
EE515
Security of Emerging Systems

Yongdae Kim
SysSec@KAIST

Admin
❖ Homepage

– http://security101.kr
❖ Survey

– Paper presentation survey (will be sent this week)
– Find your group members and discuss about projects

http://security101.kr/

Security theater is the practice of
q investing in countermeasures

intended to provide the feeling
of improved security

q while doing little or nothing to
actually achieve it

- Bruce Schneier

Basic Cryptography

The Main Players

Alice Bob

Eve
Yves?

Attacks

Source Destination

Normal Flow

Source Destination

Interruption: Availability

Source Destination

Interception: Confidentiality

Source Destination

Modification: Integrity

Source Destination

Fabrication: Authenticity

Taxonomy of Attacks
❖ Passive attacks

– Eavesdropping
– Traffic analysis

❖ Active attacks
– Masquerade
– Replay
– Modification of message content
– Denial of service

Cryptographic Primitives
Cryptographic

Primitives

Unkeyed
Primitives

Symmetric Key
Primitives

Public Key
Primitives

Hash
Functions

One-way
Permutations

Random
Sequences

Symmetric-key
Ciphers

Message
Authentication

Code

Pseudo
Random

Sequences

Identification
Primitives

Public-key
Ciphers

Digital
Signatures

Identification
Primitives

Block
Ciphers

Stream
Ciphers

Encryption

• Why do we use key?
• Or why not use just a shared encryption function?

Plaintext source

Encryption
Ee(m) = c

destination

Decryption
Dd(c) = m

c
insecure channel

Alice Bob

Adversary

m m

Symmetric Key Encryption

Plaintext source

Encryption
Ee(m) = c

destination

Decryption
Dd(c) = m

c
Insecure channel

Alice Bob

Adversary

Key source

e

m m

d Secure channel

Public Key Encryption

Plaintext source

Encryption
Ee(m) = c

destination

Decryption
Dd(c) = m

c
Insecure channel

Alice Bob

Passive
Adversary

Key source

d

m m

e Insecure channel

Public Key should be authentic!

e

e

Ee(m)

e’

Ee’(m)
Ee(m)

Hash Function
❖ A hash function is a function h satisfying

– h:{0, 1}* è {0, 1}k (Compression)

❖ A cryptographic hash function is a hash function satisfying
– It is easy to compute y=h(x) (ease of computation)
– For a given y, it is hard to find x’ such that h(x’)=y. (onewayness)
– It is hard to find x and x’ such that h(x)=h(x’) (collision resistance)

❖ Examples: SHA-1, MD-5, SHA-256, …

Randomness of a Hash Function

Applications of Hash Functions
❖ File integrity

❖ Digital signature
Sign = SSK(h(m))

❖ Password verification
stored hash = h(password)

❖ File identifier

❖ Hash table

❖ Generating random numbers

Hash Function and MAC
❖ A hash function is a function h

– compression
– ease of computation
– Properties

▪ one-way: for a given y, find x’ such that h(x’) = y
▪ collision resistance: find x and x’ such that h(x) = h(x’)

– Examples: SHA-1, MD-5

❖ MAC (message authentication codes)
– both authentication and integrity
– MAC is a family of functions hk

▪ ease of computation (if k is known !!)
▪ compression, x is of arbitrary length, hk(x) has fixed length
▪ computation resistance

– Example: HMAC

MAC construction from Hash Function
❖ Prefix

– M=h(k||x)
– appending y and deducing h(k||x||y) form h(k||x) without knowing k

❖ Suffix
– M=h(x||k)
– possible a birthday attack, an adversary that can choose x can

construct x’ for which h(x)=h(x’) in O(2n/2)

❖ STATE OF THE ART: HMAC (RFC 2104)
– HMAC(x)=h(k||p1||h(k|| p2||x)), p1 and p2 are padding
– The outer hash operates on an input of two blocks
– Provably secure

How to use MAC?
❖ A & B share a secret key k
❖ A sends the message x and the MAC M←Hk(x)
❖ B receives x and M from A
❖ B computes Hk(x) with received M
❖ B checks if M=Hk(x)

Public Key Encryption

Plaintext source

Encryption
Ee(m) = c

destination

Decryption
Dd(c) = m

c
Insecure channel

Alice Bob

Passive
Adversary

Key source

d

m m

e Insecure channel

Digital Signatures
❖ Unforgeability
❖ Integrity
❖ Authentication
❖ Non-repudiation

I did not
have
intimate
relations with
that
woman,…,
Ms.
Lewinsky

Digital Signature with Appendix

M

m mh

Mh
h s*

S
SigSKA

Mh x S
{True, False}

VrPKA

s* = SigSKA(mh)

u = VrPKA(mh, s*)

Authentication
❖ How to prove your identity?

– Prove that you know a secret information

❖ When key K is shared between A and Server
– A è S: HMACK(M) where M can provide freshness
– Why freshness?

❖ Digital signature?
– A è S: SigSK(M) where M can provide freshness

❖ Comparison?

Encryption and Authentication
❖ EK(M)

❖ Redundancy-then-Encrypt: EK(M, R(M))
❖ Hash-then-Encrypt: EK(M, h(M))
❖ Hash and Encrypt: EK(M), h(M)
❖ MAC and Encrypt: Eh1(K)(M), HMACh2(K)(M)
❖ MAC-then-Encrypt: Eh1(K)(M, HMACh2(K)(M))
❖ Encrypt-then-MAC: C, HMACh2(K)(C), where C=Eh1(K)(M)

Challenge-response Authentication
❖ Alice is identified by a secret she possesses

– Bob needs to know that Alice does indeed possess this secret
– Alice provides response to a time-variant challenge
– Response depends on both secret and challenge

❖ Using
– Symmetric key encryption
– Public key encryption
– MAC
– Digital signatures

Challenge-Response using SKE
❖ Alice and Bob share a key K
❖ Taxonomy

– Unidirectional authentication using timestamps
– Unidirectional authentication using random numbers
– Mutual authentication using random numbers

❖ Unilateral authentication using timestamps
– Alice ® Bob: EK(tA, B)
– Bob decrypts and verified that timestamp is OK
– Parameter B prevents replay of same message in B ® A direction

Challenge-Response using SKE
❖ Unilateral authentication using random numbers

– Bob ® Alice: rb
– Alice ® Bob: EK(rb, B)
– Bob checks to see if rb is the one it sent out

▪ Also checks “B” - prevents reflection attack

– rb must be non-repeating

❖ Mutual authentication using random numbers
– Bob ® Alice: rb
– Alice ® Bob: EK(ra, rb, B)
– Bob ® Alice: EK(ra, rb)
– Alice checks that ra, rb are the ones used earlier

Challenge-Response using MAC
❖ Instead of encryption, used keyed MAC hK
❖ Check: compute MAC from known quantities, and check with message
❖ SKID3

– Bob ® Alice: rb
– Alice ® Bob: ra, hK(ra, rb, B)
– Bob ® Alice: hK(ra, rb, A)

Challenge-Response using PKE and DS
❖ Mutual Authentication based on PK decryption

– Alice ® Bob: PB(rA, B)
– Bob ® Alice: PA(rA, rB)
– Alice ® Bob: rB

❖ Timestamp-based unilateral authentication using DS
– Alice ® Bob: certA, tA, B, SA(tA, B)
– Bob checks:

▪ Timestamp OK
▪ Identifier “B” is its own
▪ Signature is valid (after getting public key of Alice using certificate)

❖ Mutual Authentication using DS
– Bob ® Alice: rB
– Alice ® Bob: certA, rA, B, SA(rA,rB,B)
– Bob ® Alice: certB, A, SB(rA,rB,A)

Key Establishment, Management
❖ Key establishment

– Process to whereby a shared secret key becomes available to two or more parties
– Subdivided into key agreement and key transport.

❖ Key management
– The set of processes and mechanisms which support key establishment
– The maintenance of ongoing keying relationships between parties

Kerberos vs. PKI vs. IBE
❖ Two people who never met before

– Can mutually authenticate each other
– Can share a secret key

Kerberos
T

A B

A,
 B

, N
A

E K
B
T(

k,
 A

, L
),

E K
A
T(

k,
 N

A
, L

, B
)

EKBT(k, A, L), Ek(A, TA, Asubkey)

Ek(TA, Bsubkey)

•EKBT(k, A, L): Token for B
•EKAT(k, NA, L, B): Token for A
•L: Life-time
•NA?

•Ek(A, TA, Asubkey): To prove B that A knows k
•TA: Time-stamp

•Ek(B, TA, Bsubkey): To prove A that B knows k

Kerberos (Scalable)
T (AS)

A B

A,
 G

, N
A

E K
GT

(k
AG

, A
, L

),
E K
AT

(k
AG

, N
A,

L,
 G

)

EKGB (kAB, A, L, NA’), EkAB(A, TA’, Asubkey)

Ek(TA’, Bsubkey)

G (TGS)

E KGT(k
AG,

A, L)
, E kAG(A

, T A),
 B, N A’

E KAG(k
AB,

N A’,
L, B

), E
kG

B(k
AB,

A, L,
 N A’)

, B
, N

A’

Public Key Certificate
❖ Public-key certificates are a vehicle

– public keys may be stored, distributed or forwarded over unsecured media

❖ The objective
– make one entity’s public key available to others such that its authenticity and

validity are verifiable.

❖ A public-key certificate is a data structure
– data part

▪ cleartext data including a public key and a string identifying the party (subject entity) to
be associated therewith.

– signature part
▪ digital signature of a certification authority over the data part
▪ binding the subject entity’s identity to the specified public key.

Certificate Authority
❖ a trusted third party whose signature on the certificate vouches for the

authenticity of the public key bound to the subject entity
– The significance of this binding must be provided by additional means, such as an

attribute certificate or policy statement.

❖ the subject entity must be a unique name within the system
(distinguished name)

❖ The CA requires its own signature key pair, the authentic public key.
❖ Can be off-line!

Verifying Public Key Certificate
1. (One-time) acquire the authentic public key of the certification authority.
2. Obtain an identifying string uniquely identifying the intended party A
3. Acquire over some unsecured channel A’s public-key certificate and

agreeing with the previous identifying string.
4. (a) Verify the current date and time against the validity period (if any) in

the certificate, relying on a local trusted time/day-clock;
(b) Verify the current validity of the CA’s public key itself;
(c) Verify the signature on A’s certificate, using the CA’s public key;
(d) Verify that the certificate has not been revoked.

5. If all checks succeed, accept the public key in the certificate as A’s
authentic key.

X.509 Strong Two-way Authentication
❖ Let DA= (tA, rA, B, data1*, PB(k1)*) and DB=(tB, rB, A, rA, data2 ∗, PA(k2)∗).

❖ A è B: certA, DA, SA(DA)
❖ B è A: certB, DB, SB(DB)

ID-based Cryptography
❖ No public key
❖ Public key = ID (email, name, etc.)
❖ PKG

– Private key generation center
– SKID = PKGS(ID)
– PKG’s public key is public.
– distributes private key associated with the ID

❖ Encryption: C= EID(M)
❖ Decryption: DSK(C) = M

Discussion (PKI vs. Kerberos vs. IBE)
❖ On-line vs. off-line TTP

– Implication?

❖ Non-reputation?
❖ Revocation?
❖ Scalability?
❖ Trust issue?

Questions?
❖ Yongdae Kim

– email: yongdaek@kaist.ac.kr
– Home: http://syssec.kaist.ac.kr/~yongdaek
– Facebook: https://www.facebook.com/y0ngdaek
– Twitter: https://twitter.com/yongdaek

– Google “Yongdae Kim”

mailto:yongdaek@kaist.ac.kr
http://syssec.kaist.ac.kr/~yongdaek
http://www.facebook.com/y0ngdaek
https://twitter.com/yongdaek

