
Mining Your Ps and Qs: 
Detection of Widespread Weak 

Keys in Network Devices 
N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, 

USENIX Sec’12

20203590 Hyunsik Jeong



Intro

• Detecting weak keys/signatures in the wild

• Collected public keys/certificates

• Tried to figure out how weak keys/signatures were generated



Public keys and Randomness

• Public key cryptography used everywhere!
• TLS (used in HTTPS), SSH, … 

• Based on randomly generated secret keys



Public keys and Randomness

• Public key cryptography used everywhere!
• TLS (used in HTTPS), SSH, … 

• Based on randomly generated secret keys
• What if they are not random?

from: xkcd (https://www.explainxkcd.com/wiki/index.php/221:_Random_Number)



Collecting public keys

Finding Hosts
Nmap from EC2
25 hosts, ~25 hours

Retrieving Keys
Event Driven Process
3 hosts, <48 hours

Parsing Certs
OpenSSL, database

Port 443 (HTTPS) Port 22 (SSH)
29 million hosts 23 million hosts

Port 443 (HTTPS) Port 22 (SSH)
13 million hosts 10 million hosts

Certificates
6 million certificates
(2 million browser-trusted)



What could go wrong?

1. Repeated keys



Repeated keys

• TLS: 7,770,232 hosts (61%)

• SSH: 6,642,222 hosts (65%)



Shared keys

Non-vulnerable reasons for shared keys
• Corporations shared keys across 
certificates

• Shared hosting providers

Vulnerable reasons for shared keys

• Default certificates and keys
• Low entropy problems



What could go wrong?

1. Repeated keys

2. Repeated factors in RSA keys



RSA revisited

• Generate two random prime numbers 𝑝, 𝑞

• Public key: 𝑒, 𝑁 , 𝑁 = 𝑝𝑞 (Usually 𝑒 = 65537) 
• Private key: 𝑑 = 𝑒!" mod 𝜙 , 𝜙 = 𝑝 − 1 𝑞 − 1

• Why is it difficult to break?



RSA revisited

• Generate two random prime numbers 𝑝, 𝑞

• Public key: 𝑒, 𝑁 , 𝑁 = 𝑝𝑞 (Usually 𝑒 = 65537) 
• Private key: 𝑑 = 𝑒!" mod 𝜙 , 𝜙 = 𝑝 − 1 𝑞 − 1

• Why is it difficult to break?
1. Hard to factorize 𝑁, so difficult to get 𝜙 and calculate 𝑑
2. For given encrypted message 𝑚!(mod 𝑁), it’s hard to recover 𝑚

(DLP)



Repeated factors

• What if 𝑁" = 𝑝𝑞, 𝑁# = 𝑝𝑟?
The greatest common divisor (GCD) is 𝑝.
• Euclidean method! (from 300 BC)

• Takes 15μs for two 1024-bit numbers

• For multiple 𝑁s, Bernstein’s algorithm can be
used.

https://www.worldhistory.org/image/
4139/euclid-of-alexandria/



Result?

• 11,170,883 RSA keys

• 1.3 hours on EC2 Cluster Compute 
Eight Extra Large Instance
• only $5!

• Got 2,134 prime factors

• Computed private keys for 64,081 
TLS hosts (0.50%)

https://i.insider.com/5c7967b3eb3ce8763f505bf5?widt
h=700&format=jpeg&auto=webp



What could go wrong?

1. Repeated keys

2. Repeated factors in RSA keys

3. Repeated DSA signature randomness



DSA revisit

• Pick two random prime numbers: 𝑝, 𝑞
• Private key: 𝑥 / Public key: 𝑦 = 𝑔$ mod 𝑝

• Signature 𝑟, 𝑠 :
For random nonce 𝑘:
𝑟 = 𝑔% mod 𝑝 mod 𝑞
𝑠 = 𝑘!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞



Ephemeral key is shared

𝑟 = 𝑔% mod 𝑝 mod 𝑞
𝑠 = 𝑘!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞

𝑘 = 𝑠!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞



Ephemeral key is shared

𝑟 = 𝑔% mod 𝑝 mod 𝑞
𝑠 = 𝑘!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞

𝑘 = 𝑠!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞

𝑠"!" 𝐻 𝑚" + 𝑥𝑟 = 𝑘 = 𝑠#!" 𝐻 𝑚# + 𝑥𝑟 (mod 𝑞)



Result?

• 9,114,925 DSA signatures from SSH

• 4,094 signatures with same public key and 𝑟
• Recovered 281 distinct private keys
• These keys are used in 105,728 hosts (1.6%)



Result?

• Clustered vulnerable 
signatures by 𝑟 values 
manufacturers

• 75.8% of the cases were from 
two manufacturers



Final result



Weak entropy and the Linux RNG

• Nearly everything uses /dev/urandom

Fresh entropy

Input pool

780

Entropy Counter

U
p
d
at

e Blocking
pool

Nonblocking
pool

Blocks (when less entropy)

/dev/random

/dev/urandom



Weak entropy and the Linux RNG

• Nearly everything uses /dev/urandom

Fresh entropy

Input pool

10

Entropy Counter

U
p
d
at

e Blocking
pool

Nonblocking
pool

Blocks (when less entropy)

/dev/random

/dev/urandom



Weak entropy and the Linux RNG

Ubuntu 10.04 test system (typical boot)



Factorable RSA keys 

Only one different
Problematic!

Both factor different
Very good

Both factor repeated
Not bad



Defense

• Lessons for OS developers, crypto library developers, 
app developers, device makers, certificate authorities, end 
users, security and crypto researchers

• More entropy sources
• Add hardware sources
• Kernel collects more aggressively 

• Better communication between applications and OS
• /dev/urandom isn’t providing the service people need 

• Create public key check service for end users 



Conclusion

• Studied entropy via global perspective on public keys

• Found widespread vulnerabilities
• Shared keys (5.6% of TLS hosts; 9.6% of SSH)
• Factorable RSA keys (0.5% of TLS hosts; 0.03% of SSH)
• Repeated DSA randomness (1.0% of SSH hosts)

• Secure random number generation is still difficult



Related works

Problems with random number generation
• “Randomness and the Netscape browser”, Dr. Dobb’s Journal 21 

(1996)
• DSA-1571-1 OpenSSL—Predictable random number generator (2008)
• “Analysis of the Linux random number generator”, SP ’06

Weak entropy and cryptography
• Console hacking 2010: PS3 epic fail, Talk at 27th Chaos 

Communication Congress (2010)
• “When good randomness goes bad: Virtual machine reset 

vulnerabilities and hedging deployed cryptography”, NDSS ‘10



Follow-up works

Other cryptographic vulnerabilities
• Unsecure ECDSA key

“Elliptic curve cryptography in practice.”, FC ‘14

• Diffie-Hellman algorithm
“Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice”, CCS ‘15

Malfunction of RNG
• “Security Analysis of Pseudo-Random Number Generators with Input: /dev/random 

is not Robust”, CCS ‘13
• “Not-so-random numbers in virtualized Linux and the Whirlwind RNG”, SP ‘14



Good Questions

• How would detecting weak entropy be possible in the crypto
graphic primitives level?
• Is there any other way to provide almost "perfect" randomnes
s, without using hardware RNG or factory adding  entropy?
• If insufficient entropy is the issue, why don't we use another s
oftware package that blocks until enough entropy is acquired 
for security-critical hosts?
• Would RSA really be a problem if the same key is generated?



Best Questions

Jaehyun: if the keys itself are not safe regardless of how we 
generate the keys with much care, what kind of 
countermeasures should be made? 

A: This paper is not about PRNG, and there are various PRNGs 
which is not able to compare.

Q: Is any new operation added to make randomness in OS?
A: /dev/urandom is not a problem, what do you mean?


