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 Three main components: User Equipment (UE), Base Station (eNB), and Core Network

 UEs and eNB communicate over the open-air interface

 Security and analysis research in the air interface
– Challenging due to its wireless and dynamic nature
– Requires specialized tools such as passive sniffers.

LTE Network
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UE eNB Core NW

open-air interface



 A passive tool capable of capturing the wireless traffic of users
– Downlink traffic: from base stations to users
– Uplink traffic: from users to base stations

 Mimics the behavior of both the UE and base station

 UE only decodes its own traffic, sniffer decodes all 
traffic of all active users

 Components:
– Hardware: SDR for capturing wireless signals
– Software: Program running on PC for processing and decoding signals into packets

What is an LTE Sniffer?
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Unprotected Information in the Air Interface
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Transport Block CRCDCI

• Signaling messages before AKA, broadcast msg (SIB, paging)
• User’s identities used in core network (IMSI, TMSI)
• Encrypted messages after AKA

• PDCP header

• RLC header

• MAC Control Elements (used to control radio connection)
• All info in Random Access Procedure
• MAC header

• UE’s Downlink Control Information (DCI)
• User radio identity (RNTI), detailed modulation & coding 

scheme, frequency resources, and time slot of UL/DL
• UL/DL signal properties in time and frequency domains
• Cell information: cell ID, MIB, sync signalsLTE Protocol Stack



 Unprotected information leads to serious attacks
– Coarse-grained user location tracking [NDSS’18] 
– Fine-grained user localization [USENIX’22]
– Collecting and mapping identities [NDSS’18, S&P’19]
– Video, smartphone fingerprinting [USENIX’22, NDSS’23]

 Encrypted information can be analyzed
– ReVoLTE attack [USENIX’20]

 Attack model: Passive sniffing
– The attacker collects over-the-air LTE packets

 All need an LTE sniffer, a tool that can decode over-the-air LTE packets 

Previous Works (using a sniffer on LTE)
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Limitations of Existing Sniffers
 Open-source LTE sniffers: FALCON, OWL, LTEye

– Only decode the downlink control information
– Cannot decode downlink data channel
– Cannot decode uplink data channel

 Commercial LTE sniffers:
– AirScope does not support uplink
– Wavejudge is expensive (~USD 25,000)
– Cannot modify code, hard to add a new feature

6

 Researchers have limited tools available for capturing over-the-air LTE packets.

 Goal: Develop an open-source LTE sniffer capable of decoding uplink/downlink 
control/data channels



 Utilizes unencrypted Downlink Control Information (DCI) in DL control channel (PDCCH)
– DCIs indicate how and where to decode/send data in the DL/UL data channels (PDSCH/PUSCH)

Decode LTE Traffic

Downlink

Uplink
UL data
Channel 
(PUSCH)

DL Control Channel DL Data Channel (PDSCH)

Base Station

UL Subframe, 1ms

DL Subframe, 1ms

User A’s DL DCI
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User A’s DL data

UE
Radio identity – RNTI

obtained from DCI

User A’s UL DCI

User A’s UL data



Problem and Approach [P1-A1]
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 Problem [P1]: Obscure modulation scheme for each UE
– The parameter for determining modulation schemes is transmitted via an encrypted 

message 

 Approach [A1]: Inferencing the correct parameter per UE
– Tries all potential parameters in the first packet, and stores the correct parameter for the 

subsequent packets from same RNTI

DCI message

• Modulation Index: 6
• Resource allocation
• Packet size?
• Modulation scheme?

Table 1 – up to 64QAM
Index Mod

Scheme
Packet

Size

5

6 QPSK 128
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Table 2 – up to 256QAM
Index Mod

Scheme
Packet

Size

5

6 16QAM 256
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Which table?



 Problem [P2]: Diverse radio configuration for UEs
– The base station assigns radio configuration differently for UEs, based on channel quality 

 Approach [A2]: Adopting UE-specific configurations
– Continuously monitoring initial radio setup procedure to obtain configuration per UE

Problem and Approach [P2-A2]
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Problem and Approach [P3-A3]
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 Problem [P3]: Different signal propagation delays from UEs in uplink
 Approach [A3]: Compensates for time delay for each UE

– Utilizes uplink reference signal to calculate time delay by channel estimation
– Applies channel equalization to compensate for the delay

UL PUSCH

UL Reference Signal

UE 2

UE 1

UE 3

Downlink Signal

d1

Uplink Signal

d3

LTE Sniffer

DL
UE1
UE2
UE3

Channel estimation

DL
UE1
UE2
UE3

Channel equalization

Base Station

d2



Design Overview
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 Adopts behaviors of both UE/base station in downlink/uplink
 Applies three approaches [A1-A3] to the design
 Implemented on top of FALCON with the help of the srsRAN library
 C/C++



 Decoding LTE uplink-downlink control-data channels
– Downlink: PDCCH, PDSCH (up to 256QAM)
– Uplink: PUSCH (up to 256QAM)

 Storing decoded packets in Pcap files for further analysis
 Supporting a security API with three functions

– 1) Identity mapping         2) IMSI collecting         3) UE Capability Profiling

 Multiple hardware options
– For DL sniffing: most SDRs are capable
– For UL sniffing:

 Single USRP X310
 Two USRP B210s with GPSDOs

LTESniffer’s Capabilities
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LTESniffer

Base stationSmartphone
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 Tested in testbed/commercial environments with two test smartphones

 Success rate = 

Performance Evaluation
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Commercial eNB Testbed: srseNB

Note 5Note 20 Ultra

LTESniffer

# successfully decoded UL/DL messages
# detected DCI for UL/DL

AirScope v.19.09

Success rate (%) of LTESniffer / AirScope*

Environment SNR
(dB)

Galaxy Note 5 Galaxy Note 20 Ultra

Web Video Data Web Video Data

Testbed 30 91 / 50 75 / 36 71 / 19 83 / 1 72 / 1 68 / 1

Commercial

30 92 / 92 83 / 74 61 / 40 93 / 1 70 / 1 60 / 1

25 83 / 53 75 / 40 52 / 23 73 / 1 28 / 1 19 / 1

22 52 / 46 31 / 19 12 / 9 44 / 1 19 / 1 5 / 1

* AirScope v. 19.09. Current v. 21.11.0 supports 256QAM in downlink with enhanced performance



Security Application
 LTESniffer includes an API with three functions proposed by previous works
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Identity mapping: RNTI - TMSI
Location tracking, website/video 
fingerprinting

Permanent identity (IMSI) collecting Surveillance, privacy issues

UE capability profiling UE model fingerprinting

API Function Implication



Demo

15 The demonstration was conducted using an Amarisoft eNB inside a Faraday cage



LTESniffer on Github

16 https://github.com/SysSec-KAIST/LTESniffer



 5G Overview
– Similar architecture as LTE
– Similar mechanism to decode DCI and data channel

 Decode DCI first and data in PDSCH/PUSCH later
 DCI is still unencrypted

 Developing 5G Sniffer is possible

 However, there are several challenges
– 5G physical channel is complicated
– Unknown parameter for decoding DCI
– Real-time decoding issue
– Limited SDR hardware capabilities
– Lack of supporting open-source tools

Developing 5G Sniffer
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 (1) The complexity of new physical channel in 5G

5G Sniffer Challenges
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PHY Property LTE 5G

Subframe duration 1 ms 1/0.5/0.25 ms

Synchronization signal Fixed at center of bandwidth Configurable location within bandwidth

Subframe radio resources Shared for all users Divided into many smaller areas (bandwidth parts)

Subcarrier spacing 15 kHz Different spacing for different areas (15,30,..,240)

PDCCH Location Fixed, single location within subframe Configurable, multiple locations (Coresets)

DCI Search Space 2 search spaces within 1 PDCCH area Many search spaces within many Coresets

Fr
eq

ue
nc

y 
do

m
ai

n

Time domain

[1] Ludant, Norbert et. al. "From 5g sniffing to harvesting leakages of privacy-preserving messengers." 2023 IEEE S&P

5G physical channels [1]



 (2) Unknown parameter for decoding procedure
– Scrambling ID is required to decode DCI

 In LTE, Scrambling ID is fixed to Cell ID for all UEs; in 5G, it is UE-specific parameter

– However, this parameter is sent to UE via encrypted RRC Connection Reconfiguration msg
– Totally, we need to brute force: 16-bit Scrambling ID in all (bandwidth parts + all locations 

of PDCCH + all search spaces + all DCI formats + all users) → Huge number of aƩempts

 (3) Real-time decoding issue
– 5G peak data rate: up to 20/10 Gbps for DL/UL
– Requires a lot of computational power 
– General-purpose CPUs might not be capable

5G Sniffer Challenges
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Scrambling ID

DCI Decoding Procedure [1] 

[1] Ludant, Norbert et. al. "From 5g sniffing to harvesting leakages of privacy-preserving messengers." 2023 IEEE S&P



 (4) Limited SDR hardware capabilities
– Limited TX-RX antennas: most SDRs do not support 4x4 MIMO
– Limited frequency range: most SDRs do not cover FR2 (24-52 GHz)

 (5) Lack of supporting open-source tools
– srsUE: Does not support TDD, which is main configuration in 5G
– OpenAirInterface UE: Debugging is highly complex and challenging.

5G Sniffer Challenges
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USRP X410 with 4 TX-RX antennas (~USD 30K) Two popular open-source tools for 5G



Conclusion
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 LTESniffer: 
– An open-source sniffer
– Supports decoding uplink/downlink control/data channels
– Supports a security API with three functions

 Developing 5G Sniffer is possible, but there are several challenges



Finding Memory Bugs in the Cellular Baseband
via Over-the-air Interface

CheolJun Park, Tuan Dinh Hoang
SysSec Lab, KAIST, Korea



Cellular network architecture
 Cellular service procedures are separated into control plane and user plane

– Two main control plane protocols: RRC, NAS

Base Station Core Network

MME HSS

S-GW P-GW Internet

IMS

UE (User Equipment)

Application 
Processor

Baseband 
Processor

Layer 1

Layer 2

IP
NAS

RRC

*UE: User Equipment, eNodeB: Base station, EPC: Evolved Packet Core, MME: Mobility Management Entity23

RRC
NAS

RRC
NASControl plane

protocols



Baseband is a sweet attack target
1. Over-the-air interface

2. Zero-click remote attack surface
3. Various security implications

ImplicationsImplications
Denial-of-Service, eavesdropping, location tracking, bidding-down cryptographic algorithms, 
data spoofing, potential RCE … 

FBS attacker
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Memory bugs in cellular basebands
 Potential RCE

– C/C++ codebase
– Support 2G — 5G 
– Shared memory architecture, IPC

 Many offensive researchers/companies
– TASZK security lab, Comsecuris, Tencent KEEN lab, Google Project Zero, …
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0-click RCE on Tesla via a cellular modem
(Pwn2Own Automotive 2024)

Attentions on modem security issues
(Google Project Zero 2023)

E2E exploit on Huawei Smartphone
(Black Hat USA 2018)



Previous works (public)
 Reverse-engineering efforts

– (2010, Hack.lu) Ralf-Philipp Weinmann (Qualcomm, Intel)
– (2016, Comsecuris) Nico Golde and Daniel Komaromy (Shannon)
– (2018, OPCDE) Amat Cama (Shannon)
– (2018, BlackHat) Marco Grassi, Muqing liu, Tianyi Xie (Huawei)
– (2018, Comsecuris) Nico Golde (Intel)
– (2020, Blog) Frederic Basse (Shannon)
– (2020, OffensiveCon) Marco Grassi and Kira (MediaTek)
– (2021, NDSS) Eunsoo Kim and Dongkwan Kim (Shannon)
– (2023, OffensivCon) Amat cama (Intel)
– (2023, OffensivCon) Daniel Komaromy (Shannon)

 Emulation-based approach
– (2020, WiSec) Dominik Maier et al. (MediaTek)
– (2022, NDSS) Grant Hernandez et al. (Shannon, MediaTek)

 Over-the-air fuzzing
– (2011, USENIX Security) Collin Mulliner, Nico Golde (GSM feature phones)
– (2021, WiMob) Srinath Potnuru and Prajwol Kumar Nakarmi (open-source baseband)
– (2022, STISC) Hongxin Wang et al. (open-source baseband)
– (2024) Matheus E. Garbelini et al. (Qualcomm, MediaTek)

26



Gaps in previous works
 Mostly targets 2G/3G, and requires manual efforts
 {Emulation + AFL} suffered from coverage
 Recent works support Shannon (Samsung) and MediaTek

– Qualcomm?

 Focused on Layer 3 protocols (i.e. NAS, RRC)
– How about lower layers (PHY, MAC, RLC, PDCP)?
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UE (User Equipment)

PHY
MAC

PDCP

IP
RRC
NAS

RLC

Previous works

?

(2010) “Layer 1 not fruitful, Layer 2 
messages to short, …”
(2012) “Below layer 3, there usually 
is little potential for exploitable 
memory corruptions”



Approach
 Build testing framework using over-the-air interface

– () Applicability: can send test messages for L1~L3, regardless of the baseband vendor
– () By using legitimate messages, we can move UE’s state
– () Due to its nature, hard to send a large number of test messages 
– () Black-box
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RRC/NAS

PDCP

RLC

MAC

PHY

MMEeNodeB

L3
L2

L1

Test messages

Wireless transmission

Testing framework 

* Correct encryption,
integrity protection

* Legitimate DCI format, ..

* Legitimate RLC header 
(sequence number, …)
* Legitimate MAC header 
(correct LCID, length, …)

Example: targeting L3 messages 



Goal of this work
 Finding memory bugs on COTS cellular basebands in both layer 3 and lower layers

– Layer 3 (NAS, RRC) supports a lot of different message types / fields 
 E.g. RRC defines > 900 IEs (information elements) that contain > 4k fields

– However, lower layers (PDCP, RLC, MAC, PHY) also carry various fields, header formats, and control information
 More functionalities from 4G
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Transport Block CRCDCI

MAC CEMAC Header

RLC SDURLC Header

PDCP SDUPDCP Header

RRC

NAS

PHY

MAC

PDCP

IP
RRC

NAS

RLC

MAC SDU

MAC-I

L3
L2

L1

What lower-layer protocol features need to be 
tested and how?

For a given limited number of trials (slow OTA), 
how to generate test messages for testing 
enormous messages/fields in specification?



Challenge 1: test case generation
 Specification defines a lot of messages and optional fields

– Mutating commercial log is not effective
 Many messages/fields are almost never used in the real world

– Why don’t we just use AFL?
 Leveraging code coverage is hard

 Most random packets (+mutations) are rejected in early stage

– Meanwhile, the number of trial in OTA is limited
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COTS baseband (ours) No source code (proprietary)

Open-source baseband Only supports a few essential messages

Baseband emulation Limited code coverage (1% - 3.5%) as 
the state-of-the-art can’t explore states



Approach 1: grammar-guided generation
 Leverage the protocol specification to obtain the grammar-coverage

– Baseband implements decoder/handler for every protocol definition in the spec

 First, generate legitimate packets that cover the message structures in the 
specification

– Layer3 (NAS, RRC): specification defines huge number of messages/fields
– Lower Layers (PHY, MAC, RLC, PDCP): Afawk, no one tested here

 Their structures: defined as tables + natural language descriptions

 Then, grammar-aware mutation
– Random mutations  early rejected + no coverage feedback
– Many parts of the packets are not interested in terms of memory corruption
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Challenge 2: stateful behavior of baseband
 The baseband is stateful and initiates most state transitions

– It determines whether to connect or transition between states
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Post-AKA

Pre-AKA

Service Request
Procedure

(Attach 
Procedure)

TAU
Procedure

Initial state

UE-init

Network-init

Target state

Timer expire

State Timer Value State transition 

Pre-AKA T3410 15s EMM-REGISTERED-INITIATED 
EMM-DEREGISTERED

Post-AKA - - -

Service 
Request T3417 5s EMM-SERVICE-REQUEST-

INITIATED  EMM-REGISTERED

TAU 
Request T3430 15s

EMM-TRACKING-AREA-
UPDATING-INITIATED  EMM-

REGISTERED

Initial state



Approach 2
 Find network-side state transition logic through specification analysis 

– Requirement
 i) Network-side mechanism that ii) instantly trigger UE-side state transition

– Several implementation and experimentation efforts
 Open-source didn’t support Detach, TAU and SR handling logic
 Exynos had two implementation flaws (wrong state transition)

– Batch testing
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UE connected Move to target 
states

Send test msgs
(before timeout)

Send legitimate 
messages to reconnect UE connected

One session

…



Challenge 3: fragile radio connection
 UE hangs or disconnects due to various reasons

1. Our test message may alter the radio configuration to an incorrect settings
2. UE may release the connection by itself
3. Connection maybe dropped out

 Poor radio channel at that moment
 Hardware (SDR) failure

4. UE crashed
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MMEeNodeB

① Test message “change setting”

③ Poor radio channel

② Release connection 
(timeout, etc)

③

④ UE crashed



Approach 3
 When UE is disconnected or do not respond

– Reconnect UE using two methods

Step 1. Use cellular protocol messages to make UE to connect again
- However, UE may ignore any further messages

Step 2. When UE does not reconnect after Step 1, use ADB to toggle airplane mode
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MMEeNodeB Connection 
monitor

① RRC Release and Paging

② Toggle airplane mode using ADB



Challenge 4: oracle for detecting crashes
 Limited oracles for detecting crashes

– Previous works used i) memory sanitizer (emulation) or ii) crash log at the terminal (open-source 
basebands)

 Prior methods to confirm crash after replay
– Checking the signal bar or connectivity, manufacturer’s debug mode, …
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Target Impact Work Validation 
w/ 1-day 

False 
positives Automation?

Visual feedback Signal bar disappear NDSS’22   

Cellular connection Loose connectivity Security’11, 23   

ADB log “CP Crash” log NDSS’22   

Bluetooth connection Bluetooth dead Security’11   

Manufacturer’s 
debug mode Kernel panic WiSec’20, Security’23   



Approach 4
 Passive and active liveness detection based on cellular protocol

P: Layer2 RLC ACK
A: Layer3 RRC / NAS message that 

 i) Does not change the state of the UE and ii) UE always respond (in all states)

 For lower layers: Monitor ADB radio logcat output
– Separate thread for ADB to eliminate performance issues
– Detect string: “Modem Reset”, “RADIO_OFF_OR_UNAVAILABLE”
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System overview

Test cases

Specification

State tracker State-specific timer

State management logic

Transition manager

Test case generation

Standard-conformant 
message generation

Mutation policy

①Manual specification analysis
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Root cause 
analysis

Bug validation

Post analysis

Manufacturer’s 
debug mode

Replay mode

③Manual
post-analysis

Bug candidate manager

Bug candidates

ENB

EPC Liveness checker

Temporal 
blacklisting

Backtracking
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② Over-the-air testing



Result
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 Tested devices from 3 major baseband vendors (Qualcomm, Exynos, and MediaTek)
– Layer 3 (NAS, RRC): 6 cellular devices
– Lower layers (PHY, MAC, RLC, PDCP): 8 cellular devices 

 Discovered implementation flaws
– Layer 3: 7 0-day and 3 1-day bugs from MediaTek and Exynos basebands
– Lower layers: 9 0-day bugs from Qualcomm, MediaTek, and Exynos basebands



Thank you!
Questions?

 You can reach me:
– Tuan D. Hoang: tuan.hoangdinh@kaist.ac.kr (       @hdtuanss)

 KAIST SysSec Lab (Prof. Yongdae Kim)
– https://www.syssec.kr/



 Example: testing baseband at “pre-AKA” state
– When the timer expires 5 times, UE does not reconnect for a long time
– E.g. Qualcomm: 15 sec × 5 = 75 sec (connected time) + 760 sec (idle time)  91.02% idle time
– Worst case: 99.07% idle time (MediaTek)

Challenge 2: stateful behavior of baseband
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Connected Move to Idle

1st Round
15 s 10 s

Connected Move to Idle

2nd Round 5st Round
720 s15 s 10 s

Connected Move to Idle

15 s10 s

Period Down time Ratio

Exynos ~1160s ~830s ~87.07%

Qualcomm 835s 760s 91.02%

MediaTek 8065s 7990s 99.07%

HiSilicon ~835s ~760s ~ 91.02%

UE’s connection status in a normal testing scenario

Connected

Idle

~ ~
~ ~ 145min15min 135min

MediaTek

Connected

Idle 40min15min 30min

Qualcomm

: Timing that we can test UE


