
ORANalyst:
Systematic Testing Framework for Open RAN Implementations

Tianchang Yang, Syed Md Mukit Rashid, Ali Ranjbar, Gang Tan, and Syed Rafiul Hussain

USENIX Security ‘24 Presenter: Isu Kim, 27 Nov. 2024

Open RAN (O-RAN)

20%

22%

27%

15%

8%

Others
8%

WORLD RAN MARKET SHARE 2021 [1]

[1] https://techblog.comsoc.org/2022/01/25/mobile-experts-ericsson-1-in-ran-market-huawei-falls-to-3/

Company Country of Origin

Republic of Korea

People's Republic of China

People's Republic of China

Finland

Sweden

50.0+ Billion Dollars 2021

Open RAN (O-RAN)

20%

22%

27%

15%

8%

Others
8%

WORLD RAN MARKET SHARE 2021 [1]

[1] https://techblog.comsoc.org/2022/01/25/mobile-experts-ericsson-1-in-ran-market-huawei-falls-to-3/

Company Country of Origin

Republic of Korea

People's Republic of China

People's Republic of China

Finland

Sweden

50.0+ Billion Dollars 2021

Is this consolidation okay?
(Political, National, Economical)

Open RAN (O-RAN)

Open RAN (O-RAN)

Traditional RAN

Antenna

RRH

BBU

Proprietary

Open RAN

Radio Unit
(RU)

Distributed
Unit (DU)

Open

Centralized
Unit (CU)

RAN Intelligence
Controller (RIC)

“Break vendor lock-in by open interfaces”

Open RAN (O-RAN)

20%

22%

27%

15%

8%

Others
8%

WORLD RAN MARKET SHARE 2021

29%

15%
13%

11%

2%

Others
20%

4%

6%

WORLD RAN MARKET SHARE 2023 [2]

[2] https://techblog.comsoc.org/category/ran-market/

Open RAN (O-RAN)

Vulnerabilities

[3] LTE security disabled: Misconfiguration in commercial networks

• Inter-operability issues

“Must ensure that RICs are robust against malicious and unexpected inputs”

Distributed
Unit (DU)

User Equipment
(UE)

Centralized
Unit (CU)

RAN Intelligence
Controller (RIC)

(2) Misconfig. [3]

(3) Bad Impl. [3]

• RAN Intelligence Controller (RIC)

Backgrounds

RAN Intelligence
Controller (RIC)

Distributed
Unit (DU)

Centralized
Unit (CU)

Radio
Unit (RU)

• Software-centric, service-based,
disaggregated architecture

• Each xAPPs can be from a 3rd party
• No standards on internal messaging

• gRPC? REST API?

• RAN Intelligence Controller (RIC)

Backgrounds

RAN Intelligence
Controller (RIC)

Distributed
Unit (DU)

Centralized
Unit (CU)

Radio
Unit (RU)

• Software-centric, service-based,
disaggregated architecture

• Each xAPPs can be from a 3rd party
• No standards on internal messaging

• gRPC? REST API?

[Research Question]
“Can we develop an automated reasoning framework to analyze the

robustness and operational integrity of O-RAN implementations,
providing high-security assurances prior to their commercial deployments?”

• Existing testing methods
• Fails to provide interconnected insights
• Does not support O-RAN connections (SCTP)

O-RAN Testing

Fuzzer Category Examples Remarks

General AFL, LibFuzzer, Driller • Monolithic command-line apps only

Protocol
AFLNET, BooFuzz,

Peach
• Testing individual servers only
• Labor-intensive and error-prone task

Microservice Evomaster RPC • Manual driver code creation

API Restler, Evomaster • Depends on analyzing response messages

ORANALYST - Motivation

• ORANalyst – An end-to-end testing framework
• Testing in isolation can…

• Be too labor-intensive making stubs

• Make unrealistic inputs, resulting false positive

• RIC communications are unspecified (gRPC? REST API?)

RIC

X4

X5

X2

E2 Endpoint

X3X1 Error!!

Testing only C2?

REST
gRPC

Let’s test
X5!

ORANALYST - Challenges

C1 C2

C3

RIC

X4

X5

X2

E2 Endpoint

X3X1

OK!

Fail

Generating inputs Identifying end-of-processing

Evolving message formats

Make X3
Crash!

Error?
Success?

Which proto?
E2AP? E2SM?

Invalid
E2 Input

As the fuzzing terms…
• POET: C1, C3
• Courier: E2 Endpoint
• Oracle: C2

• Overview:
• Goal: end-to-end, grammar-guided, feedback-driven fuzzing framework
• Two stage operation: “dependency analysis” and “runtime testing”

ORANALYST - Design

ORANALYST - Design

• ORANalyst – Dependency analysis (C1)
• Static analysis can’t find the inter-component information flow via network
• Collect network traffic and execution information for 24 hours of RIC in with benign RAN

“Capture flow of all message types and construct a dependency tree”

RAN
RIC

X5

X2

E2 Endpoint

X3X1REST
gRPC X4

SRC: X1
DST: X2 entry()

exit()
…

…
Network trace
Execution Trace

Component
Dependency Tree

Σ

ORANALYST - Design

• ORANalyst – Input constraint generation (C1)
• Construct Program Dependency Graph (PDG) [4]

• Control Dependency Graph (CDG) and Data Dependency Graph (DDG)

• There are limited number of paths that actually contribute → Critical Path

• Using path conditions, generate input “constraints” for each components

X2 X3X1
Target

Over-constraintUnder-constraint
…

All Path Critical path

[4] The program dependence graph and its use in optimization

“With critical path and input loops, we can find out the target component”

• ORANalyst – Runtime analysis (C2 & C3)
• Generate input messages by mutating fields with ASN.1 grammar
• Iteratively run feedback loops to calculate the code coverage

ORANALYST - Design

“Focuses on testing components at a time, shallow to deeper ones”

Thread 1

ASN.1 X2

Create Execute

Terminate

Extract Log
X2

Crashed!

And restart X2

Mutate

Input

Evaluation

• Setup
• 4 xApps and 6 platform components
• 2 Open RAN RIC implementations
• 24-hour period for each component

• Results
• 19 issues across 7 components

• 17 led to crashes,

• 2 led to the blockage of communication

• Types of issues
• Memory issues, improper error handling

• All those vulnerabilities were able to crash and DoS the RIC and RAN

Evaluation

• Comparison with fuzzing tools
• With adjustments to support Open RAN implementation

“ORANalyst without input constraints fail to effectively generate inputs”

Conclusion & Remarks

• ORANalyst
• First end-to-end testing framework for Open RAN implementation
• Utilizes static analysis and dynamic trace analysis
• Was able to generate 19 vulnerabilities, which can lead to DoS and crashing RIC

• Pros
• Dependency tracing and targeting specific components seems to be a good approach
• Can be applicable to not only O-RAN testing, but other microservice architectures as well

• Cons
• Honestly speaking, nothing seems new

• C2: Implemented just ASN.1 protocols, C3: Capture process related system calls + logs [5]

• One component at a time, not multiple
• No consideration on “states”

[5] https://www.starlingx.io/blog/starlingx-oran-o2-application/

Related Works (Before)

• LTE
• [USENIX SEC’22] DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices
• [IEEE S&P’21] Bookworm Game: Automatic Discovery of LTE Vulnerabilities Through

Documentation Analysis
• [MobiCom’19] A Systematic Way to LTE Testing
• [NDSS’18] LTEInspector: A Systematic Approach for Adversarial Testing of 4G LTE

• 5G
• [CCS’19] 5GReasoner: A Property-Directed Security and Privacy Analysis Framework for 5G

Cellular Network Protocol
• [IEEE Access’24] Formal-Guided Fuzz Testing: Targeting Security Assurance From Specification to

Implementation for 5G and Beyond

Related Works (After)

• LTE

• 5G
• [USENIX SEC’24] Logic Gone Astray: A Security Analysis Framework for the Control Plane Protocols

of 5G Basebands (Same authors)
• [IEEE Access’24] Formal-Guided Fuzz Testing: Targeting Security Assurance From Specification to

Implementation for 5G and Beyond
• [IEEE WONS’24] AMFuzz: Black-box Fuzzing of 5G Core Networks
• [WISEC’24] Security Testing The O-RAN Near-Real Time RIC & A1 Interface
• [Arxiv 2024] CovFUZZ: Coverage-based fuzzer for 4G&5G protocols

Good Questions

• To solve the path explosion problem in static analysis, the authors selectively analyze
some functions and ignore others. Can this lead to false negatives in their approach?

• How does ORANalyst ensure coverage for rarely occurring edge cases in real-world
RAN interactions?

• The paper targeted RIC in O-RAN. Also, O-RAN uses a unified interface. What is the
difference between O-RAN and other fuzzing papers?

• How is it that there is no standardized protocol? Is O-RAN a small field? What might
be the reasons for the absence of a standardized protocol?

• What are the limitations in applying this methodology to proprietary O-RAN
deployments instead of open-source ones?

Best Questions
• Wonyoung Kim

• Unlike Traditional RAN, O-RAN allows eNBs to be configured in software, which I believe makes
them more vulnerable to physical attacks. For example, a modern operating system can be used
in O-RAN, which provides a high advantage to developers as well as attackers. This allows the
attacker to conduct more malicious acts. If a base station is compromised, could vulnerabilities
related to privilege management be more impactful than memory vulnerability attacks?

• Younghyo Kang
• ORANalyst does not appear to include verification for ‘false-negatives.’ If this fuzzer were to

incorporate a verification step comparing the output against a specification, similar to DoLTEst, it
could become a more rigorous fuzzer. Do you think this would be feasible in practice?

• Sihun Yang
• How does ORANalyst differentiate between critical vulnerabilities and those that might not be

exploitable in real-world scenarios? Can ORANalyst evaluate the practicality of the found
vulnerabilities?

Thank You

	슬라이드 1: ORANalyst: Systematic Testing Framework for Open RAN Implementations
	슬라이드 2: Open RAN (O-RAN)
	슬라이드 3: Open RAN (O-RAN)
	슬라이드 4: Open RAN (O-RAN)
	슬라이드 5: Open RAN (O-RAN)
	슬라이드 6: Open RAN (O-RAN)
	슬라이드 7: Open RAN (O-RAN)
	슬라이드 8: Vulnerabilities
	슬라이드 9: Backgrounds
	슬라이드 10: Backgrounds
	슬라이드 11: O-RAN Testing
	슬라이드 12: ORANALYST - Motivation
	슬라이드 13: ORANALYST - Challenges
	슬라이드 14: ORANALYST - Design
	슬라이드 15: ORANALYST - Design
	슬라이드 16: ORANALYST - Design
	슬라이드 17: ORANALYST - Design
	슬라이드 18: Evaluation
	슬라이드 19: Evaluation
	슬라이드 20: Conclusion & Remarks
	슬라이드 21: Related Works (Before)
	슬라이드 22: Related Works (After)
	슬라이드 23: Good Questions
	슬라이드 24: Best Questions
	슬라이드 25

