send a challenge response
- In GSM, RAND 16 bytes (which is constant)
- In UMTS, AUTN 16 bytes (which has variable length field)

e Even if Qualcomm baseband in GSM mode accept AUTN
- By changing RAND's |E type to AUTN

e Sending RAND (> 16 bytes) with AUTN IE type
- Stack buffer overflow
- Program counter can be overwritten
- Saved registers can be overwritten
- Remote code execution!

27

Memory Corruptions Found

From bugs to exploitations - Qualcomm baseband code

copy_auth_IE:
PUSH {R3-R7.LR}

control flow of copy_auth_IE()

MOVS RO, #0

STRB RO, [RS]

MOVS R4, #0

LDR RO, =unk_17695952
LDRB RI,[R0]

CMP RI,#0

BLS j_exit_loop

false

j_loop_over_IEs:
LDR R2,=unk_17884340
LSLS RO,R4,#3

LDRB RI,[RI#4] ;check type of IE
CMP RI,#0
BEQ j_is_GSM_RAND ; GSM RAND?

false true

y_S

172501FC:
CMP RI, #0x20 : UMTS RAND?
BEQ j_is_UMTS_RAND

I

j_is_GSM_RAND:
MOVS RI1,#0x10 s store constant len (16)
STRB RI,[R6]
LDR RI,[R2R0]
false Wtrue | MOVS R2,#0x10 :len=16
ADDS RI,RI1,#1
ADDS RO, R6, #1
BLX memcpy ; constant len copy
B j_continue

17250200:
CMP RI, #0xFO ; key seq # true rue
BNE j_continue

j_is_UMTS_RAND:
LDR RI,[R2RO0]
LDRB RI,[R1#1]
STRB RI,[R5] ;copy length from IE
LDR RO, [R2R0]

false MOVS R2,RI iR2=len

ADDS RO,RO, #2
MOVS RI,R0 :RI=src
ADDS RO,RS, #1 ; RO = dest
BLX memcpy ; unbounded memepy() ! ||

17250204:

LDR RO, [R2RO]

LDRB RO, [RO]

LSLS RO, RO, #0x1C true

LSRS RO,R0, #0xIC ; mask lower nibble

STRB RO, [R7]

B j_continue

j_continue:

ADDS R4,R4,#1

LSLS R4,R4,#0x18
LSRS R4,R4,#0x18
LDR RO, =unk_17695952
LDRB RO, [RO]

CMP R4,RO

BCC j_loop_over_IEs

false

Jj_exit_loop:
MOVS RO, #1
POP {R3-R7PC}

28

Memory Corruptions Found

From bugs to exploitations - Qualcomm baseband code

false

172501 FC:
CMP RI,#0x20

; UMTS RAND?
BEQ j_is_UMTS_RAND

false

true

j_loop_over_IEs:

LDR R2,=unk_17884340

LSLS RO,R4,#3

ADDS RI1,R0,R2

LDRB RI1,[R1#4] :check type of IE
CMP RI1,#0

BEQ j_is_GSM_RAND ; GSM RAND?

true

j_1s_GSM_RAND:
MOVS RI1,#0x10
STRB RI, [R6]
LDR RI1,[R2,RO]
MOVS R2,#0x10
ADDS RI1,RI1,#1
ADDS RO, R6, #1
BLX memcpy

B j_continue

; constant len copy

. store constant len (16)

clen=16

memcpy(dest, src, 0x10);

29

\

Memory Corruptions Found

From bugs to exploitations - Qualcomm baseband code

j_1s_GSM_RAND:
MOVS RI1, #0x10
STRB RI1,[R6]
LDR RI1,[R2R0]
MOVS R2,#0x10
ADDS RI1,RI1,#1
ADDS RO, R6, #1
BLX memcpy

B j_continue

true

false

. store constant len (16)

len=16

. constant len Copy

17250200:
CMP RI1, #0xFO
BNE j_continue

, key seq #

false

j_is_UMTS_RAND:

LDR RI,[R2,RO]

LDRB RI,[RI]#1]

STRB RI,[RS5] ; copy length from IE
LDR RO, [R2,RO0]

MOVS R2,RI ; R2 = len

ADDS RO, RO, #2

MOVS RI1,R0 ; R1 = src

ADDS RO,R5,#1 ;RO= dcstmemcpy
BLX memcpy ; unbounded memcpy() !

\ \

est, src, variable_length);

Memory Corruptions Found

From bugs to exploitations - Qualcomm baseband code

e FakeBTS
- Ettus Research USRPv1
- It provides RF processing capability
- Laptop with OpenBTS
- Software-defined GSM access point

e Payload
- Changing return address --> ATS0=n handler
- Changing saved RO register value --> 1 (ON)
--> ATS0(0); is executed
--> Auto-answer feature is turned on
--> control flow hijacking can be proved

31

Memory Corruptions Found

From bugs to exploitations - Qualcomm baseband code

low address

copy_auth_IE() stack frame

Local Space

Saved Registers

Saved Frame Pointer (FP)
Saved Link Register (LR)

other stack frame

high address

low address
pointer
stack . stack
grows grows
atc? dl:;‘gs written 0x10 bytes a?dl:;":s

—_—

After RAND 0x10 s .
) aved Registers
bytes are copied
to stack buffer

other stack frame

high address

32

Memory Corruptions Found

From bugs to exploitations - Qualcomm baseband code

low address low address
: stack : stack
grows grows
to low to low
Local Space address address
e
Saved Registers After AUTN, 0x00000001 for saved RO
———" Pointor (FP) which is exploit
aved Frame Pointer
. . payload S0(0); is
Saved Link Register (LR) is copied to stack Addr of ATSO=n Handler
- - ekecuted!

' buffer .

high address high address
33

Memory Corruptions Found

From bugs to exploitations - Qualcomm baseband code

34

Part 5. Impact & Conclusion

- Impact
- Defense

35

Impact & Conclusion

Impact

e Billing issue
- By controlling compromised baseband, adversary can send
MMS or cause large data transfer

e Feasibility of eavesdropping
- Audio routing is done by baseband stack

* Bricking phone
- adversary can write something to NVRAM region which contain
important data like IMEI

e |n case of shared memory design in which single RAM is used
for both application and baseband stack

* Replaying this attack somewhere crowded areas can gives
critical damage

36

Impact & Conclusion

Conclusion

e Attack can be performed with reasonable budget
-Laptop (with OpenBTS), USRP

* iPhone 4 (iI0S 4.2)
- TMSI overflow was assigned to CVE-2010-3832

e HTC Dream G1
- No public documentation
- But, length check is added for parsing AUTN

e 3G also is expected to be vulnerable
- Malicious Femtocell
- 1500 pages for layer 3 of 3G protocol specification

37

Impact & Conclusion

Conclusion - Solutions

e Strict software security assessment

- Vendors should find and patch the bugs by code auditing
and testing before attackers

e Mitigation techniques should be enabled
- Stack canary, heap protections, DEP, ASLR, ...

e Mutual authentication between MS and BTS
- But, SW/HW manufacturers agreement is required to
patch their products to add more authentication phase

38

Part 6. Related works & Future works

- Related works
- Future works

39

Related works & Future works

Related works

e C. Mulliner, N. Golde, J. pierre Seifert, "SMS of Death:
From Analyzing to Attacking Mobile Phones on a Large
Scale", USENIX, 2011.

| van den Broek, B. Hond, A. Cedillo Torres, "Security
Testing of GSM Implementations”, ESSoS, 2014.

* N. Golde, D. Komaromy, "Breaking Band: Reverse

Engineering and Exploiting The Shannon Base Band",
Recon, 2016.

40

Related works & Future works

Future works

e Attack implementation for recent cellular phone
- Recently, AP and CP have its own RAM respectively
- Even in such hardened design
- Is escalation to application from baseband possible?
- With assumption baseband already is comprised
- Is there any attack vector from baseband to application?

41

Thank you

