
Presenter : Taehyeon Lee

De-anonymizing Programmers via 
Code Stylometry

Aylin Caliskan-Islam

Drexel University

Richard Harang
U.S. Army Research Laboratory

Andrew Liu
University of Maryland

Arvind Narayanan
Princeton University

Clare Voss
U.S. Army Research Laboratory

Fabian Yamaguchi
University of Goettingen

Rachel Greenstadt
Drexel University



Source code stylometry & de-anonymization

Introduction



3

Stylometry

Stylistic fingerprints

■ Fine-art

■Unconventional text

■ Translated text

■ Source code

Vincent Van Gogh Oscar-Claude Monet

Stroke Color-Decision., etc.

Books

Commercial Text

Source Code



4

Source Code Stylometry

Everyone codes differently!
■ Example : do-while vs. for loop, Bracelet locations,. Etc.

Code stylometry changes with programmer’s skill set!
■More sophisticated functionality coding means sophisticated implementation.

Easy
“Hello World!”

Example

Hard or
Real-World
Problems

Black color is stylometry



5

The Anonymity

The anonymity comes from indistinguishability in some (domain) set
■ Better anonymity = indistinguishable in size of 100 elements than size of 10 elements in domain

Therefore, the de-anonymizing means figuring out someone within some set.



Real world necessity of de-anonymization of programmers

Why De-anonymizing is needed?



7

Why De-anonymizing is needed?

De-anonymizing can be used…

In military, knowing about enemy and friendly is important!



8

De-anonymization scenarios

Programmer de-anonymization
■Who is Satoshi Nakamoto?

■Who wrote this malicious code?

Code plagiarize detection / Ghostwriting detection
■ In case of Homework assignment

■ Coding test for hiring developers

Malicious programmers of D.P.R.K 
(North Korea)



Fuzzy AST + Code Stylometry Feature Set + Machine Learning (classifier)

De-anonymizing Programmers



10

Method Overview
Identifying author of source code!

Lexical and Layout feature 
extractor

Syntactic feature extractor

AST

Train & Classification
With majority rule



11

Code Stylometry Feature Set (CSFS)

Lexical feature
■ # of ternary operations

■ # of comments

■ # of literals

■…

Layout feature
■ # of tabs

■ # of spaces

■ # of empty line

■ Bracelets before/after newline

■…



12

Code Stylometry Feature Set (CSFS)

Syntatic feature
■Max AST node depth

■ C/C++ keyword

■…



Can this method really de-anonymize programmers?

How about obfuscation?

Is this method supports only C/C++?

Any limitation?

Evaluation



14

Authorship attribution experiments

It works?
■ 94% accuracy in identifying 1,600 authors of 14,400 anonymous program files

1600 authors Classified programmer with in 14400 anonymous program file



15

Authorship attribution experiments

Is the coding style remains throughout years?
■ 98% auccuracy, train and test in 2014 (same year)

■ 96% accuracy, train on 2012, test on 2014

25 authors Classified programmer with in 25 anonymous program file



16

Obfuscation – STUNNIX



17

Obfuscation – STUNNIX



18

Obfuscation – TIGRESS



19

Obfuscation – TIGRESS



20

Method Generalization - Python

Using ‘only’ Python equivalents of syntactic features

Application Programmers Instances Result

Python programmer de-anonymization 229 2061 53.9%

Top-5 relaxed classification 229 2,061 75.7%

Python programmer de-anonymization 23 207 87.9%

Top-5 relaxed classification 23 207 99.5%



21

Limitations

Multi-authorship problem
■ Source code cloning

■ Ex) Use of Stack-Overflow code

■ Pair coding example

Coding style normalized problem
■Open-source projects, like Linux kernel, and enterprise internal projects have strict coding style



Conclusion



23

Conclusion

First principled use of syntactic features to investigate style in source code

Reach 94% accuracy in classifying 1600 authors in GCJ

For future research, going binary to de-anonymizing programmers!



Source code stylometry research timeline

Related works



25

Related works

Works # Author LOC Features Result

MacDonell 7 148 Lexical & Layout 88.0%

Frantzeskou 8 145 Lexical & Layout 100.0%

Elenbogen 12 100 Lexical & Layout 74.7%

Shevertalov 20 N/A Lexical & Layout 80.0%

Frantzeskou 30 172 Lexical & Layout 96.9%

Ding 46 N/A Lexical & Layout 67.2%

Ours

35 68 Lexical &
Layout &
Syntactic

100.0%

250 77 98.0%

1600 70 93.6%



26

Related works

Misleading Authorship Attribution of Source Code using Adversarial Learning
(USENIX '19)
■Attacking authorship attribution of source code using machine learning approach with preserving semantic 

structure.

Large-Scale and Language-Oblivious Code Authorship Identification
(CCS '18)
■ Proposes deep learning based code authorship identification system for code authorship attribution.

■Works on mixed language environments (JAVA/C++, Python/C++).



Related Questions



28

Related Questions

이용화
■ Can other features like program usage (ex. history like command usage, process occupancy, idle time 

between various processes) be the features to discriminate individuals? - And how and where can this 
technology be used?

□ I think this work will be very hard to collect data. Also, I cannot imagine that abstracting program usage 
behavior. Therefore, I think it is hard to use program usage feature to discriminate individuals.

김한나(Best)
■ They define Code Stylometry Feature Set consists of Lexical, Layout, Syntactic features. I think this is defined 

manually by the authors. I think there might be more important features for classification and it is time costly. 
Is there any method to find those features automatically?

□ Yes. Maybe. I think the Lexical and Layout feature can automatically extracted by checking ‘diff’ of parsed 
(normalized) source code and original source code.



29

Related Questions

안준호
■ For software forensic part, is there sufficient data for malware developer? I think if there isn’t, then this 

application will not work because it is supervised learning.

□ I think the use of this technique provides another option for software forensic, not silver bullet. 
When software forensic, there is no formal way to investigate.
Like “Sony Pictures hack” incident, the DPRK used sophisticated malware that hard to identify origin. 
Therefore, the investigators specified origin as DPRK by showing the compiler language option was Korean.

김경태, 장준하
■ (김경태) I wonder how the detecting the stylistic features works in the binary code? 

■ (장준하) I wonder if we can use intermediate language (IL) to de-anonymize the program. Because many 
data abstracted when compilation to binary

□ After this work, the authors checked binary de-anonymization. To do that, they used decompiled code and 
disassembled code. Also, AST from decompiled code and Control Flow Graph (CFG) from disassembled code 
features were used.

□ Also, the generalization slides showed de-anonymization is possible even only the syntactic features used.



Taehyeon Lee

Thanks!


