De-anonymizing Programmers via
Code Stylometry

Aylin Caliskan-Islam Richard Harang Andrew Liu
Drexel University U.S. Army Research Laboratory University of Maryland
Arvind Narayanan Clare Voss Fabian Yamaguchi
Princeton University U.S. Army Research Laboratory University of Goettingen

Rachel Greenstadt
Drexel University

Presenter : Taehyeon Lee

24th USENIX CySecLab KAIST

Security Symposium

AUGUST 12-14, 2015 « WASHINGTON, D.C.

us

KAIST CySeclLab

Introduction

Source code stylometry & de-anonymization

Stylometry

#include <stdio.h>
fibonacci(num’)

if (num <= 8){
return 8;

Stylistic fingerprints Vincent Van

RS SER T

W Fine-art e & @5 }

| Unconventional text A 3 \ gﬁ iz i else if(num == 1){
BOOkS .’_ = ' ’ = » return 1;

-l _a_ _1la___a TR S i X }

— CHAPTER ONE —

return fibonacci{num - 2} + fibonacci(num - 1};

The Boy who Lived

main(

input = 8;

Mr and Mrs Dursley, of number four, Privet Drive, were proud to : i=28;
say that they were perfectly normal, thank you very much. They [l
were the last people you'd expect to be involved in anything .
strange or mysterious, because they just didn't hold with such & T printf("INPUT : ");
nonsense. N e W ey g .

Mr Dursley was the director of a firm called Grunnings, which o . scanf("%d”, &input);
made drills. He was a big, beefy man with hardly any neck,
although he did have a very large moustache. Mrs Dursley was
thin and blonde and had nearly twice the usual amount of neck, S8 - {
which came in very useful as she spent so much of her time cran- ES=SS_ printf(“%d “, fibonacci(i));
ing over garden fences, spying on the neighbours. The Dursleys [: }
had a small son called Dudley and in their opinion there was no SESES™ =5 printf("\n");
finer boy anywhere. -

for (1 =8; 1 < input; i++)

return a;

KAIST CySeclab

Source Code Stylometry

Everyone code

NN [hore are two types of people.

Code stylomet
B More sophisticate

Programmers will know.

KAIST CySeclab

The Anonymity

The anonymity comes from indistinguishability in some (domain) set

B Better anonymity = indistinguishable in size of 100 elements than size of 10 elements in domain

Therefore, the de-anonymizing means figuring out someone within some set.

—)

KAIST CySeclLab 5

KAIST CySeclLab

Why De-anonymizing is needed?

Real world necessity of de-anonymization of programmers

Why De-anonymizing is needed?

De-anonymizing can be used...

Malicious coders will lose anonymity as
identity-finding research matures

u-s-AHMY By Joyce P Brayboy, U5 Army Research Laboratory January 15, 2016

In military, knowing about enemy and friendly is important!

KAIST CySeclab 7

De-anonymization scenarios

Malicious programmers of D.P.R.K
(North Korea)

o ’ Y | | B
‘-7 BY THE FBI

Programmer de-anonymization
B Who is Satoshi Nakamoto?

B Who wrote this malicious code?

PARK JIN HYOK KiM IL JON CHANG HYOK

Code plagiarize detection / Ghostwriting detection

B In case of Homework assignment @ SW Expert Academy

B Coding test for hiring developers

programmers

KAIST CySeclab 8

KAIST CySeclLab

De-anonymizing Programmers

Fuzzy AST + Code Stylometry Feature Set + Machine Learning (classifier)

lfaentijying autnor oj source
Method Overview

Y
RANDOM
FOREST

Train & Classification
With majority rule

KAIST CySeclLab 10

Code Stylometry Feature Set (CSFS)

include <stdioc.h>

fibonacci(num)
if (num <= 8){

return 8;

else if(num == 1){
return 1;

return fibonacci{num - 2} + fibonacci{num - 1});

main(

input = 8;
i=8;

printf("INPUT : "};
scanf("#%d”, &input);

for (1 = 8; 1 < input; i++)
{
printf({“%d ", fibonacci(i));

printf("\n"});

return a;

Lexical feature
M # of ternary operations
B # of comments

W # of literals

H..

Layout feature

W # of tabs

M # of spaces

B # of empty line

B Bracelets before/after newline

11

Code Stylometry Feature Set (CSFS)

fibonacci(num)

if (num <= 8){ Syntatic feature

CompoundStmt P depth
/@/ i \6\ d e
Ceclstmt WhileStmt LabelStmt e
S RN A

-,

ConditionalOperaton IntegerLiteral| |CompoundStmt| | ReturnStmt

i ; F, _:;-.___...... -
BinaryOperator BinaryCperator| |ImplicitCastExpr W hile Stmt ImplicitCastExpr ﬂ _L:,-
5 .t A~
! i {
o o

Y ¥ -, ——

" S

ImplicitCastExpr| |IntegerLiteral| |ImplicitCastExpr| |ImplicitCastExpr| |DeclRefExpr IntegerLiteral| |Compoundstmt| | DeclRefExpr H“MH
d i d ol
Y ¥ ¥ ¥ e

CeclRefExpr DeclRefExpr DeclRefExpr W hileStmt
IntegerLiteral| |Compound3tmt
™

[
¥ L

L —
GotoStmt \ ’,.-/f\\ _/I

12

KAIST CySeclLab

Evaluation

Can this method really de-anonymize programmers?

How about obfuscation?

Is this method supports only C/C++?

Any limitation?

Authorship attribution experiments

It works?
W 94% accuracy in identifying 1,600 authors of 14,400 anonymous program files

bt >
Fithr [S)nainoy =
ﬁ”ﬂﬁ”rhﬁ% 7

1600 author Classified programmer with in 14400 anonymous program file

ST

KAIST CySeclab

Authorship attribution experiments

Is the coding style remains throughout years?
W 98% auccuracy, train and test in 2014 (same year)
W 96% accuracy, train on 2012, test on 2014

bt >
Fithr [S)nainoy =
S~

25 authors Classified programmer with in 25 anonymous program file

ST

KAIST CySeclab 15

Obfuscation — STUNNIX

Sample file with C++ code

. A9 4 . L Y I PT T s

extern void wut of range (const char *) ;
fde f 1n JUTOFRANGE (cond , msg) \
do { 1f (cond) f rang (fcond) ;) while (0)
felse
finclude <cassert>
fdefine OUTOFRANGCE (cond, msqg) LS ¢ rt (! (cona))

PR e 2 =
.' L3 A &

template <class charT, class tr ts, class llcC tor>
Ba A ¢ * < 5 ES o - - a “1_‘ o r)&
| tring <char?T, traits, ALl L O~ tOK> 328
4 1 - (i1 Z TYD - - 1 E * P R
const ! ‘ X & er, P < t - d
4 4 _aaiw . 4
const t 1 l = kY. 2 () + 2;

KAIST CySeclLab 16

Obfuscation — STUNNIX

Sample file with C++ code

=2
extern void
 Te .

do { 1f (

Same set of 20 authors Classification
with 180 program files Accuracy

<cassert>

Original source code

template<class f fe, d
| gty s STUNNIX-Obfuscated source code

€ 71 , y ‘) 4
const 12 t 51d lal r. length()+ (Oxl2ac+3131-OxleeS5); 1£(: 1S £ . ==
(Ox4554+8190-0x2453))44 idd >= loength() && :] d == (Oxcl5+4853-0xlf0a)&s
' § > . ,) return operator= (st - f£d « i1 >

>

J2\x6f \x72 '\ x20\ x69 \ x¢t x 2 o x65 \x7 x6 x6l\x63\x865) ;

{

KAIST CySeclab 17

Obfuscation — TIGRESS

#include<stdio. h>
int mainl()

{

}

int T,test=1;

double C,F, X, rate,time;

scanf("%sd" ,&T);
while{(T—)
{

scanf("%s1lf %1f %\Lf" ,&C,&F,&X) ;

rate=2.0;
time=90;

while(X/rate>C/rate+X/{(rate+F))

time+=C/rate;
rate+=F;

time+=X/rate;
printf("Case #%d:
}

return 9;

%SLf\n", test++,time) ;

struct _I0 FILE:

struct timeval {
long tv_sec ;
long twv_usec ;

};

enum _1 _main_%op {

_1 main__string
$value_LIT_0@O%$result_REG_1__ convert_void_star2void_star
Sresult_STA_©Osleft_REG_©__ local
$result_STA_Os$value_LIT_O__store_void_star
$left_STA_@O$right_STA_1__ local
$result_STA_Os$value_LIT_O__convert_void_star2void_star
Sleft_STA_@S$result_REG_®__local
$result_REG_0@Os$value_LIT_1__ convert_voilid_star2void_star
Sresult_STA_Bsleft_REG_O__store_void_star$right_STA_0s$left_REG_0O =
46,

_1_main__local$result_REG_0O%$value_LIT_1__ constant_int
$result_STA_PS$value_LIT_©__store_int$right_STA_©@$left_REG_©__local
$result_STA_Os$value_LIT_O__convert_void_star2void_star
$left_STA_@%$result_REG_O__string
$value_LIT_0O$result_REG_1_ convert_void_star2void_star
Sresult_STA_@s$left_REG_O__store_void_star
$right_STA_03$left_REG_O__local
$result_REG_O$value_LIT_1__ convert_void_star2void_star
$result_STA_0P$left_REG_©0 = 44,

_1 _main__convert_void_star2void_star
$left_STA_@O%$result_REG_O__ load_int
$left_REG_O%$result_REG_1__ MinusA_int_int2int
$Sresult_REG_Ps$left_REG_1%$right_REG_2__store_int
$left_STA_@O$right_REG_©__goto$label_LAB_©® = 161,

_1 main__local$result_STA_BO%$value_LIT_©O__local
$result_REG_P%$value_LIT_1__ convert_void_star2void_star
$result_STA_BPsleft_REG_O__ load_double
$left_STA_@O$result_REG_©__ local
$result_REG_©O%$value_LIT_1__convert_void_star2void_star
$result_STA_©Psleft_REG_©__ load_double
$left_STA_O$result_STA_©__ convert_double2double
S$left_STA_@S$result_REG_@__local

@ raci10Y Y DE Déeévwvem»YNr0s 1 TT 1 ~smieeas r-t wwrnssrd et ar-Dwvmsaid et Ao e

Obfuscation — TIGRESS

#Zinclude<stdio. h> struct _TO0_FILE;

int main()

{

}

struct timeval {
long tv_sec ;
long twv_usec ;

int T,test=1; ¥
double C,F,X, rate,time; enum T1_main_$op {
TP el & _1 main__string
,SE??;E1;:i)'&T)' $value_LIT_0@%$result_REG_1__ convert_void_star2void_star
o= Sresult_STA_©P3sleft_REG_©__local
{ $result_STA_Os$value_LIT_O__store_void_star
scanf("s1lf %1f s,
il ke Same set of 20 authors Classification
" while(X/rate>C/rate+XARVIT{ W RV NI T-{E 110l {5 Accuracy eft_REG_® =
time+=C/rate; S t
el Original C source code 96% EG_0__local
}

}

retu

time+=X/rate;
printf("Case #%d: %1

TIGRESS-Obfuscated source code 67%
5%

Random chance of correct de-anonymization

m ©;

$left_REG_O%$result_REG_1__ MinusA_int_int2int
$result_REG_O3$left_REG_1%$right_REG_2__store_int
$left_STA_@%$right_REG_O__goto$label_LAB_©® = 161,

_1 main__local$result_STA_0O%$value_LIT_©O__local
$result_REG_O%$value_LIT_1__ convert_void_star2void_star
$result_STA_Ps$left_REG_©O__ load_double
$left_STA_O$result_REG_©__ local
$result_REG_®3%$value_LIT_1__convert_wvoid_star2void_star
Sresult_STA_©0sleft_REG_©__ load_double
Sleft_STA_0Os$result_STA_©__ convert_double2double
$left_STA_@OS$result_REG_©__ local

@ raci10lY DED Deéevw=21N100s 1 TT 1 ~amireear-t™ wwrssd et a2 r-Vwmsaid et o

Method Generalization - Python

Using ‘only’ Python equivalents of syntactic features

Python programmer de-anonymization 2061 53.9%
Top-5 relaxed classification 229 2,061 75.7%
Python programmer de-anonymization 23 207 87.9%
Top-5 relaxed classification 23 207 99.5%

KAIST CySeclab 20

Limitations

Multi-authorship problem
B Source code cloning
m Ex) Use of Stack-Overflow code

B Pair coding example

Coding style normalized problem
B Open-source projects, like Linux kernel, and enterprise internal projects have strict coding style

KAIST CySeclab 21

KAIST CySeclLab

Conclusion

Conclusion

First principled use of syntactic features to investigate style in source code
Reach 94% accuracy in classifying 1600 authors in GCJ

For future research, going binary to de-anonymizing programmers!

KAIST CySeclab 23

KAIST CySeclLab

Related works

Source code stylometry research timeline

Related works

MacDonell Lexical & Layout 88.0%
8 145 Lexical & Layout
Elenbogen 12 100 Lexical & Layout 74.7%
Shevertalov 20 N/A Lexical & Layout 80.0%

CFrantzeskou_> 30 172 Lexical & Layout (96.9%
w 46 N/A Lexical & Layout @

35 68 Lexical &

Ours C 250 O 77 Layout &
@ 70 Syntactic

KAIST CySeclab 25

100.0%

Related works

Large-Scale and Language-Oblivious Code Authorship Identification
CCS '18)

Proposes deep learning based code authorship identification system for code authorship attribution.

B Works on mixed language environments (JAVA/C++, Python/C++).

Misleading Authorship Attribution of Source Code using Adversarial Learning
USENIX '19)

Attacking authorship attribution of source code using machine learning approach with preserving semantic
structure.

KAIST CySeclab 26

KAIST CySeclLab

Related Questions

Related Questions

ZlStL}(Best)

Hm They define Code Stylometry Feature Set consists of Lexical, Layout, Syntactic features. | think this is defined
manually by the authors. | think there might be more important features for classification and it is time costly.
Is there any method to find those features automatically?

o Yes. Maybe. | think the Lexical and Layout feature can automatically extracted by checking ‘diff’ of parsed
(normalized) source code and original source code.

0|82}
B Can other features like program usage (ex. history like command usage, process occupancy, idle time

between various processes) be the features to discriminate individuals? - And how and where can this
technology be used?

o | think this work will be very hard to collect data. Also, | cannot imagine that abstracting program usage
behavior. Therefore, | think it is hard to use program usage feature to discriminate individuals.

KAIST CySeclab 28

Related Questions

27y, Tz
m (Z AEH) | wonder how the detecting the stylistic features works in the binary code?

m (&E5}) | wonder if we can use intermediate language (IL) to de-anonymize the program. Because many
data abstracted when compilation to binary

o After this work, the authors checked binary de-anonymization. To do that, they used decompiled code and
disassembled code. Also, AST from decompiled code and Control Flow Graph (CFG) from disassembled code
features were used.

o Also, the generalization slides showed de-anonymization is possible even only the syntactic features used.
OLES
- -

B For software forensic part, is there sufficient data for malware developer? | think if there isn’t, then this
application will not work because it is supervised learning.

o | think the use of this technique provides another option for software forensic, not silver bullet.
When software forensic, there is no formal way to investigate.
Like “Sony Pictures hack” incident, the DPRK used sophisticated malware that hard to identify origin.
Therefore, the investigators specified origin as DPRK by showing the compiler language option was Korean.

Z VirusTotal

KAIST CySeclab 29

KAIST CySeclLab

Thanks!

Taehyeon Lee

