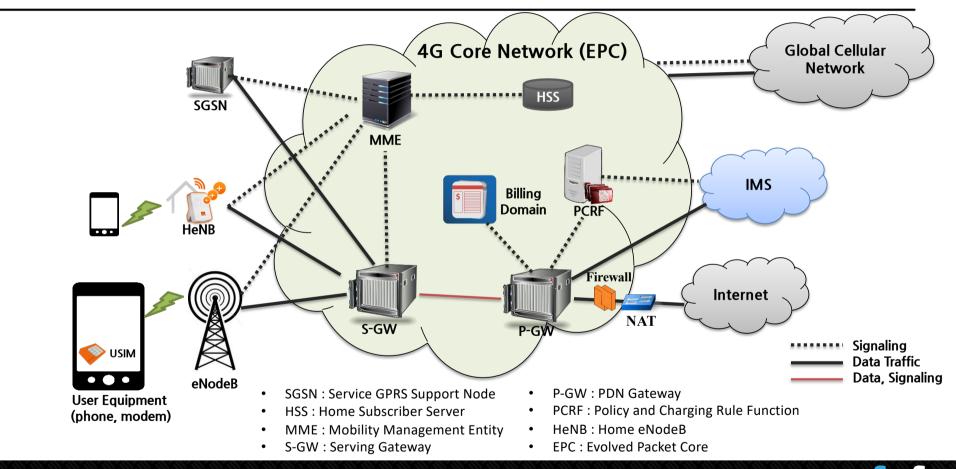
Cellular Security - Why do I do? -

Yongdae Kim KAIST SysSec Lab

* A revised presentation from QPSS'19 presentation


Cellular Security Publications (Selected)

5 NDSS, 4 Usenix Sec, 1 CCS, 1 S&P. 1 EuroS&P, 1 TMC, 1 WISEC

- 1. Location leaks on the GSM Air Interface, NDSS'12
- 2. Gaining Control of Cellular Traffic Accounting by Spurious TCP Retransmission, NDSS' 14
- 3. Breaking and Fixing VoLTE: Exploiting Hidden Data Channels and Mis-implementations, CCS'15
- 4. When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks, EuroS&P'17
- 5. GUTI Reallocation Demystified: Cellular Location Tracking with Changing Temporary Identifier, NDSS'18
- 6. Peeking over the Cellular Walled Gardens: A Method for Closed Network Diagnosis, IEEE TMC'18
- 7. Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane, S&P'19
- 8. Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTE, Usenix Sec'19
- 9. BASESPEC: Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols, NDSS'21
- 10. DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices, Usenix Sec'22
- 11. Watching the Watchers: Practical Video Identification Attack in LTE Networks, Usenix Sec'22
- 12. Preventing SIM Box Fraud Using Device Fingerprinting, NDSS'23
- 13. LTESniffer: An Open-source LTE Downlink/Uplink Eavesdropper, ACM WISEC'23
- 14. BASECOMP: A Comparative Analysis for Integrity Protection in Cellular Baseband Software, Usenix Sec'23

4G LTE Cellular Network Overview

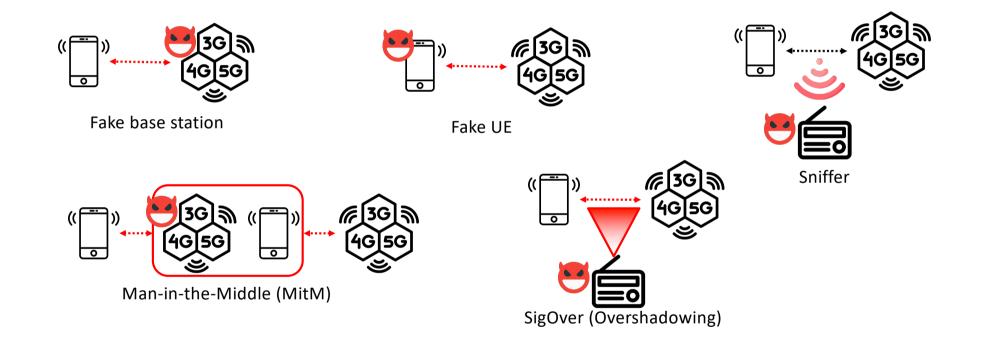
Sysbec

Why Cellular Implementation vulns Exist?

- New Generation (Technology) every 10 years
 - − New Standards, Implementation, and Deployment → New vulnerabilities
- Generation overlap: e.g. 3G, LTE and CSFB vulnerabilities in CSFB
- ✤ Government > Carrier > Device vendors > Customers ☺
- Walled Garden
 - Carriers and vendors don't talk to each other.
 - Carriers: (Mostly) No response to responsible disclosure
- ✤ Complicated and huge standards → Hard to find bugs, need a large group
 - Multiple protocols co-work, but written in separate docs
- Standards are written ambiguously
 - Misunderstanding by vendors and carriers
 - Leave many implementation details for vendors
- Cellular networks/devices could be different from each carrier and vendor
- Conformance testing standard, but (almost) no security testing standard

Why Cellular Design Vulnerabilities Exist?

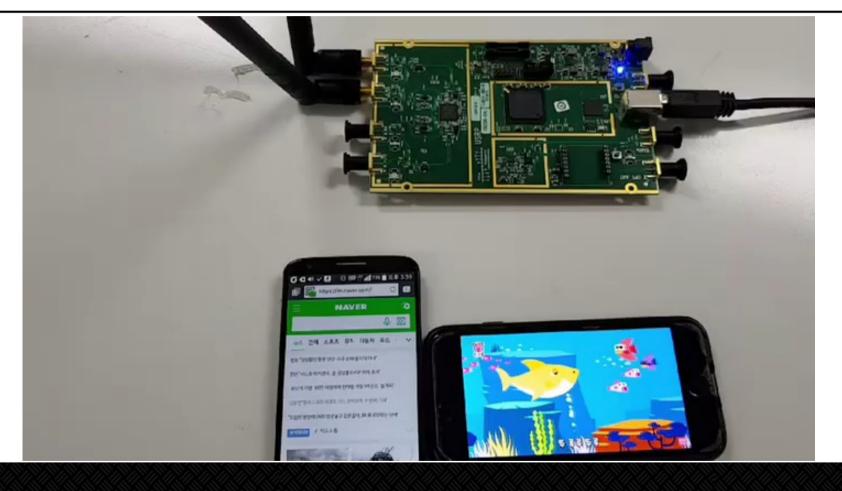
- New Generation (Technology) every 10 years
 - New Standards, Implementation, and Deployment
 → New vulnerabilities
- Backward compatibility: e.g. supporting 2G
- ✤ Government > Carrier > Device vendors > Customers ☺
 - Or Government > GSMA > 3GPP > Customers
 - To become standard, one needs unanimous support.
 - Too expensive, need insecurities, not a big deal, ...
- ✤ Complicated and huge standards → Hard to find bugs, need a large group
 - Multiple protocols co-work, but written in separate docs
- No visible attackers so far
- Papers presented, featured in newspapers, discussed in 3GPP, but forgotten later



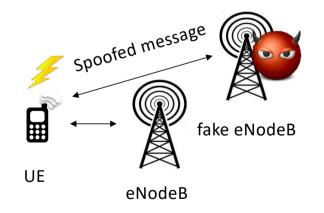
Cellular Security Publications

- New Vulnerabilities/Attacks
 - Location/Identity leaks [NDSS'12, NDSS'18]
 - Accounting bypass [NDSS'14, EuroS&P'17]
 - Signal overshadowing [Usenix Sec'19]
 - Video fingerprinting [Usenix Sec'22]
 - LTESniffer: Up-/Down-link sniffer [WISEC'23]
- Test/Measurement
 - Volte [CCS'15]
 - Performance bug [TMC'18, Hotmobile'19]
 - LTEFuzz: Up-/Down-link negative Fuzzer [S&P'19]
 - DoLTEst: Stateful Down-link Fuzzer [Usenix Sec'22]
 - UE Fingerprinting [NDSS'23]
- Static Analysis
 - Baseband Static Analysis [NDSS'21, Usenix Sec'23]

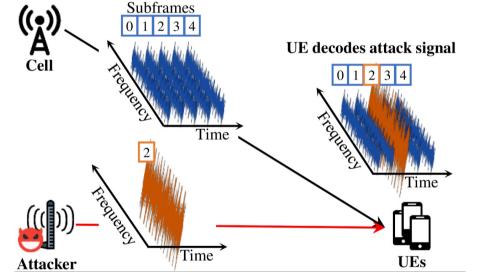
Threat Models



Unpatched Design Vulnerabilities

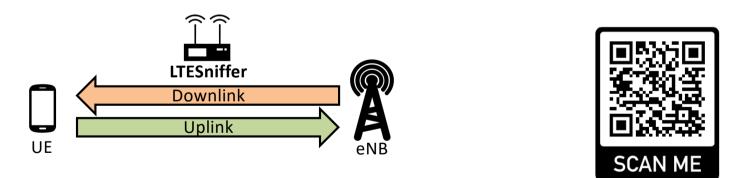

Fake CMAS broadcast attack

Attacks using SDR based "Fake BTS"

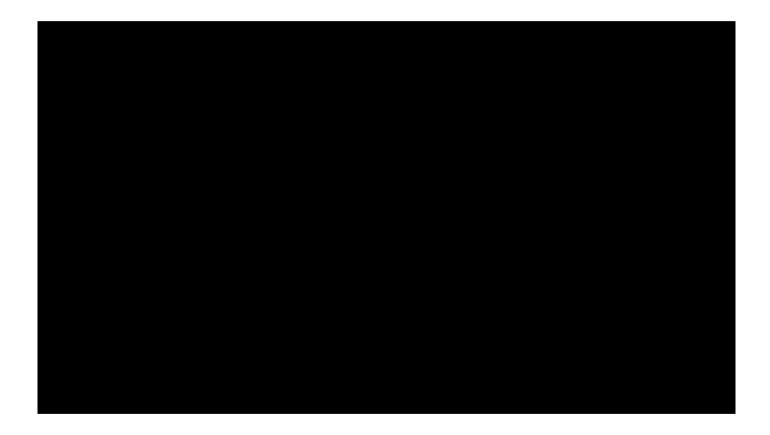

- Exploit physical layer procedure
 - Fake BTS synchronizes with a benign eNodeb, and send spoofed signal to UEs or receive uplink signal from UEs
 - Selective Jamming
 - Malicious data injection
 - e.g. warning message (Emergency SMS), detach message
- Exploit unprotected RRC, NAS Procedure
 - DoS: Attach/TAU/Service Reject
 - Privacy leak: Identity request

Signal Overshadowing: SigOver Attack

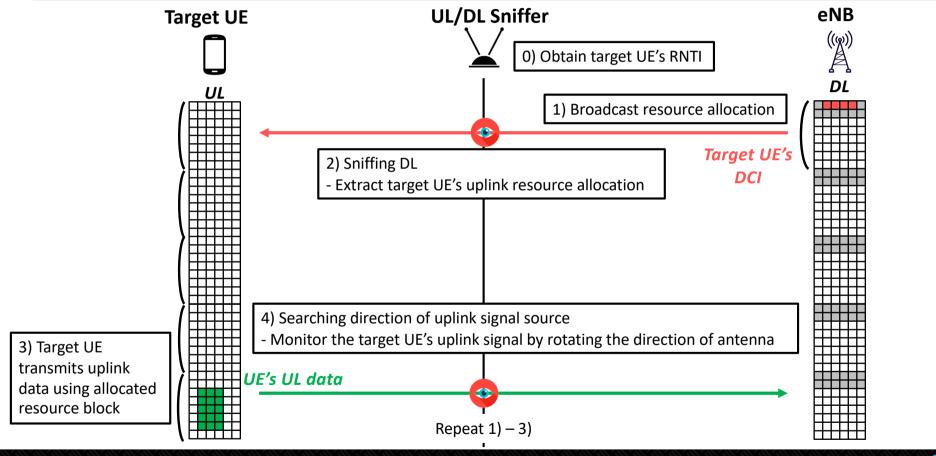
- Signal injection attack exploits broadcast messages in LTE
 - Broadcast messages in LTE have never been integrity protected!
- Transmit time- and frequency-synchronized signal



¹¹ Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTE, Usenix Security 2019


LTESniffer

- Decoding LTE uplink-downlink control-data channels
 - Downlink: PDCCH, PDSCH (up to 256QAM)
 - Uplink: PUSCH (up to 256QAM)
- Storing decoded packets in Pcap files for further analysis
- Supporting a security API with three functions
 - 1) Identity mapping
 2) IMSI collecting
 3) UE Capability Profiling
- Open-source*

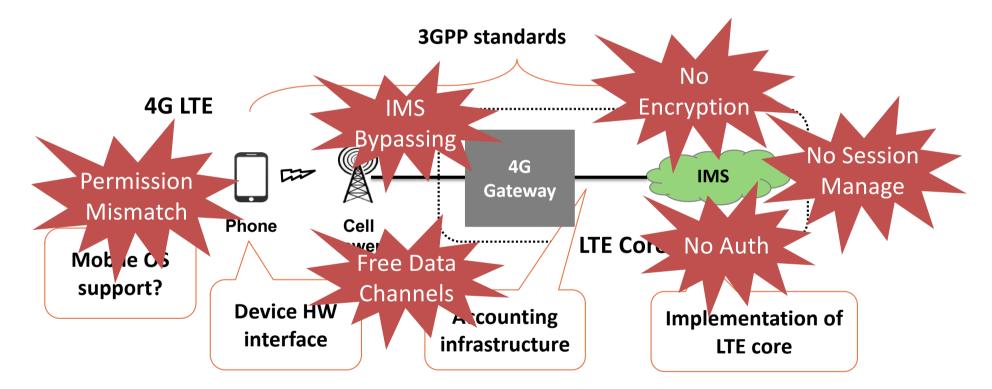

LTESniffer: An Open-source LTE Downlink/Uplink Eavesdropper, WISEC'23, https://github.com/SysSec-KAIST/LTESniffer.stem Security

LTESniffer Demo

Unauthorized Localization of LTE Devices

Cellular Insecurity in Standard

- Unauthenticated broadcast channel
- Roaming networks such as SS7 and Diameter
- Unauthenticated initial messages
- No voice encryption
- No MAC layer protection
- Lawful Interception
- Still symmetric key-based key management
- Suppose you implement cellular network (e.g. 6G) from scratch, would you design with these insecurities?




Security of New Systems

VoLTE makes cellular network more complex

Let's check potential attack vectors newly introduced in VoLTE

Free Data	Channels	Free	Chanr	nel		JS-1	US	5-2	KR-1	KR-2	KR-3
Using VoLTE Protocol		SIP Tunneling				\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark
		Media Tunneling			\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark	
Direct		Phone to Phone			\checkmark	X	{	\checkmark	X	X	
Communication		Phone to Internet			X	\checkmark	\checkmark \checkmark		X	X	
Weak Point	Vulnera	ability	US-1	US-2	KR-1	KR-2	KR-3	Possible Attack			
	No SIP Encryption		0		0	0	0	Message manipulation			
	No Voice Data Encryption		0	0	0	0	0	Wiretapping			
IMS	No Authentication				0	0		Caller Spoofing			
	No Session Management		0	0	0		0	Denial of Service on Core Network		work	
4G-GW	IMS Bypassing		0		0			Caller Spoofing			
Phone	Permission Mismatch		Vulnerable for all Android			id	Denial of Service on Call, Overbilling				
3							•••: V	ulne	rable 🕐	: Secure	s Sys

Cellular Security Testing

Cellular Security Testing (Analysis)

✤ Target

- Cellular modem/devices, cellular carrier networks, standards
- ✤ Why?
 - New Generation (Technology) every 10 years
 - Complicated and huge standards
 - Ambiguous standards
 - Leave many implementation details for vendors
 - Cellular networks/devices could be different from each carrier and vendor
 - Conformance testing standard, but (almost) no security testing standard

Approaches

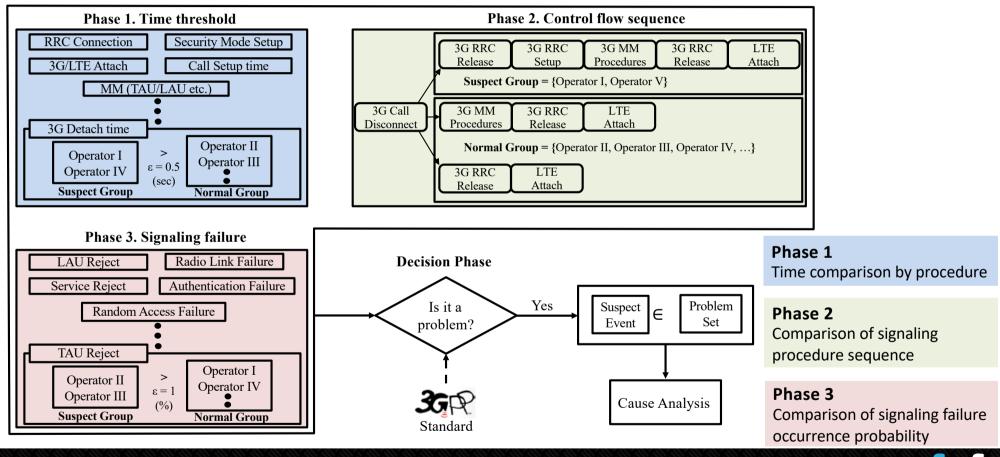
- ✤ Keywords
 - Static, dynamic, comparative, negative testing, formal analysis, state machine, specification, traffic, binary, source code, modem, devices, specification, ...
- Summary

Venue	Торіс	Test Keywords					
CCS'15	VoLTE	Static, dynamic, negative testing, binary, modem, device, carrier					
TMC'18	NAS/RRC	Dynamic, comparative, device, carrier					
S&P'19	NAS/RRC	Dynamic, negative testing, modem, device, carrier					
NDSS'21	NAS/RRC	Static, comparative, modem, binary, specification					
Usenix'22	NAS/RRC	Dynamic, negative testing, modem					

Worldwide Data Collection

Country	# of OP.	# of signalings	Country	# of OP.	# of signalings
U.S.A	3	763K	U.K.	1	41K
Austria	3	807K	Spain	2	51K
Belgium	3	372K	Netherlands	3	946K
Switzerland	3	559K	Japan	1	37К
Germany	4	841K	South Korea	3	1.7M
France	2	305K			

Data summary


of countries: 11
of operators: 28
of USIMs: 95
of voice calls: 52K
of signalings (control-plane message): 6.4M

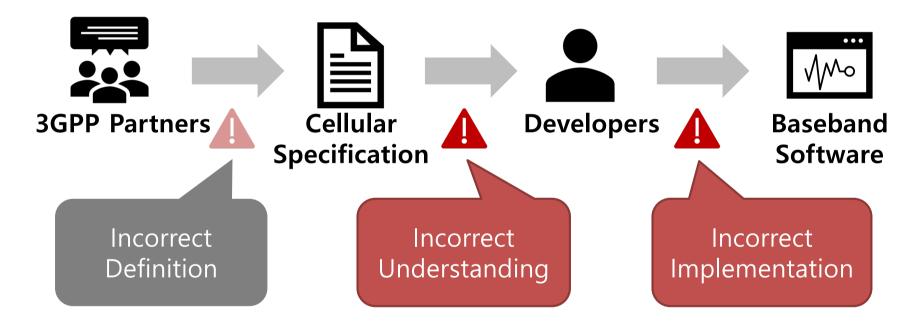
Peeking over the Cellular Walled Gardens - A Method for Closed Network Diagnosis - , TMC 2018

Problem Diagnosis Overview

SysSec System Security Lab

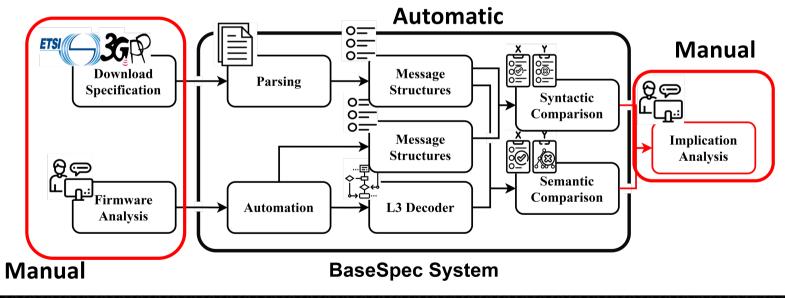
Identified Problems

Problem	Observation	Operator	
LTE location update collision	Out-of-service about 11 s	US-II	
Mismatch procedures	Delay of 3G detach. Worst case: 10.5 s	US-I, DE-I. DE-II, FR-I, FR-II	
Allocation of incorrect frequency	Out-of-service 30 sec. and stuck in 3G for 100 s	DE-I	
Redundant location update	Delay of LTE attach or call setup. Worst case: 6.5 s	US-I, DE-I, DE-III, FR-II	
Redundant authentication	Delay of CSFB procedures for 0.4 s	FR-I, FR-II, DE-I, DE-III, FR-II	
Security context sharing error	Out-of-service 1.5 s	ES-I	
Core node handover misconfiguration	Delay of LTE attach (0.4 s)	US-II	


BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications

25 BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols, NDSS'21

Errors in Protocol Implementation


Many points of human errors in development process

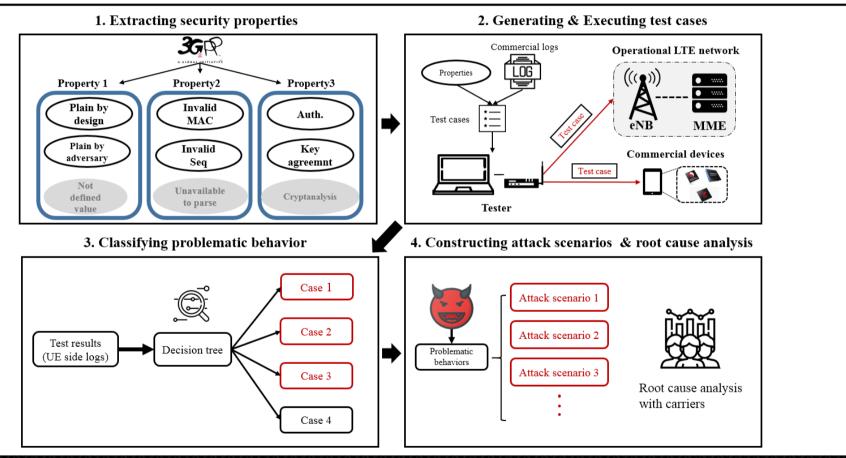
BaseSpec Overview

- 1. Extract message structures from the specification documents
- 2. Extract message structures and decoder information from the firmware
- 3. Syntactically, 4. Semantically compare them
- 5. Report the mismatch results

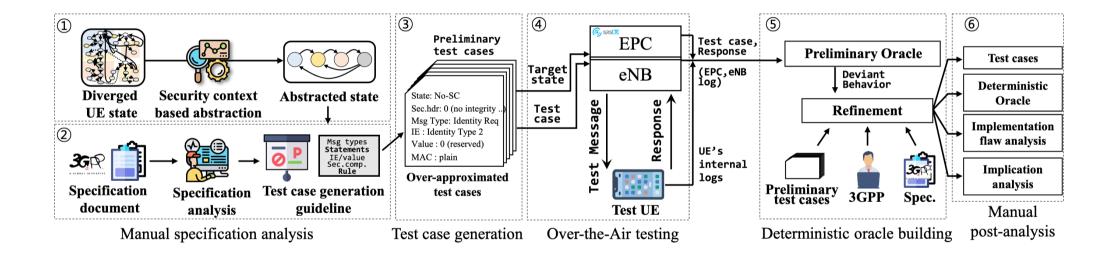
Mismatch Results (vendor x)

- Missing Mismatches of mandatory IE & Unknown Mismatches
 - Directly indicate functional errors (drop of benign IE / undefined behavior)
- Invalid Mismatches
 - Numerous incorrect length limit / ad-hoc length checkers
 - Can lead to memory-related bugs
- Missing optional IEs
 - May not be buggy

9 Error cases (4 Memory-related including 2 RCEs)


		Missing Mismatch		Unknown	Mismatch	Invalid Mismatch		
Models	Total IEs	Mandatory IE	Optional IE	Mandatory IE	Optional IE	Mandatory IE	Optional IE	
Model A	1475	5	189	6	58	94	364	
Model B	1475	5	192	6	58	94	361	
Model C	1475	5	192	6	58	94	361	
Model D	1475	5	203	6	58	94	349	
Model E	1475	5	203	6	58	94	349	

Fuzzing LTE Core and Baseband


LTEFuzz

Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane, S&P'19

DoLTEst

Conclusion

- Design vulnerabilities
 - Technical problems + Political problems
 - Clear slate design for 6G
- Spec could be written better.
 - Formally verifiable?
 - Sample implementation needs to be provided
 - Negative testing (security testing) should be standardized!
- Use of NLP to understand 3GPP Spec
 - Seems impossible... Inconsistencies, ambiguities, and domain knowledge
- Binary vs. Source code vs. Spec comparison
 - − Long long way to go ☺

Questions?

✤ Yongdae Kim

- email: yongdaek@kaist.ac.kr
- Home: http://syssec.kaist.ac.kr/~yongdaek
- Facebook: https://www.facebook.com/y0ngdaek
- Twitter: https://twitter.com/yongdaek
- Google "Yongdae Kim"

