
BaseSpec: Comparative Analysis of
Baseband Software and Cellular
Specifications for L3 Protocols

Eunsoo Kim*, Dongkwan Kim*, CheolJun Park,
Insu Yun, and Yongdae Kim

KAIST
NDSS ‘21

1 (*: co-first authors)

AP

BP
2~5G

Processors in smartphone

2

Application
Processor

Application Data

Cellular
Base Station

Cellular
Core Network

Realtime
Software

Baseband
Processor

Vulns

AP

BP
2~5G

Baseband can be attacked!

3

Application
Processor

Malicious
Base Station

Malicious Data

Realtime
Software

Baseband
Processor

Cellular Protocol Stack
 Baseband handles control plane protocols

– ~100 documents (each has hundreds of pages)
 Layer 3 (L3) includes core procedures

– Call control (CC), Mobility management (MM), session management (SM)

 Multiple vulnerabilities have been found in Layer 3

4

Analyzing Baseband Security
 Challenge: Obscurity - vendors do not release details of baseband

 Manual analysis
– Baseband Attacks (Weinmann, WOOT'12)
– Breaking Band (Golde et al., REcon'16)
– A walk with Shannon (Cama, OPCDE'18)
 Limited scalability and applicability

 Numerous functions (over 90K) for processing hundreds of messages
 Diverse firmware versions and device models

 Dynamic analysis
– SMS of Death (Mulliner et al., Security'11)
– Security testing of GSM implementations (Broek et al., ESSoS'14)
– BaseSAFE (Maier et al., WiSec'20)
 Hard to automate

 Numerous non-trivial operations (e.g., mobility, session, call, ...)
 Dynamic analysis finds only shallow bugs (e.g., crash)

5

Observation
 Baseband is software for network communication

– Receive radio signals
– Decode messages
– Send responses or update states

 Decoder should implement protocol specifications (hundreds of messages)

6

Specification
Documents

Message Structures
in Baseband

Decoder
Function

Syntactic
Error

Semantic
Error

Our Approach - BaseSpec
 Comparative analysis of baseband and specification

– Focusing on protocol decoding logic

 Message structures are embedded in a machine-friendly form
 Comparing the structures with the documented specification can be automated

 Main decoding logic rarely changes
 Once analyzed, applicable to various firmware versions and device models

7

Specification
Documents

Message Structures
in Baseband

Decoder
Function

BaseSpec Overview

8

Processing Specification

9

Specification
Documents

Message Structures
in Baseband

Decoder
Function

 Ground Truth

Extracting Msg. Structures from Spec.
1) Download spec documents from the 3GPP (.doc) and ETSI (.pdf) websites
2) Convert documents to raw text
3) Handle inconsistencies (documents are written in a natural language)
4) Parse message structures

10

Standard L3 Messages
 Have a standardized form

 Message: set of Information Element (IE)
 An IE can have three elements

– IEI: IE Identifier (T), Length (L), Value (V)

 An IE can be mandatory or optional

11

Message: 07 44 02 78 00 39 52 02 ...

IEI
(T)

Value
(V)

Length
(L)

Information Elements (4 bits ~ n bytes)

Specification TS 24.301 - EMM (0x7)

12

...

Specification TS 24.301 - EMM (0x7)

13

IE: Information Element

...

Specification TS 24.301 - EMM (0x7)

14

IE: Information Element
Presence: Mandatory (M), Optional (O)
IEI: Information Element Identifier

...

Specification TS 24.301 - EMM (0x7)

15

IE: Information Element
Presence: Mandatory (M), Optional (O)
IEI: Information Element Identifier
Format: IEI (T), Length (L), Value (V),

Extended (-E)

...

Specification TS 24.301 - EMM (0x7)

16

Specification
Documents

Processing Firmware

17

Specification
Documents

Message Structures
in Baseband

Decoder
Function

 Our Analysis Target

Firmware Analysis

18

Firmware Analysis
 Challenge

– Obscurity - vendors do not open firmware details

 Target
– Firmware from 2 major vendors (architecture: ARM)

 Method
– Manual analysis to uncover the firmware’s obscurity
– Extract decoder function and message structure information

 After one-time manual analysis, can be automated

19

Firmware Analysis
 Preprocessing

– Firmware extraction
– Memory layout analysis
– Function boundary identification

 Identify the L3 decoder
– Utilize debug information

 "L3", “Decode", "EMM", ...

 Analyze embedded specification
(= embedded message structures)

20

Sample Debug Information

Typical Firmware
(Multiple Binaries)

Baseband Firmware
(Single Binary)

Msg. Structures in Vendor1 Firmware
 4 types of linked lists

21

 Contains IE information for every implemented message

Finding Syntactic Error

22

Specification
Documents

Message Structures
in Baseband

Decoder
Function

Syntactic
Error

Syntactic Comparison
 Check whether the embedded structures are correct

– Directly indicate developers' mistakes (e.g., mistyping length)

23

 Check existence / length
 Correct
 Invalid Mismatch

– Incorrect length

 Missing Mismatch
– Not in firmware

 Unknown Mismatch
– Only in firmware

Syntactic Comparison

24

IEI IE Name Format Value
Length

- Protocol disc… V 1/2

- Security header… V 1/2

- Attach reject … V 1

- EMM cause V 1

78 ESM … TLV-E 3-n

5F T3346 value TLV 1

IEI Value
Length

- -

- -

- -

- 1

78 0-n

- -

FF 1

From Specification From Firmware

Correct

Invalid

Missing
Unknown

Finding Semantic Error

25

Message Structures
in Baseband

Decoder
Function

Semantic
Error

Specification
Documents

Semantic Comparison
 Check whether the decoder operates correctly

– Can identify missing logic (e.g., length check) or exceptional cases

 Use symbolic execution to analyze the decoding logic

26

 Run symbolic execution on the decoder function
– Collect symbolic variables and constraints

 Created when the decoder checks IE Identifiers (IEIs) or lengths

– Identify IE Identifier (IEI) and Length Indicator (LI) and build message structures
 Compared with specifications to find mismatches (invalid, missing, and unknown)

Semantic Analysis

27

Implication Analysis

28

Implication Analysis
 Comparison reports mismatches

– Missing: IEs not in firmware
– Unknown: IEs only in firmware
– Invalid: IEs with incorrect lengths

 Some mismatches may not cause errors
– Additional check routines after decoder function
– Optional to implement
 Manual analysis is required

But mismatches can pinpoint erroneous parts

29

Functional Error
Functional Error

Memory Corruption
(Vulnerabilities)

Analyze

Evaluation
 Implemented a prototype with IDA Pro and angr

 Target
– 2 major vendors (ARM)
– 18 firmware images from Vendor1 (9 models × 2 versions)
– 3 firmware images from Vendor2 (3 models)

 Details are anonymized upon the vendor's request
– We reported all the findings to the vendors

30

Evaluation Results
 Hundreds of mismatches are reported

from every firmware

 Implication analysis results
– Vendor1

 5 Functional Errors
 4 Memory-related vulnerabilities
 2 critical Remote Code Execution (RCE) vulnerabilities

– Vendor2
 1 Memory-related vulnerability

31

Mismatch Results – Vendor1

32 *IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE

Mismatch Results – Vendor1

33

 Missing imperative (≈mandatory) & Unknown IEs
– Directly indicate functional errors

*IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE

Mismatch Results – Vendor1

34

 Missing imperative (≈mandatory) & Unknown IEs
– Directly indicate functional errors

 Invalid IEs
– Numerous incorrect length limit / ad-hoc length checks after decoder function
– Can lead to memory-related bugs

*IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE

Mismatch Results – Vendor1

35 *IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE

 Missing imperative (≈mandatory) & Unknown IEs
– Directly indicate functional errors

 Invalid IEs
– Numerous incorrect length limit / ad-hoc length checks after decoder function
– Can lead to memory-related bugs

 Missing non-imperative (≈optional) IEs
– May not be buggy

Mismatch Results – Vendor1

36 *IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE

 Missing imperative (≈mandatory) & Unknown IEs
– Directly indicate functional errors

 Invalid IEs
– Numerous incorrect length limit / ad-hoc length checks after decoder function
– Can lead to memory-related bugs

 Missing non-imperative (≈optional) IEs
– May not be buggy

9 erroneous cases
affecting 33 distinct
messages

Mismatch Results – Vendor1

37

 Let's see E1 (functional) and E6 (memory-related)
– Appear in new models (Model A to G)

Case Study - E1

38

 Problem
– Developers embedded IEs

in an incorrect order

 Buggy IEs (six IEs)

 Result
– 22 mismatches

Case Study - E6

39

 Vulnerable message & IE
– P-TMSI REALLOCATION COMMAND
– Allocated P-TMSI IE

 Reported by invalid mismatch
– Spec: 5 bytes
– Firmware: takes upto 255 bytes
– Not all IEs are checked properly

 Result
– Stack-based buffer overflow
– No protection (exploitable)

 Copy to buffer

 5 bytes buffer

 No length check for
Allocated P-TMSI

Discussion & Limitations

40

 Fully automating bug discovery
– Requires additional efforts for implication analysis
– Other techniques (e.g., fuzzing, symbolic analysis) can be combined

 Applicability of BaseSpec
– Only standard L3 messages are supported currently
– Similar approach is applicable to other cellular protocols (e.g., ASN.1)

 Other types of bugs
– Only covers bugs in the decoding logic
– Cannot cover state-related bugs

Conclusion
 Systematically compared cellular baseband firmware

with the specification for standard L3 messages
– Found 10 error cases including 2 critical RCE vulnerabilities

 Lessons learned
– Many errors occur in the development process from specifications
– Comparative analysis can find such errors
– Various firmware versions and device models can be analyzed (w/o real device)

41

Questions (1/3)

 Yeongbin Hwang
– In the case of an encrypted message, some fields are added to the

structure of the existing message. So I think the function to decode this
is also a little different, can you find this case properly using a BASESPEC?

 Answers
– Actually, we did not have to consider encrypted messages because the

decryption process is completely separated from the decoder function.
– One main key assumption of BaseSpec is that developers may follow

good programming practices
 Machine-friendly embedding of message structures rather than hard-coding

everything with many if-else clauses
 Clear separation of different tasks (decryption / parsing)

42

Questions (2/3)

 Tuan Hoang Dinh
– Is this method applicable for other wireless protocols and chipsets,

for example, GPS, Wifi.

 Wooyoung Go
– If I apply this method to other cellular protocol, what should I do??

 Answers
– The protocol should be extractable from both specification and

firmware in a comparable format
 Apply other techniques (fuzzing / emulation / source-code analysis) first

if possible

43

Questions (3/3)

 Taehwa Lee
– Have the vendors taken action on the vulnerabilities found?

 Youngjin Jin
– This paper does not explicitly state any defense measures or

countermeasures.

 Answers
– The vendor1 fixed all the bugs, but vendor 2 did not respond
– The bugs are traditional memory corruptions (BOF)

 Vendor1 recently adopted stack-protector (canary)

– However, vendor1 wanted to anonymize the details

44

45

hahah@kaist.ac.kr
dkay@kaist.ac.kr

	BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols
	Processors in smartphone
	Baseband can be attacked!
	Cellular Protocol Stack
	Analyzing Baseband Security
	Observation
	Our Approach - BaseSpec
	BaseSpec Overview
	Processing Specification
	Extracting Msg. Structures from Spec.
	Standard L3 Messages
	Specification TS 24.301 - EMM (0x7)
	Specification TS 24.301 - EMM (0x7)
	Specification TS 24.301 - EMM (0x7)
	Specification TS 24.301 - EMM (0x7)
	Specification TS 24.301 - EMM (0x7)
	Processing Firmware
	Firmware Analysis
	Firmware Analysis
	Firmware Analysis
	Msg. Structures in Vendor1 Firmware
	Finding Syntactic Error
	Syntactic Comparison
	Syntactic Comparison
	Finding Semantic Error
	Semantic Comparison
	Semantic Analysis
	Implication Analysis
	Implication Analysis
	Evaluation
	Evaluation Results
	Mismatch Results – Vendor1
	Mismatch Results – Vendor1
	Mismatch Results – Vendor1
	Mismatch Results – Vendor1
	Mismatch Results – Vendor1
	Mismatch Results – Vendor1
	Case Study - E1
	Case Study - E6
	Discussion & Limitations
	Conclusion
	Questions (1/3)
	Questions (2/3)
	Questions (3/3)
	슬라이드 번호 45

