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Cellular Protocol Stack
 Baseband handles control plane protocols

– ~100 documents (each has hundreds of pages)
 Layer 3 (L3) includes core procedures

– Call control (CC), Mobility management (MM), session management (SM)

 Multiple vulnerabilities have been found in Layer 3
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Analyzing Baseband Security
 Challenge: Obscurity - vendors do not release details of baseband

 Manual analysis
– Baseband Attacks (Weinmann, WOOT'12)
– Breaking Band (Golde et al., REcon'16)
– A walk with Shannon (Cama, OPCDE'18)
 Limited scalability and applicability

 Numerous functions (over 90K) for processing hundreds of messages
 Diverse firmware versions and device models

 Dynamic analysis
– SMS of Death (Mulliner et al., Security'11)
– Security testing of GSM implementations (Broek et al., ESSoS'14)
– BaseSAFE (Maier et al., WiSec'20)
 Hard to automate

 Numerous non-trivial operations (e.g., mobility, session, call, ...)
 Dynamic analysis finds only shallow bugs (e.g., crash)
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Observation
 Baseband is software for network communication

– Receive radio signals
– Decode messages
– Send responses or update states

 Decoder should implement protocol specifications (hundreds of messages)
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Our Approach - BaseSpec
 Comparative analysis of baseband and specification

– Focusing on protocol decoding logic

 Message structures are embedded in a machine-friendly form
 Comparing the structures with the documented specification can be automated

 Main decoding logic rarely changes
 Once analyzed, applicable to various firmware versions and device models
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BaseSpec Overview
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Processing Specification
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Extracting Msg. Structures from Spec.
1) Download spec documents from the 3GPP (.doc) and ETSI (.pdf) websites
2) Convert documents to raw text
3) Handle inconsistencies (documents are written in a natural language)
4) Parse message structures
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Standard L3 Messages
 Have a standardized form

 Message: set of Information Element (IE)
 An IE can have three elements

– IEI: IE Identifier (T), Length (L), Value (V)

 An IE can be mandatory or optional
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Message: 07  44  02  78  00  39  52  02  ...
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Specification TS 24.301 - EMM (0x7)
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Specification TS 24.301 - EMM (0x7)
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...



Specification TS 24.301 - EMM (0x7)

14

IE: Information Element
Presence: Mandatory (M), Optional (O)
IEI: Information Element Identifier

...



Specification TS 24.301 - EMM (0x7)
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IE: Information Element
Presence: Mandatory (M), Optional (O)
IEI: Information Element Identifier
Format: IEI (T), Length (L), Value (V),

Extended (-E)

...



Specification TS 24.301 - EMM (0x7)
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Processing Firmware
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Firmware Analysis
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Firmware Analysis
 Challenge

– Obscurity - vendors do not open firmware details

 Target
– Firmware from 2 major vendors (architecture: ARM)

 Method
– Manual analysis to uncover the firmware’s obscurity
– Extract decoder function and message structure information

 After one-time manual analysis, can be automated
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Firmware Analysis
 Preprocessing

– Firmware extraction
– Memory layout analysis
– Function boundary identification

 Identify the L3 decoder
– Utilize debug information

 "L3", “Decode", "EMM", ...

 Analyze embedded specification
(= embedded message structures)
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Msg. Structures in Vendor1 Firmware
 4 types of linked lists
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 Contains IE information for every implemented message



Finding Syntactic Error
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Syntactic Comparison
 Check whether the embedded structures are correct

– Directly indicate developers' mistakes (e.g., mistyping length)
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 Check existence / length
 Correct
 Invalid Mismatch

– Incorrect length

 Missing Mismatch
– Not in firmware

 Unknown Mismatch
– Only in firmware

Syntactic Comparison
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Finding Semantic Error
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Semantic Comparison
 Check whether the decoder operates correctly

– Can identify missing logic (e.g., length check) or exceptional cases

 Use symbolic execution to analyze the decoding logic
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 Run symbolic execution on the decoder function
– Collect symbolic variables and constraints

 Created when the decoder checks IE Identifiers (IEIs) or lengths

– Identify IE Identifier (IEI) and Length Indicator (LI) and build message structures
 Compared with specifications to find mismatches (invalid, missing, and unknown)

Semantic Analysis
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Implication Analysis
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Implication Analysis
 Comparison reports mismatches

– Missing: IEs not in firmware
– Unknown: IEs only in firmware
– Invalid: IEs with incorrect lengths

 Some mismatches may not cause errors
– Additional check routines after decoder function
– Optional to implement
 Manual analysis is required

But mismatches can pinpoint erroneous parts
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Evaluation
 Implemented a prototype with IDA Pro and angr

 Target
– 2 major vendors (ARM)
– 18 firmware images from Vendor1 (9 models × 2 versions)
– 3 firmware images from Vendor2 (3 models)

 Details are anonymized upon the vendor's request
– We reported all the findings to the vendors
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Evaluation Results
 Hundreds of mismatches are reported

from every firmware

 Implication analysis results
– Vendor1

 5 Functional Errors
 4 Memory-related vulnerabilities
 2 critical Remote Code Execution (RCE) vulnerabilities

– Vendor2
 1 Memory-related vulnerability
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Mismatch Results – Vendor1

32 *IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE



Mismatch Results – Vendor1
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 Missing imperative (≈mandatory) & Unknown IEs
– Directly indicate functional errors

*IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE



Mismatch Results – Vendor1
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 Missing imperative (≈mandatory) & Unknown IEs
– Directly indicate functional errors

 Invalid IEs
– Numerous incorrect length limit / ad-hoc length checks after decoder function
– Can lead to memory-related bugs

*IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE



Mismatch Results – Vendor1

35 *IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE

 Missing imperative (≈mandatory) & Unknown IEs
– Directly indicate functional errors

 Invalid IEs
– Numerous incorrect length limit / ad-hoc length checks after decoder function
– Can lead to memory-related bugs

 Missing non-imperative (≈optional) IEs
– May not be buggy



Mismatch Results – Vendor1

36 *IE: Information Element (= message field) i-IE: imperative (≈mandatory) IE n-IE: non-imperative (≈optional) IE

 Missing imperative (≈mandatory) & Unknown IEs
– Directly indicate functional errors

 Invalid IEs
– Numerous incorrect length limit / ad-hoc length checks after decoder function
– Can lead to memory-related bugs

 Missing non-imperative (≈optional) IEs
– May not be buggy

9 erroneous cases
affecting 33 distinct 
messages



Mismatch Results – Vendor1
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 Let's see E1 (functional) and E6 (memory-related)
– Appear in new models (Model A to G)



Case Study - E1
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 Problem
– Developers embedded IEs

in an incorrect order

 Buggy IEs (six IEs)

 Result
– 22 mismatches



Case Study - E6

39

 Vulnerable message & IE
– P-TMSI REALLOCATION COMMAND
– Allocated P-TMSI IE

 Reported by invalid mismatch
– Spec: 5 bytes
– Firmware: takes upto 255 bytes
– Not all IEs are checked properly

 Result
– Stack-based buffer overflow
– No protection (exploitable)

 Copy to buffer

 5 bytes buffer

 No length check for 
Allocated P-TMSI



Discussion & Limitations
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 Fully automating bug discovery
– Requires additional efforts for implication analysis
– Other techniques (e.g., fuzzing, symbolic analysis) can be combined

 Applicability of BaseSpec
– Only standard L3 messages are supported currently
– Similar approach is applicable to other cellular protocols (e.g., ASN.1)

 Other types of bugs
– Only covers bugs in the decoding logic
– Cannot cover state-related bugs



Conclusion
 Systematically compared cellular baseband firmware

with the specification for standard L3 messages
– Found 10 error cases including 2 critical RCE vulnerabilities

 Lessons learned
– Many errors occur in the development process from specifications
– Comparative analysis can find such errors
– Various firmware versions and device models can be analyzed (w/o real device)
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Questions (1/3)

 Yeongbin Hwang
– In the case of an encrypted message, some fields are added to the 

structure of the existing message. So I think the function to decode this 
is also a little different, can you find this case properly using a BASESPEC?

 Answers
– Actually, we did not have to consider encrypted messages because the 

decryption process is completely separated from the decoder function.
– One main key assumption of BaseSpec is that developers may follow 

good programming practices
 Machine-friendly embedding of message structures rather than hard-coding 

everything with many if-else clauses
 Clear separation of different tasks (decryption / parsing)
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Questions (2/3)

 Tuan Hoang Dinh
– Is this method applicable for other wireless protocols and chipsets, 

for example, GPS, Wifi.

 Wooyoung Go
– If I apply this method to other cellular protocol, what should I do??

 Answers
– The protocol should be extractable from both specification and 

firmware in a comparable format
 Apply other techniques (fuzzing / emulation / source-code analysis) first 

if possible
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Questions (3/3)

 Taehwa Lee
– Have the vendors taken action on the vulnerabilities found?

 Youngjin Jin
– This paper does not explicitly state any defense measures or 

countermeasures.

 Answers
– The vendor1 fixed all the bugs, but vendor 2 did not respond
– The bugs are traditional memory corruptions (BOF)

 Vendor1 recently adopted stack-protector (canary)

– However, vendor1 wanted to anonymize the details
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