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Intro

• Detecting weak keys/signatures in the wild

• Collected public keys/certificates

• Tried to figure out how weak keys/signatures were generated



Public keys and Randomness

• Public key cryptography used everywhere!
• TLS (used in HTTPS), SSH, … 

• Based on randomly generated secret keys



Public keys and Randomness

• Public key cryptography used everywhere!
• TLS (used in HTTPS), SSH, … 

• Based on randomly generated secret keys
• What if they are not random?

from: xkcd (https://www.explainxkcd.com/wiki/index.php/221:_Random_Number)



Collecting public keys

Finding Hosts
Nmap from EC2
25 hosts, ~25 hours

Retrieving Keys
Event Driven Process
3 hosts, <48 hours

Parsing Certs
OpenSSL, database

Port 443 (HTTPS) Port 22 (SSH)
29 million hosts 23 million hosts

Port 443 (HTTPS) Port 22 (SSH)
13 million hosts 10 million hosts

Certificates
6 million certificates
(2 million browser-trusted)



What could go wrong?

1. Repeated keys



Repeated keys

• TLS: 7,770,232 hosts (61%)

• SSH: 6,642,222 hosts (65%)



Shared keys

Non-vulnerable reasons for shared keys
• Corporations shared keys across 
certificates

• Shared hosting providers

Vulnerable reasons for shared keys

• Default certificates and keys
• Low entropy problems



What could go wrong?

1. Repeated keys

2. Repeated factors in RSA keys



RSA revisited

• Generate two random prime numbers 𝑝, 𝑞

• Public key: 𝑒, 𝑁 , 𝑁 = 𝑝𝑞 (Usually 𝑒 = 65537) 
• Private key: 𝑑 = 𝑒!" mod 𝜙 , 𝜙 = 𝑝 − 1 𝑞 − 1

• Why is it difficult to break?



RSA revisited

• Generate two random prime numbers 𝑝, 𝑞

• Public key: 𝑒, 𝑁 , 𝑁 = 𝑝𝑞 (Usually 𝑒 = 65537) 
• Private key: 𝑑 = 𝑒!" mod 𝜙 , 𝜙 = 𝑝 − 1 𝑞 − 1

• Why is it difficult to break?
1. Hard to factorize 𝑁, so difficult to get 𝜙 and calculate 𝑑
2. For given encrypted message 𝑚!(mod 𝑁), it’s hard to recover 𝑚

(DLP)



Repeated factors

• What if 𝑁" = 𝑝𝑞, 𝑁# = 𝑝𝑟?
The greatest common divisor (GCD) is 𝑝.
• Euclidean method! (from 300 BC)

• Takes 15μs for two 1024-bit numbers

• For multiple 𝑁s, Bernstein’s algorithm can be
used.

https://www.worldhistory.org/image/
4139/euclid-of-alexandria/



Result?

• 11,170,883 RSA keys

• 1.3 hours on EC2 Cluster Compute 
Eight Extra Large Instance
• only $5!

• Got 2,134 prime factors

• Computed private keys for 64,081 
TLS hosts (0.50%)

https://i.insider.com/5c7967b3eb3ce8763f505bf5?widt
h=700&format=jpeg&auto=webp



What could go wrong?

1. Repeated keys

2. Repeated factors in RSA keys

3. Repeated DSA signature randomness



DSA revisit

• Pick two random prime numbers: 𝑝, 𝑞
• Private key: 𝑥 / Public key: 𝑦 = 𝑔$ mod 𝑝

• Signature 𝑟, 𝑠 :
For random nonce 𝑘:
𝑟 = 𝑔% mod 𝑝 mod 𝑞
𝑠 = 𝑘!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞



Ephemeral key is shared

𝑟 = 𝑔% mod 𝑝 mod 𝑞
𝑠 = 𝑘!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞

𝑘 = 𝑠!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞



Ephemeral key is shared

𝑟 = 𝑔% mod 𝑝 mod 𝑞
𝑠 = 𝑘!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞

𝑘 = 𝑠!" 𝐻 𝑚 + 𝑥𝑟 mod 𝑞

𝑠"!" 𝐻 𝑚" + 𝑥𝑟 = 𝑘 = 𝑠#!" 𝐻 𝑚# + 𝑥𝑟 (mod 𝑞)



Result?

• 9,114,925 DSA signatures from SSH

• 4,094 signatures with same public key and 𝑟
• Recovered 281 distinct private keys
• These keys are used in 105,728 hosts (1.6%)



Result?

• Clustered vulnerable 
signatures by 𝑟 values 
manufacturers

• 75.8% of the cases were from 
two manufacturers



Final result



Weak entropy and the Linux RNG

• Nearly everything uses /dev/urandom
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Weak entropy and the Linux RNG

Ubuntu 10.04 test system (typical boot)



Factorable RSA keys 

Only one different
Problematic!

Both factor different
Very good

Both factor repeated
Not bad



Defense

• Lessons for OS developers, crypto library developers, 
app developers, device makers, certificate authorities, end 
users, security and crypto researchers

• More entropy sources
• Add hardware sources
• Kernel collects more aggressively 

• Better communication between applications and OS
• /dev/urandom isn’t providing the service people need 

• Create public key check service for end users 



Conclusion

• Studied entropy via global perspective on public keys

• Found widespread vulnerabilities
• Shared keys (5.6% of TLS hosts; 9.6% of SSH)
• Factorable RSA keys (0.5% of TLS hosts; 0.03% of SSH)
• Repeated DSA randomness (1.0% of SSH hosts)

• Secure random number generation is still difficult
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Follow-up works

Other cryptographic vulnerabilities
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• Diffie-Hellman algorithm
“Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice”, CCS ‘15

Malfunction of RNG
• “Security Analysis of Pseudo-Random Number Generators with Input: /dev/random 

is not Robust”, CCS ‘13
• “Not-so-random numbers in virtualized Linux and the Whirlwind RNG”, SP ‘14



Good Questions

• How would detecting weak entropy be possible in the crypto
graphic primitives level?
• Is there any other way to provide almost "perfect" randomnes
s, without using hardware RNG or factory adding  entropy?
• If insufficient entropy is the issue, why don't we use another s
oftware package that blocks until enough entropy is acquired 
for security-critical hosts?
• Would RSA really be a problem if the same key is generated?



Best Questions

Jaehyun: if the keys itself are not safe regardless of how we 
generate the keys with much care, what kind of 
countermeasures should be made? 

A: This paper is not about PRNG, and there are various PRNGs 
which is not able to compare.

Q: Is any new operation added to make randomness in OS?
A: /dev/urandom is not a problem, what do you mean?


