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Introduction

¢ Since 2013, deep neural networks have matched human performance

recognizing objects

and faces
(Szegedy ét. al., 2014) (Taiman et. al., 2013)
\ :
W o » B solving CAPTCHA
(0
r : Privacy & Terms

(Goodfellow et. al., 2013)




Adversarial Example




Adversarial Example

i . i
esign(VzJ (0, x,y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence




Related Works

s “Several machine learning models, including state-of-the-art neural
networks, are vulnerable to adversarial examples”

Intriguing properties of neural networks
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Contribution

¢ The authors provided the first analysis of the causes of the adversarial
examples

— linear behavior in high-dimensional spaces

¢ Design a fast method of generating adversarial examples using linearity
— Fast gradient sigh method (FGSM)

¢ Adversarial training can provide an additional regularization benefit
beyond that provided by using dropout alone



Linear Explanation of Adversarial Examples

Adversarial input Small enough to be ignored
T=x+mn Inflec <€

% Consider the dot product between a weight vector and adversarial example

T T

wz=w'z+w'n

% Can maximize the increase when 7 = sign(w)

*  Letn = esign(w), X wi| = mforw = [w; wy -+ wy]
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Linear Perturbation of Nonlinear Models
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s Existing models such as LSTMs, ReLUs, maxout networks are designed to behave in linear ways
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Linear Perturbation of Nonlinear Models

* 0:parameters of a model
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* x:input to the model
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* y:targets associated with x
» J(6,x,y) : cost used to train the neural network
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Adversarial Example Results

** FGSM causes a wide variety of models to misclassify their inputs

Error Rate .
i (Adversarial)

Shallow softmax Classifier /

(0] (0]
MNIST 99.9% 73.3%

Maxout network / o 0
MNIST 89.4% 07.0%
Conv maxout network / 87 15% 96.6%

CIFAR-10




Adversarial Training of Deep Networks

¢ Training on a mixture of adversarial and clean examples, a neural network could be
regularized

b

%

0: parameters of a model

WS

%

x: input to the model

e

*%

y: targets associated with x

e

*%

J(6,x,y) : cost used to train the neural network

e

J(0,z,y) =al(0,z,y) + (1 —a)J(0,x + esign(VzJ(0,2,y)) .




Adversarial Training Results

¢ Average confidence on a misclassified example was 81.4%

_ w/o Adversarial w/ Adversarial

Error rate 0.94% 0.84%

Adversarial
error rate

89.4% 17.9%




Summary

N/
0’0

4

* L0

* L0
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Adversarial examples can be explained as a property of high-dimensional
dot products

Introduced a fast method for generating adversarial examples

Demonstrated that adversarial training can result in regularization; even
further regularization than dropout

Models that are easy to optimize are easy to perturb




Future Works

¢ Adversarial attacks have been developed in several ways
— Image recognition adversarial attack
= DeepFool, ISMA, FGSM, FGVM, IGSM, etc.
— Audio adversarial attack

= Audio Adversarial Examples: Targeted Attacks on Speech-to-Text

— Physical-world adversarial attack

= Robust Physical-World Attacks on Deep Learning Visual Classification




Q&A

¢ This attack is a white box attack. For grey or black box attack, what should
the attacker consider more? (159G

** A) Adversarial attack has transferable property

Original Image White-box Scenario 4 40 rsarial Example

Target

Source labels __labels _ “\

Source
Model

Generation

o o ‘gi 2 . 2 g »; ". Transfer Learned i pe— M"‘

tals / Source \ ;:,,u:,udg. : ‘f,) f Target \

________________________________________ L model , v model \
Black-box Scenario

Adversarial Example

Source data e

v Y L E.g.ImageNet | _ EpPUSCA
Target Model “gibbon”




Q&A

¢ Q) What is the most concrete defense method against adversarial attack?

(et T)

** A) There is no concrete defense method.

— Adding noise at training time, error correcting codes, removing perturbation
with an autoencoder, generative pretraining, confidence-reducing perturbation
at test time, defensive distillation, etc.

¢ Machine learning techniques have built a Potemkin village

— Shallow decision boundaries instead of actual underlying truths




Q&A

*** Q) | believe a model is vulnerable if there's any adversarial input, as you
can forge a lot of things. How much are those adversarial cases effective in
real world? ("8 ¢14l)

¢ Application of image classification

— fingerprint authentication, face recognition, social media platform, healthcare
industry, camera in automobile, etc.

¢ Adversarial attack in image classification is not so attra

— Is adversarial attack better than other attacks?




