On the Feasibility of Side-Channel Attacks with Brain-Computer Interfaces

Ivan Martinovic, Doug Davies, Mario Frank, Daniele Perito, Tomas Ros, Dawn Song

Presenter: Hwijoon Lim

Brain-Computer Interfaces (BCIs)

• BCIs enable a non-muscular communication between a user and an external device

Electroencephalography (EEG)

- Non-invasive method
- The EEG signal is recorded from scalp electrodes and continuously sampled (typically 128Hz – 512Hz)

BCI devices

- Consumer-grade BCI devices
 - Low-cost EEG-based gaming devices are offered by Emotiv Systems and NeuroSky

An EPOC device (Emotiv Systems) A MindSet device (NeuroSky)

BCI devices

- Consumer-grade BCI devices
 - Software development kits to support the expansion of tools and games
 - Such as a mind-controlled keyboard and mouse and hands-free arcade games
- How third-party EEG applications could infer private information about the user?

Event-Related Potential (ERP)

- An ERP is detected as a pattern of voltage change after a certain auditory or visual stimulus is presented
- Every ERP is time-locked to the stimulus
- The most prominent ERP component is the P300

P300

• P300 can be detected as an amplitude peak in the EEG signal at about 300ms after the stimulus

EEG signal of one channel for one stimulus

Related Works

- EEG-based identification (Poulos et al., 1999)
 - It achieved a high true positive rate and a high true negative rate
- EEG-based authentication (Marcel et al, 2007)
 - Instead of typing a password, it requires the user to think of password
- Key generation technique resistant against coercion attacks (Gupta et al, 2010)
 - Incorporate the user's emotional status through skin conductance measurements
- Assisting a user in efficient search (Van Vliet et al, 2010)
 - An ERP called N400
- Guilty-Knowledge Test (Abootalebi et al, 2009)
 - Use P300 in lie detection

BCI Application

- BCI devices have "App Stores" like an application stores for smart phones
 - The applications are developed by third parties
 - Provide unrestricted access to the raw EEG signal
 - Applications can control the contents for users

Threat Model

- The attacker is a malicious third-party developer
- His goal is to learn as much information as possible about the user without any malware
- The attacker can read the EEG signal from the device and can display text, videos and images on the screen

- Each experiment consisted of three main steps:
 - 1. (optional) Brief verbal explanation of the task by the operator
 - 2. (optional) Message on screen for 2 seconds
 - 3. Images being flashed in random order for the duration of the experiment
- Total 5 Experiments

- Pin Code
 - Choose and memorize random PIN!
 - Enter the first digit of PIN at the end of the experiment

- Bank Information
 - Just show the logo of different banks

- Bank Information
 - Show the images of the debit card

- Month of Birth
 - On-screen message: Which month were you born?
 - Flashing the name of the months randomly

- Face Recognition
 - On-screen message: Do you know any of these people?

- Geographic Location
 - Show highlighted maps with different highlighted zone

Data Collection

- The amplitudes of the EEG signal are recoded with 14 different electrodes
- The gaming device is not made for detecting P300
 - The P300 is mostly detected at the parietal lobe
 - But, they have more electrodes on the frontal part of the scalp

Data Collection

- Each channel is recorded at a sampling rate of 128Hz
- After showing stimuli to the user, output the time stamp and the indicator of each stimulus
- Obtain the tuple of (EEG signal, the stimuli)

Data Collection – Challenges

- The attack vector exploits the occurrence of P300 peaks
 - The attack vector must ...
 - detect P300 peaks reliably
 - discriminate peaks from all other EEG signals measured on non-target stimuli
- The user do not intend to provide a discriminative signal for the target stimuli

→ Train classifier to detect P300 peaks and corresponding stimuli!

Classification of Target Stimuli

- Input : EEG data (called epochs) associated with a stimulus
 - Each EEG data starts a few milliseconds prior to the stimulus
 - Each EEG data ends 800ms 1500ms after the stimulus

www.www.www.

• The classification task = Training phase + Classification phase

Training Phase

- Train how to tell if input epoch is generated is target stimulus
- Input
 - A set of epochs $x \in X^{train}$
 - A vector of label $y \in Y$
- Output
 - A function g that maps epochs to target stimuli labels:
 - g(x) = y

Classification Phase

- Use model from training phase to obtain stimulus from given epoch
- Input
 - A set of new epochs $x^{test} \in X^{test}$
- Output
 - A set of estimation $\{\hat{y} = g(x^{test})\}$

Classification phase

• For stimulus k, $N_k^{(+)}$ is the sum of y's that are associated with stimulus k

The Classifier Function

- Boosted logistic regression (bLogReg)
 - The model is trained on the training data by minimizing the negative Bernoulli log-likelihood of the model
- Stepwise Linear Discriminant Analysis (SWLDA)
 - Extension of Fisher's linear discriminant analysis (LDA)
 - More robust to noise

Two Training Situation

- User-supported calibration
 - Actively support the training phase
 - Do not support the detection with new stimuli
- On-the fly calibration
 - Do not support the training phase
 - Do not support the detection with new stimuli

Result

Result

Defense

- Users of the BCI devices could actively try to hinder probing
 - Concentrate on non-target stimuli
 - Not realistic
- Do not expose the raw data from EEG devices to third-party applications
 - The EEG vendor would create a restricted API
- Add noise to the EEG raw data
 - It could decrease accuracy of legitimate applications

Future works

- "Hacking the brain: brain–computer interfacing technology and the ethics of neurosecurity" (Marcello et al, 2016)
 - Research on "Brain-hacking"
- "Side-Channel Attacks Against the Human Brain: the PIN Code Case Study" (Lange et al, 2017)
 - Extract concrete PIN codes from EEG signals
- "Detection of Subconscious Face Recognition Using Consumer-Grade Brain-Computer Interfaces" (Martin et al, 2016)
 - Study subconscious face recognition