Cellular Security Overview + LTEFuzz

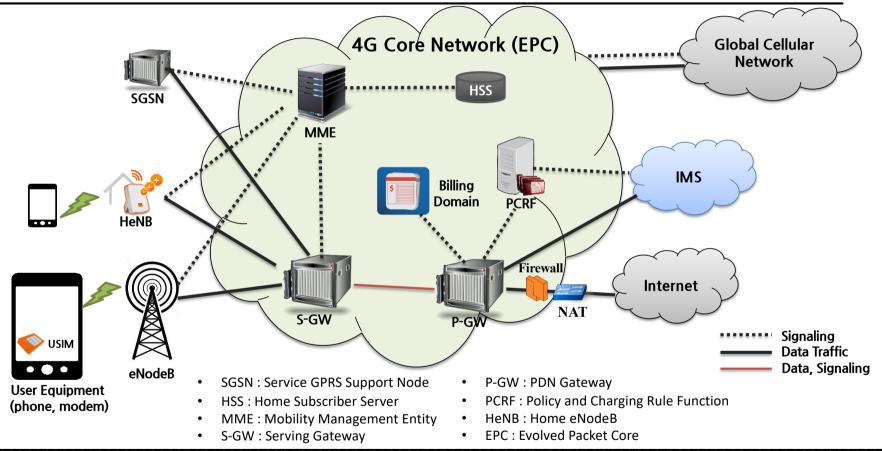
Yongdae Kim KAIST SysSec Lab

* A revised presentation from QPSS'19 presentation

Cellular Security Publications (Selected)

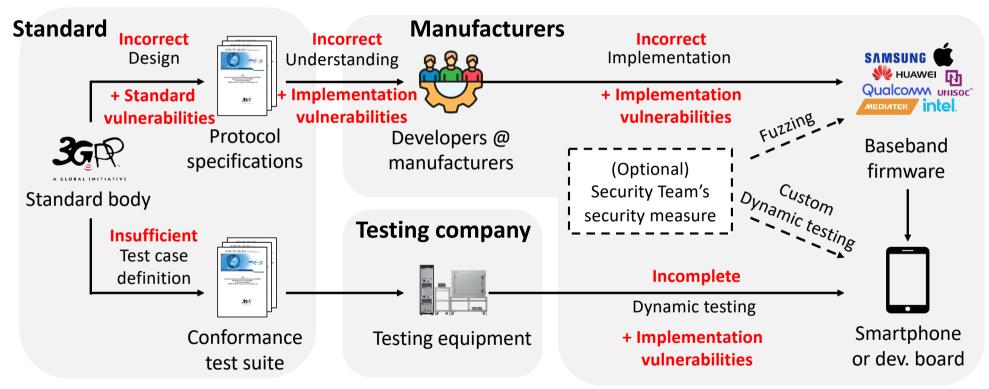
5 NDSS, 4 Usenix Sec, 1 CCS, 1 S&P. 1 EuroS&P, 1 TMC, 1 WISEC

- 1. Location leaks on the GSM Air Interface, NDSS'12
- 2. Gaining Control of Cellular Traffic Accounting by Spurious TCP Retransmission, NDSS' 14
- 3. Breaking and Fixing VoLTE: Exploiting Hidden Data Channels and Mis-implementations, CCS'15
- 4. When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks, EuroS&P'17
- 5. GUTI Reallocation Demystified: Cellular Location Tracking with Changing Temporary Identifier, NDSS'18
- 6. Peeking over the Cellular Walled Gardens: A Method for Closed Network Diagnosis, IEEE TMC'18
- 7. Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane, S&P'19
- 8. Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTE, Usenix Sec'19
- 9. BASESPEC: Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols, NDSS'21
- 10. DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices, Usenix Sec'22
- 11. Watching the Watchers: Practical Video Identification Attack in LTE Networks, Usenix Sec'22
- 12. Preventing SIM Box Fraud Using Device Fingerprinting, NDSS'23
- 13. LTESniffer: An Open-source LTE Downlink/Uplink Eavesdropper, ACM WISEC'23
- 14. BASECOMP: A Comparative Analysis for Integrity Protection in Cellular Baseband Software, Usenix Sec'23



Cellular Security Publications

- New Vulnerabilities/Attacks
 - Location/Identity leaks [NDSS'12, NDSS'18]
 - Accounting bypass [NDSS'14, EuroS&P'17]
 - Signal overshadowing [Usenix Sec'19]
 - Video fingerprinting [Usenix Sec'22]
 - LTESniffer: Up-/Down-link sniffer [WISEC'23]
- Test/Measurement
 - VolTE [CCS'15]
 - Performance bug [TMC'18, Hotmobile'19]
 - LTEFuzz: Up-/Down-link negative Fuzzer [S&P'19]
 - DoLTEst: Stateful Down-link Fuzzer [Usenix Sec'22]
 - UE Fingerprinting [NDSS'23]
- Static Analysis
 - Baseband Static Analysis [NDSS'21, Usenix Sec'23]

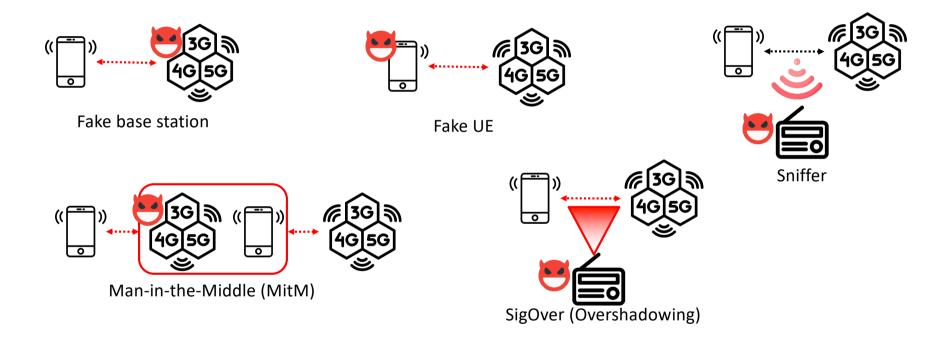

4G LTE Cellular Network Overview

Security problems in baseband (UE)

Secure specification does not necessarily lead to secure implementations

Why Cellular Implementation vulns Exist?

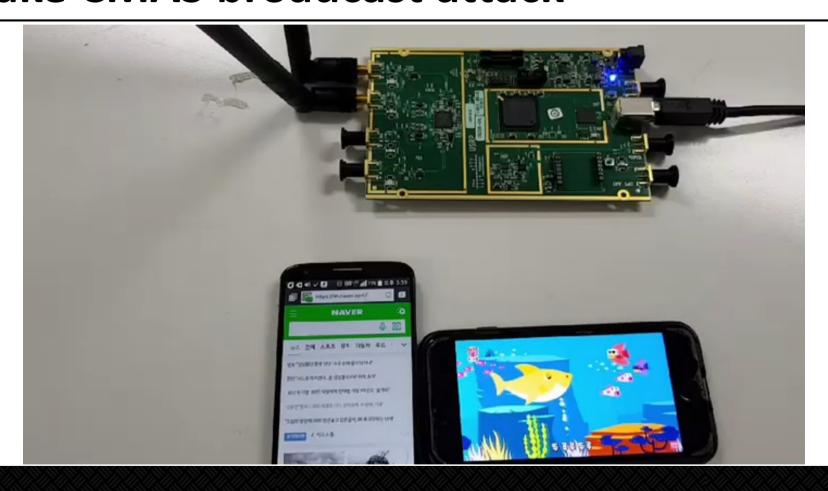
- New Generation (Technology) every 10 years
 - New Standards, Implementation, and Deployment → New vulnerabilities
- Generation overlap: e.g. 3G, LTE and CSFB vulnerabilities in CSFB
- ❖ Government > Carrier > Device vendors > Customers ☺
- Walled Garden
 - Carriers and vendors don't talk to each other.
 - Carriers: (Mostly) No response to responsible disclosure
- Complicated and huge standards Hard to find bugs, need a large group
 - Multiple protocols co-work, but written in separate docs
- Standards are written ambiguously
 - Misunderstanding by vendors and carriers
 - Leave many implementation details for vendors
- Cellular networks/devices could be different from each carrier and vendor
- Conformance testing standard, but (almost) no security testing standard



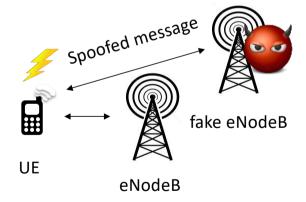
Why Cellular Design Vulnerabilities Exist?

- New Generation (Technology) every 10 years
 - New Standards, Implementation, and Deployment → New vulnerabilities
- Backward compatibility: e.g. supporting 2G
- ❖ Government > Carrier > Device vendors > Customers ☺
 - Or Government > GSMA > 3GPP > Customers
 - To become standard, one needs unanimous support.
 - Too expensive, need insecurities, not a big deal, ...
- ❖ Complicated and huge standards → Hard to find bugs, need a large group
 - Multiple protocols co-work, but written in separate docs
- No visible attackers so far
- Papers presented, featured in newspapers, discussed in 3GPP, but forgotten later

Threat Models

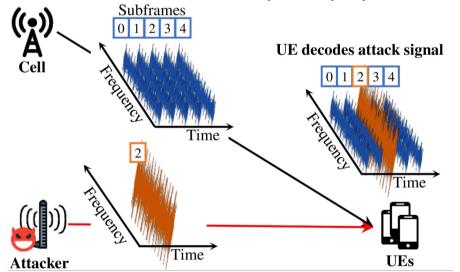


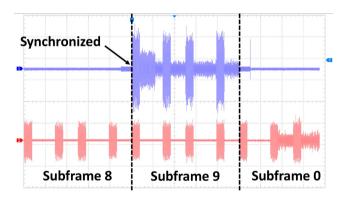
Unpatched Design Vulnerabilities



Fake CMAS broadcast attack

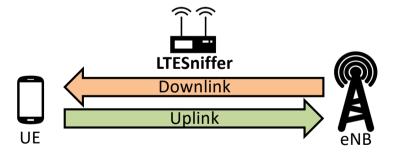
Attacks using SDR based "Fake BTS"


- Exploit physical layer procedure
 - Fake BTS synchronizes with a benign eNodeb, and send spoofed signal to UEs or receive uplink signal from UEs
 - Selective Jamming
 - Malicious data injection
 - e.g. warning message (Emergency SMS), detach message
- Exploit unprotected RRC, NAS Procedure
 - DoS: Attach/TAU/Service Reject
 - Privacy leak: Identity request

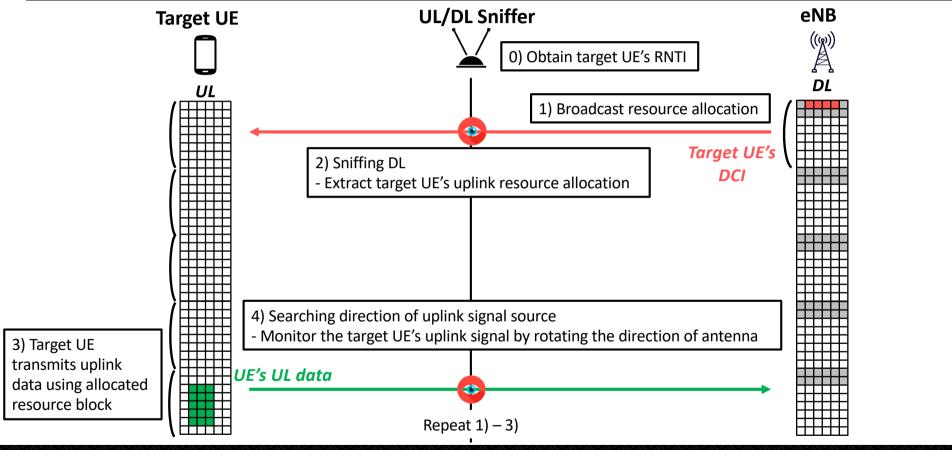


Signal Overshadowing: SigOver Attack

- Signal injection attack exploits broadcast messages in LTE
 - Broadcast messages in LTE have never been integrity protected!
- ❖ Transmit time- and frequency-synchronized signal



LTESniffer

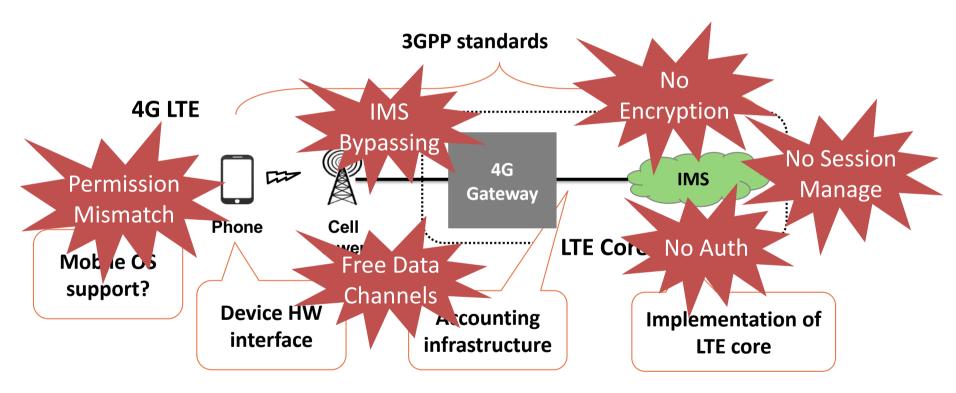

- Decoding LTE uplink-downlink control-data channels
 - Downlink: PDCCH, PDSCH (up to 256QAM)
 - Uplink: PUSCH (up to 256QAM)
- Storing decoded packets in Pcap files for further analysis
- Supporting a security API with three functions
 - 1) Identity mapping
- 2) IMSI collecting
- 3) UE Capability Profiling

Open-source*

Unauthorized Localization of LTE Devices

Cellular Insecurity in Standard

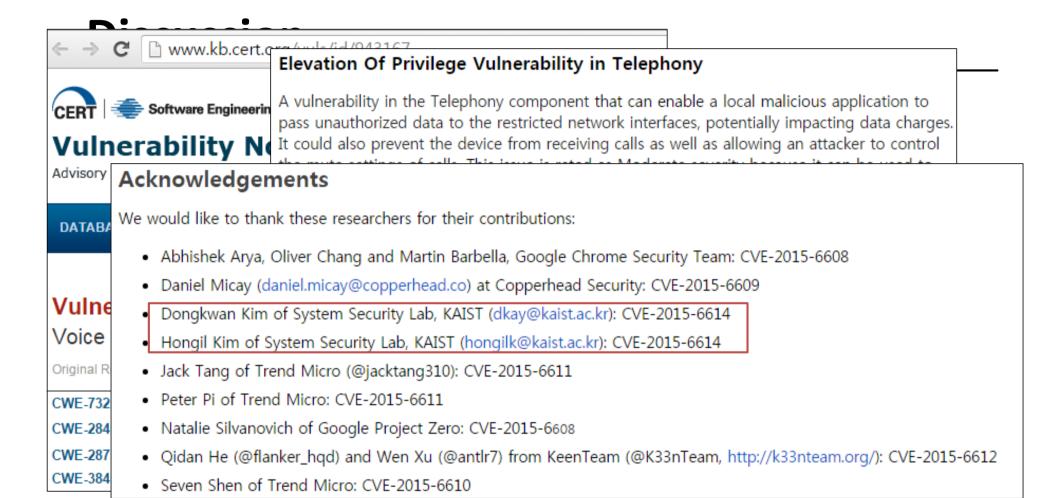
- Unauthenticated broadcast channel
- Roaming networks such as SS7 and Diameter
- Unauthenticated initial messages
- ❖ No voice encryption
- ❖ No MAC layer protection
- ❖ Lawful Interception
- Still symmetric key-based key management
- Suppose you implement cellular network (e.g. 6G) from scratch, would you design with these insecurities?



Security of New Systems

VolTE makes cellular network more complex


❖ Let's check potential attack vectors newly introduced in VoLTE



Free Data Channels	Free Channel	US-1	US-2	KR-1	KR-2	KR-3
	SIP Tunneling	✓	✓	✓	✓	✓
Using VoLTE Protocol	Media Tunneling	✓	✓	✓	✓	✓
Direct	Phone to Phone	✓	X	✓	X	X
Communication	Phone to Internet	X	✓	✓	X	X

Weak Point	Vulnerability	US-1	US-2	KR-1	KR-2	KR-3	Possible Attack
	No SIP Encryption						Message manipulation
IMS	No Voice Data Encryption	60				60	Wiretapping
livis	No Authentication						Caller Spoofing
	No Session Management	00				600	Denial of Service on Core Network
4G-GW	IMS Bypassing						Caller Spoofing
Phone	Permission Mismatch	Vulnerable for all Android			l Andro	id	Denial of Service on Call, Overbilling

Cellular Security Testing

Cellular Security Testing (Analysis)

Target

Cellular modem/devices, cellular carrier networks, standards

❖ Why?

- New Generation (Technology) every 10 years
- Complicated and huge standards
- Ambiguous standards
- Leave many implementation details for vendors
- Cellular networks/devices could be different from each carrier and vendor
- Conformance testing standard, but (almost) no security testing standard

Approaches

Keywords

Static, dynamic, comparative, negative testing, formal analysis, state machine,
 specification, traffic, binary, source code, modem, devices, specification, ...

Summary

Venue	Topic	Test Keywords
CCS'15	VolTE	Static, dynamic, negative testing, binary, modem, device, carrier
TMC'18	NAS/RRC	Dynamic, comparative, device, carrier
S&P'19	NAS/RRC	Dynamic, negative testing, modem, device, carrier
NDSS'21	NAS/RRC	Static, comparative, modem, binary, specification
Usenix'22	NAS/RRC	Dynamic, negative testing, modem

Worldwide Data Collection

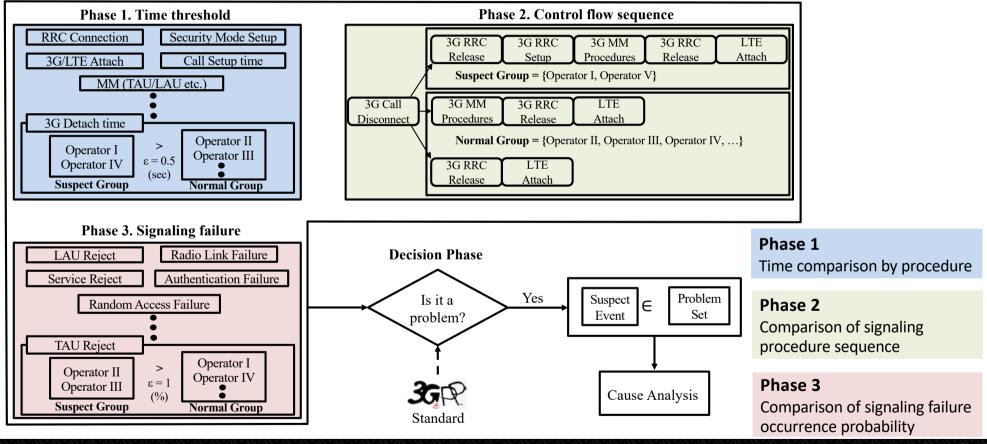
Country	# of OP.	# of signalings	Country	# of OP.	# of signalings
U.S.A	3	763K	U.K.	1	41K
Austria	3	807K	Spain	2	51K
Belgium	3	372K	Netherlands	3	946K
Switzerland	3	559K	Japan	1	37K
Germany	4	841K	South Korea	3	1.7M
France	2	305K			

Data summary

of countries: 11

of operators: 28

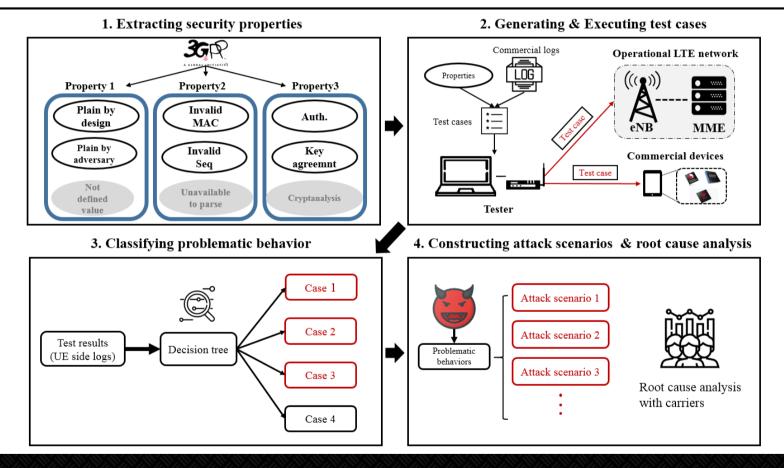
of USIMs: 95


of voice calls: 52K

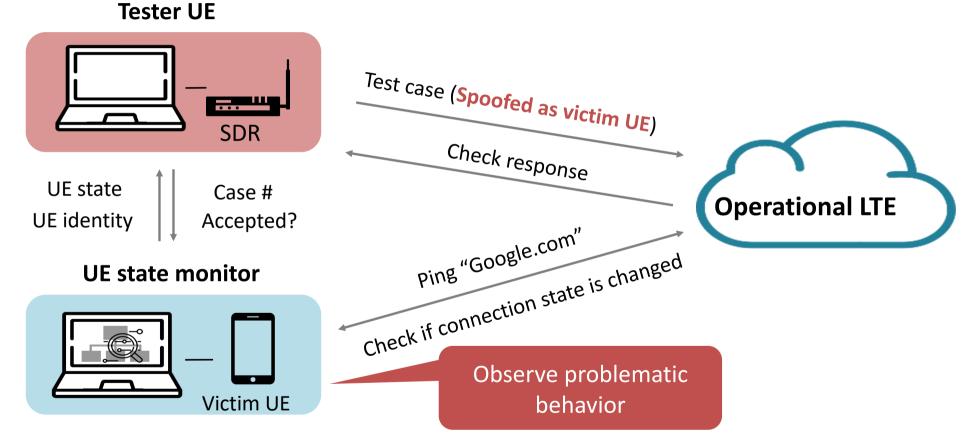
of signalings (control-plane message): **6.4M**

Problem Diagnosis Overview

Identified Problems


Problem	Observation	Operator
LTE location update collision	Out-of-service about 11 s	US-II
Mismatch procedures	Delay of 3G detach. Worst case: 10.5 s	US-I, DE-I. DE-II, FR-I, FR-II
Allocation of incorrect frequency	Out-of-service 30 sec. and stuck in 3G for 100 s	DE-I
Redundant location update	Delay of LTE attach or call setup. Worst case: 6.5 s	US-I, DE-I, DE-III, FR-II
Redundant authentication	Delay of CSFB procedures for 0.4 s	FR-I, FR-II, DE-I, DE-III, FR-II
Security context sharing error	Out-of-service 1.5 s	ES-I
Core node handover misconfiguration	Delay of LTE attach (0.4 s)	US-II

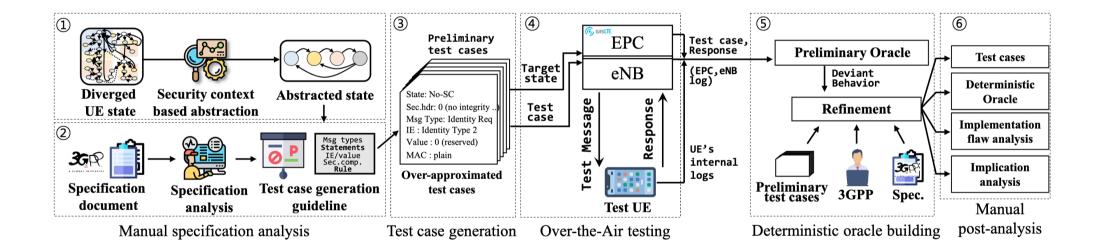
Fuzzing LTE Core and Baseband


LTEFuzz

Executing Test Cases

Test messages	Direction	Property 1-1	Property 1-2 (P)	Property 2-1 (I)	Property 2-2 (R)	Property 3	Affected component
NAS							
Attach request (IMSI/GUTI)	UL	В	DoS	DoS	DoS	-	Core network (MME)
Detach request (UE originating detach)	UL	-	DoS [1]	DoS	DoS	-	Core network (MME)
Service request	UL	-	-	В	Spoofing	-	Core network (MME)
Tracking area update request	UL	-	DoS	DoS	FLU and DoS	-	Core network (MME)
Uplink NAS transport	UL	-	SMS phishing and DoS	SMS phishing and DoS	SMS replay	-	Core network (MME)
PDN connectivity request	UL	В	В	DoS	DoS	-	Core network (MME)
PDN disconnect request	UL	-	В	DoS	selective DoS	-	Core network (MME)
Attach reject	DL	DoS [2]	DoS [3]	-	-	-	Baseband
Authentication reject	DL	DoS [4]	-	-	-	-	Baseband
Detach request (UE terminated detach)	DL	-	DoS [4]	-	-	-	Baseband
EMM information	DL	-	Spoofing [5]	-	-	-	Baseband
GUTI reallocation command	DL	-	В	В	ID Spoofing	-	Baseband
Identity request	DL	Info. leak [6]	В	В	Info. leak	-	Baseband
Security mode command	DL	-	В	В	Location tracking [4]	-	Baseband
Service reject	DL	-	DoS [3]	-	-	-	Baseband
Tracking area update reject	DL	-	DoS [3]	-	-	-	Baseband
RRC							
RRCConnectionRequest	UL	DoS and con. spoofing	-	-	-	-	Core network (eNB)
RRCConnectionSetupComplete	UL	Con. spoofing	-	-	-	-	Core network (eNB)
MasterInformationBlock	DL	Spoofing	-	-	-	-	Baseband
Paging	DL	DoS [4] and Spoofing	-	-	-	-	Baseband
RRCConnectionReconfiguration	DL	-	MitM	DoS	В	-	Baseband
RRCConnectionReestablishment	DL	-	Con. spoofing	-	-	-	Baseband
RRCC onnection Reestablish ment Reject	DL		DoS			-	Baseband
RRCConnectionReject	DL	DoS	-	-	-	-	Baseband
RRCConnectionRelease	DL	DoS [2]	-	-	-	-	Baseband
RRCConnectionSetup	DL	Con. spoofing	-	-	-	-	Baseband
SecurityModeCommand	DL	-	В	В	В	MitM	Baseband
SystemInformationBlockType1	DL	Spoofing [4]	-	-	-	-	Baseband
SystemInformationBlockType 10/11	DL	Spoofing [4]	-	-	-	-	Baseband
SystemInformationBlockType12	DL	Spoofing [4]	-	-	-	-	Baseband
UECapabilityEnquiry	DL	Info. leak	-	Info. leak	Info. leak	-	Baseband

Attacks exploiting MME


- Result of dynamic testing against different MME types
 - Carrier 1: MME1, MME2, Carrier2: MME3 (MME1 & MME3: the same vendor)

Exploited	Implications						
NAS Messages	\mathbf{MME}_1	MME_2	MME_3				
Attach Request	DoS (P, I, R)	×	DoS (P, I, R)				
TAU Request	DoS (P, I, R)	×	DoS (I), False location update (R)				
Uplink NAS Transport	DoS (P , I), SMS phishing (R)	SMS phishing (P , I , R)	-				
PDN Connectivity Request	DoS (I)	×	DoS, DosS (R)				
PDN Disconnect Request	DoS (I), DosS (R)	×	DosS (R)				
Detach Request	DoS (P, R)	DoS (P, I, R)	DoS (P, I, R)				

DosS: Denial of selective Service, **P:** Plain, **I:** Invalid MAC, **R:** Replay

DoLTEst

Conclusion

- Design vulnerabilities
 - Technical problems + Political problems
 - Clear slate design for 6G
- Spec could be written better.
 - Formally verifiable?
 - Sample implementation needs to be provided
 - Negative testing (security testing) should be standardized!
- Use of NLP to understand 3GPP Spec
 - Seems impossible... Inconsistencies, ambiguities, and domain knowledge
- ❖ Binary vs. Source code vs. Spec comparison
 - Long long way to go ☺

Questions?

❖ Yongdae Kim

- email: yongdaek@kaist.ac.kr
- Home: http://syssec.kaist.ac.kr/~yongdaek
- Facebook: https://www.facebook.com/y0ngdaek
- Twitter: https://twitter.com/yongdaek
- Google "Yongdae Kim"

