Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane

Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim

2019 IEEE Symposium on Security and Privacy

LTE communication is everywhere

Autonomous driving (Cellular V2X)

Public safety services (PS-LTE)

Maritime communication (LTE-Maritime)

Industrial IoT devices (NB-IoT, LTE-M)

Railway communication (LTE-R)

LTE network architecture

- LTE service procedures are separated into control plane and user plane
- Control plane procedures
 - ✤ (De)Registration of mobile phones, mutual authentication, mobility support, …
 - Always preceded by the user plane procedures
 - Might be a good target for adversaries

Related work

Formal analysis

 "LTEInspector: A Systematic Approach for Adversarial Testing of 4G LTE" (NDSS), 2018.

Carriers may have implementation bugs even if the spec. is correct

- Fake base station(FBS) & Implementation bugs
- "Practical Attacks Against Privacy and Availability in 4G/LTE Mobile Communication Systems," (NDSS), 2016.

FakeJUE

What about a fake LTE phone to inspect commercial networks?

Comme encial stativork

Challenges in active network testing

- Difficulties to actively inspect operational LTE networks
 - 1. Sending malicious signal to a commercial network is not allowed
 - ➔ Got Carriers' Testbed access
 - 2. It is hard to control baseband chipsets for simulating malicious behavior
 - → Use open-source LTE software (srsLTE, openLTE, and SCAT)
 - 3. An LTE network is a closed system
 - ➔ Device-side debugging

Goal of our research

- Investigate potential problems of the control plane procedures in LTE
 - Rooted from either

Specification problem

Implementation bug

Configuration bug

– How?

Comprehensive dynamic testing against commercial LTE networks

Overview of LTEFuzz

Generating test cases

- Target control plane protocols: RRC and NAS
- Target procedures
 - Radio connection, network attach/detach, location management, and session management, …

Generating test cases

1. Define basic security properties based on LTE specification

Property 1. Plain messages should be handled properly

- Plain messages by design
- Plain messages manipulated by an attacker

Property 2. Invalid security protected messages should be handled properly

- Invalid security header type
- Invalid MAC (Messages Authentication Code)
- Invalid Sequence number

Property 3. Mandatory security procedures should not be bypassed

- Authentication
- Key agreement procedure

Generate test cases that violate the properties

Generating test cases

1. Define basic security properties based on LTE specification

RRC test case

NAS test case

Executing test cases

LTEFuzz test environment

Network testing

- Target network vendors
 - Carrier A: two MME vendors, one eNB vendor
 - Carrier B: one MME vendor, two eNB vendors

Baseband testing

- Target baseband chipsets
 - Qualcomm, Exynos, HiSilicon, MediaTek

Operational networks are complicated

- Each carrier has different configurations
- Each carrier deploys different network equipment

Hard to manually analyze which case is problem

Classifying the problematic behavior

Overview of LTEFuzz

System Security La

15

Findings

- Test cases classified into problematic behavior
 - Total 51 cases: 36 new and 15 previously known
 - Categorized into five vulnerability types
 - Unprotected initial procedure cause failure (Property 1-1)
 - Invalid plain requests are accepted (Property 1-2)
 - Messages with invalid integrity protection (Property 2-1)
 - Messages with invalid sequence number (Replay) (Property 2-2)
 - AKA procedure can be bypassed (Property 3)
- Validated with the corresponding carriers and vendors

Test messages	Direction	Property 1-1	Property 1-2 (P)	Property 2-1 (I)	Property 2-2 (R)	Property 3	Affected component	1
NAS								Index
Attach request (IMSI/GUTI)	UL	В	DoS	DoS	DoS	-	Core network (MME)	
Detach request (UE originating detach)	UL	-	DoS [1]	DoS	DoS	-	Core network (MME)	
Service request	UL	-	-	В	Spoofing	-	Core network (MME)	Specification problem
Tracking area update request	UL	-	DoS	DoS	FLU and DoS	-	Core network (MME)	
Uplink NAS transport	UL	-	SMS phishing and DoS	SMS phishing and DoS	SMS replay	-	Core network (MME)	
PDN connectivity request	UL	В	В	DoS	DoS	-	Core network (MME)	
PDN disconnect request	UL		В	DoS	selective DoS	-	Core network (MME)	MME
Attach reject	DL	DoS [2]	DoS [3]	-	-	-	Baseband	vendors
Authentication reject	DL	DoS [4]	-	-	-	-	Baseband	
Detach request (UE terminated detach)	DL	-	DoS [4]	-	-	-	Baseband	
EMM information	DL	-	Spoofing [5]	-	-	-	Baseband	Baseband
GUTI reallocation command	DL	-	В	В	ID Spoofing	-	Baseband	vendors
Identity request	DL	Info. leak [6]	В	В	Info. leak	-	Baseband	
Security mode command	DL	-	В	В	Location tracking [4]	-	Baseband	
Service reject	DL	-	DoS [3]	-	-	-	Baseband	Vuln. From
Tracking area update reject	DL		DoS [3]	-	-	-	Baseband	
RRC								amerent
RRCConnectionRequest	UL	DoS and con. spoofing	-	-	-	-	Core network (eNB)	vendors
RRCConnectionSetupComplete	UL	Con. spoofing	-	-	-	-	Core network (eNB)	B: Benign
MasterInformationBlock	DL	Spoofing	-	-	-	-	Baseband	
Paging	DL	DoS [4] and Spoofing	-	-	-	-	Baseband	
RRCConnectionReconfiguration	DL	-	MitM	DoS	В	-	Baseband	-:n/a
RRCConnectionReestablishment	DL	-	Con. spoofing	-	-	-	Baseband	
RRCConnectionReestablishmentReject	DL		DoS			-	Baseband	P: plain
RRCConnectionReject	DL	DoS	-	-	-	-	Baseband	
RRCConnectionRelease	DL	DoS [2]	-	-	-	-	Baseband	l I: Invalid
RRCConnectionSetup	DL	Con. spoofing	-	-	-	-	Baseband	MAC
SecurityModeCommand	DL	-	В	В	В	MitM	Baseband	
SystemInformationBlockType1	DL	Spoofing [4]		-	-	-	Baseband	
SystemInformationBlockType 10/11	DL	Spoofing [4]		-	-	-	Baseband	R. Replay
SystemInformationBlockType12	DL	Spoofing [4]		-	-	-	Baseband	SvsSec
UECapabilityEnquiry	DL	Info. leak	-	Info. leak	Info. leak	-	Baseband	System Security La

Remote de-register attack

- Exploited test case: 15 cases in NAS (Attach, Detach, TAU, PDN con/discon...)
- Implementation bugs & configuration mistakes

AKA Bypass attack

Exploited test cases

- RRC Security Mode Command bypass (key agreement procedure)
- Implications
 - Eavesdropping user data traffic
 - Redirecting to fake online payment websites

Countermeasure

✤ Attacks exploiting eNB

- Reduce the inactivity timer value to allow an RRC Connection that is unresponsive to the Authentication request to expire.
- re-assign the S-TMSI when a number of RRC Connection requests using the same S-TMSI are received.
- ✤ Attacks exploiting MME and UE
 - MMEs, UE should be carefully implemented by strictly following the 3GPP standard

Conclusion

- Operational LTE networks are not as secure as they expected!
 - Complicated deployments (e.g., each network equipment is from different vendors) generate extremely complicated behavior (faults).
- They have implemented LTEFuzz
 - A semi-automated dynamic testing tool for both networks and devices
 - Specification problems: 16, Implementation bugs + configuration issues: 35
 - LTEFuzz considers realistic attack assumptions in operational LTE network

Follow-up work

- Bookworm Game: Automatic Discovery of LTE Vulnerabilities Through Documentation Analysis (IEEE S&P 2021)
 - utilizes NLP and ML techniques to scan a large amount of LTE documentation for hazard indicators(HIs).
 - The HIs discovered are analyzed to generate test cases.
- DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices (Usenix 22)
 - Stateful negative testing : tests the content by defining negative testing that is not properly defined in the specification.

Questions

1. Hyunsik Jeong (Best question)

- LTEFuzz can be classified as a black-box, stateless fuzzer. What is the main difficulty to make it stateful, and which method can be applied for the stateful fuzzer?
- Will take a lot of time and there will be difficulties in classifying the response.
- DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices (Usenix 22)

Questions

- 2. Youngjin Jin
 - In this paper, LTEFuzz is introduced as a stateless fuzzer. Traditional fuzzers usually take randomly generated inputs to look for potential bugs. Does this fuzzer only utilize crafted test cases through the use of security properties or are there any random explorations involved?
 - They generated the test cases with the intention of not causing a crash.
- ✤ 3. Wooyoung Go
 - If the author replace the simple decision tree algorithm to recent deep learning algorithm, the performance will be better??
 - will not help much and only consume time and resources

Thank you

