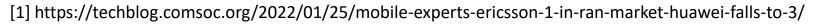
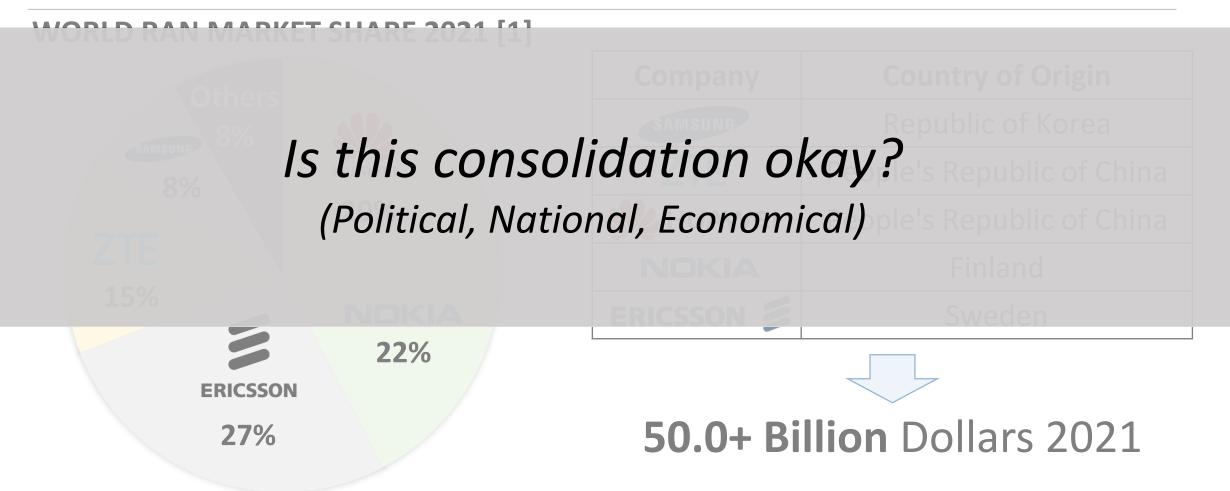


ORANalyst: Systematic Testing Framework for Open RAN Implementations


Tianchang Yang, Syed Md Mukit Rashid, Ali Ranjbar, Gang Tan, and Syed Rafiul Hussain USENIX Security '24 Presenter: Isu Kim, 27 Nov. 2024


WORLD RAN MARKET SHARE 2021 [1]



Company	Country of Origin					
SAMSUNG	Republic of Korea					
ZTE	People's Republic of China					
HUAWEI	People's Republic of China					
NOKIA	Finland					
ERICSSON 🔰	Sweden					

50.0+ Billion Dollars 2021

[1] https://techblog.comsoc.org/2022/01/25/mobile-experts-ericsson-1-in-ran-market-huawei-falls-to-3/

NS² Network and System Security Laboratory

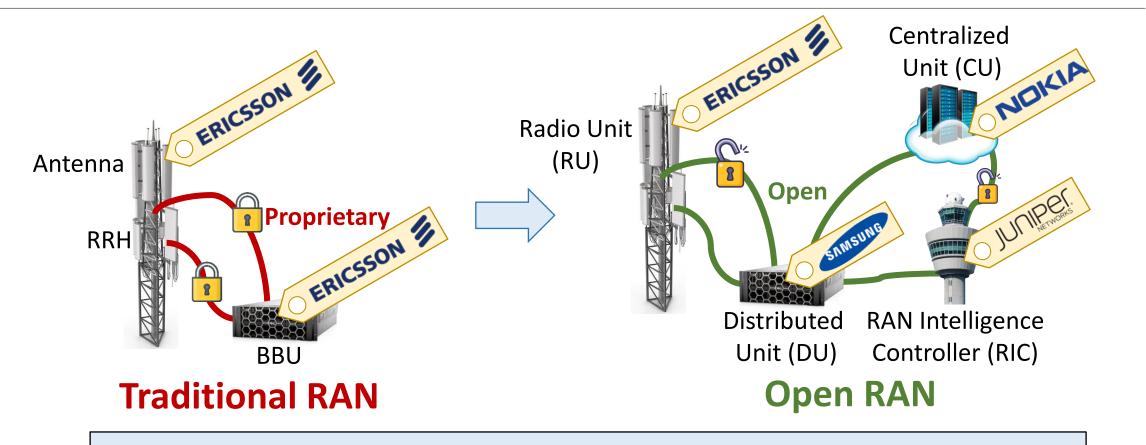

White House Official Says Huawei Has <mark>Secret Back Door to Extract Data</mark>

The allegation that Huawei maintains access to the data that flows through its network is the latest step in a campaign to thwart the Chinese telecom giant's rise.

	Support and Company Services	How 7 To Buy	Support Portal 🔻 Search	English 🔻 Q
Support and Services / Symantec Security Center / Virus Definitior Attack: ZTE Router Backdoor Activity	Print	Share Page		

Attack: ZTE Router Backdoor Activity

Share full article

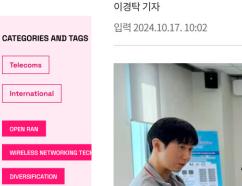

Severity:High

This attack could pose a serious security threat. You should take immediate action to stop any damage or prevent further damage from happening.

Ericsson: The spiral of lies that cost the Swedish telecom giant dearly

Entangled in a corruption scandal, the equipment manufacturer will pay a new fine of nearly €200 million. 'Le Monde' reports on how the company hindered the work of the US justice system, particularly in Iraq.

"Break vendor lock-in by open interfaces"


Microsoft Maintains Open RAN Momentum

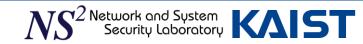
NEWS 04 January 2023 3 minute read

Written by Dan Meyer, Executive Editor, SDX Central

Microsoft is developing a <u>radio access network (RAN)</u> analytics and control technologies targeted at supporting virtualized <u>RAN</u> (vRAN) gear from third-party vendors running on Microsoft's <u>Edge</u> platforms and builds on the industry's broader work on a <u>RAN intelligent controller (RIC)</u> specifications.

KT, 제주도 5G 망에 오픈랜 시스템 구축

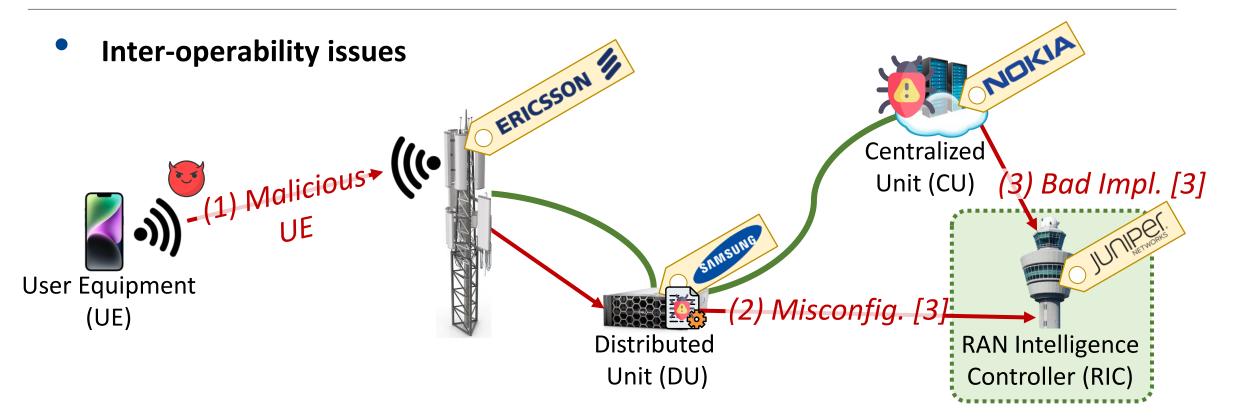
L_


<mark>SKT,</mark> 한국 오픈랜 장비·기술력 글로벌 무대에 알렸다

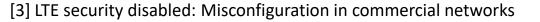
Telecommunications

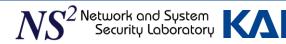
Google joins the O-RAN ALLIANCE to advance telecommunication networks

June 29, 2021



WORLD RAN MARKET SHARE 2023 [2] **WORLD RAN MARKET SHARE 2021** ciena Others 4% 8% **CISCO** SAMSUNG Others 6% HUAWEI 8% 20% 20% HUAWE JUNIPER. ZTE 29% **Hewlett Packard** 15% Enterprise NOKIA 2% 22% NOKIA 3 ERICSSON 15% ERICSSON 11% 27% 13%


S² Network and System Security Laboratory


[2] https://techblog.comsoc.org/category/ran-market/

Vulnerabilities

"Must ensure that RICs are robust against malicious and unexpected inputs"

Backgrounds

• RAN Intelligence Controller (RIC)

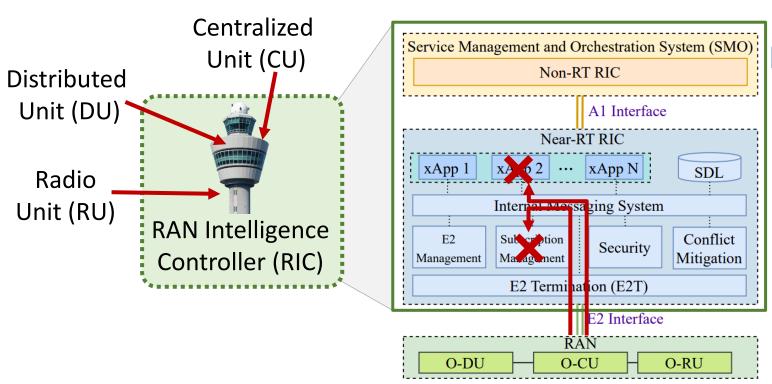


Figure 1: O-RAN RIC Architecture

- Software-centric, service-based, disaggregated architecture
- Each xAPPs can be from a 3rd party
- No standards on internal messaging
 - gRPC? REST API?

-RAN

6.17 Solution #16: Additional security measures for the E2 interface

Network and System Security Laboratory

O-RAN.WG11.Security-Near-RT-RIC-xApps-TR.0-R003-v05.00

6.17.1 Introduction

The Near-RT RIC receives Near real-time information from the E2 Nodes across the E2 interface. While the E2 interface is considered secure with controls that provide confidentiality, integrity, and mutual authentication, the Near-RT RIC should not assume that the data received is valid and trusted. The Near-RT RIC should provide built-in security compliant with a zero-trust architecture based upon the principle that perimeter security is insufficient to protect against internal threats.

Backgrounds

RAN Intelligence Controller (RIC)

[Research Question]

 Software-centric, service-based, disaggregated architecture

"Can we develop an automated reasoning framework to analyze the robustness and operational integrity of O-RAN implementations, providing high-security assurances prior to their commercial deployments?"

RAN Intelligence

Controller (RIC)

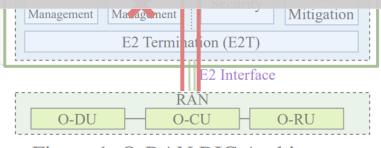


Figure 1: O-RAN RIC Architecture

6.17 Solution #16: Additional security measures for the E2 interface

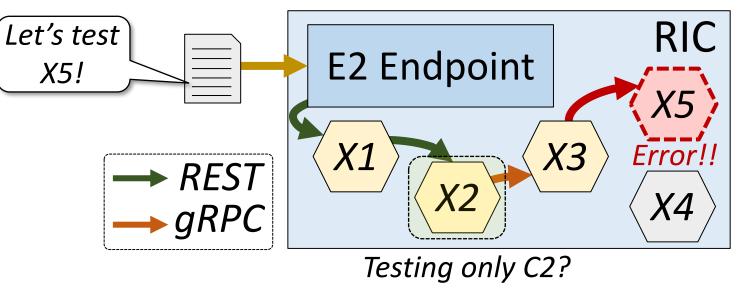
6.17.1 Introduction

The Near-RT RIC receives Near real-time information from the E2 Nodes across the E2 interface. While the E2 interface is considered secure with controls that provide confidentiality, integrity, and mutual authentication, the Near-RT RIC should not assume that the data received is valid and trusted. The Near-RT RIC should provide built-in security compliant with a zero-trust architecture based upon the principle that perimeter security is insufficient to protect against internal threats.

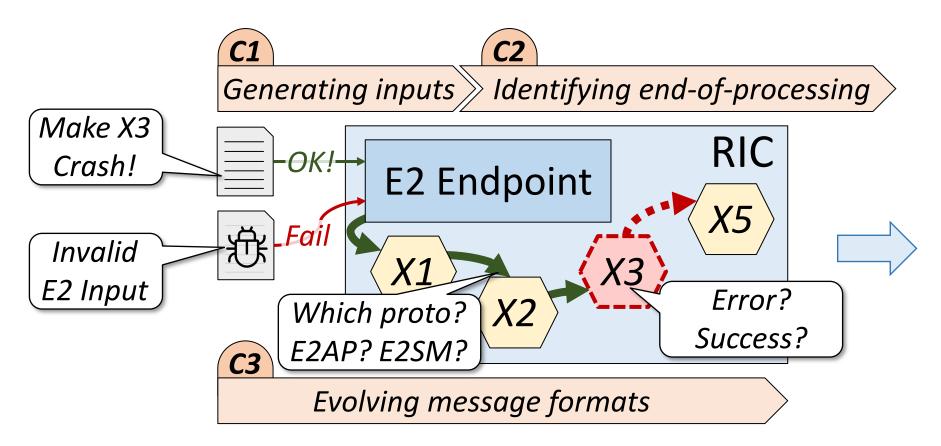
O-RAN Testing

Existing testing methods

- Fails to provide interconnected insights
- Does not support O-RAN connections (SCTP)


Fuzzer Category	Examples	Remarks
General	AFL, LibFuzzer, Driller	 Monolithic command-line apps only
Protocol	AFLNET, BooFuzz, Peach	Testing individual servers onlyLabor-intensive and error-prone task
Microservice	Evomaster RPC	 Manual driver code creation
API	Restler, Evomaster	 Depends on analyzing response messages

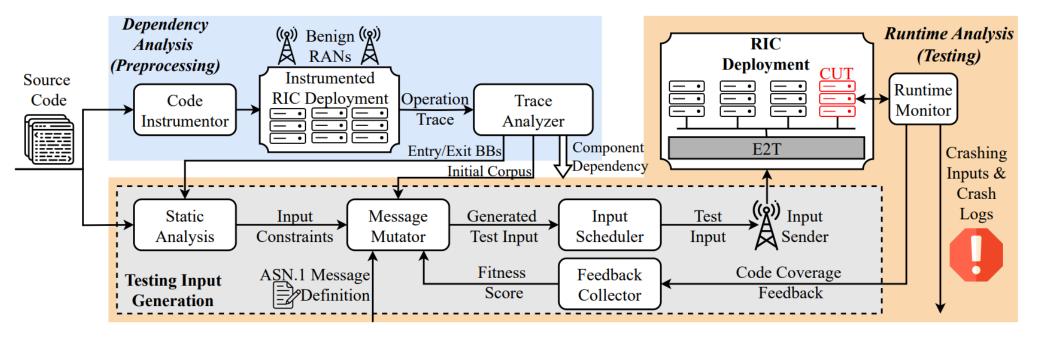
ORANALYST - Motivation


ORANalyst – An end-to-end testing framework

- Testing in isolation can...
 - Be too labor-intensive making stubs
 - Make unrealistic inputs, resulting false positive
- RIC communications are unspecified (gRPC? REST API?)

ORANALYST - Challenges

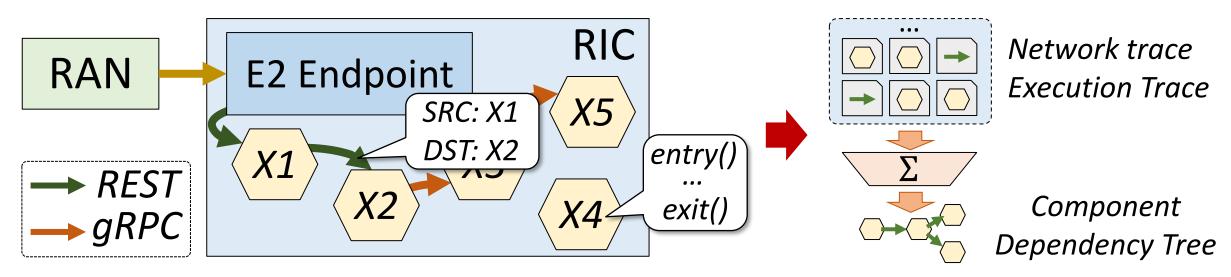
As the fuzzing terms...


- **POET**: C1, C3
- Courier: E2 Endpoint

Security Laboratory

• Oracle: C2

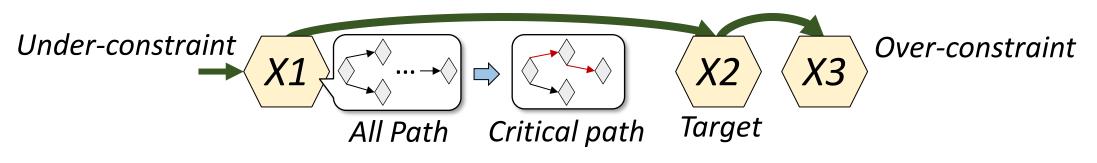
• Overview:


- Goal: end-to-end, grammar-guided, feedback-driven fuzzing framework
- Two stage operation: "*dependency analysis*" and "runtime testing"

Security Laboratory

ORANalyst – Dependency analysis (C1)

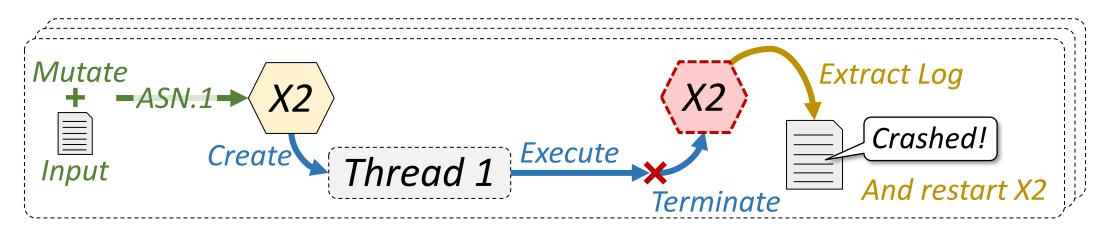
- Static analysis can't find the inter-component information flow via network
- Collect network traffic and execution information for 24 hours of RIC in with benign RAN



"Capture flow of all message types and construct a dependency tree"

ORANalyst – Input constraint generation (C1)

- Construct Program Dependency Graph (PDG) [4]
 - Control Dependency Graph (CDG) and Data Dependency Graph (DDG)
 - There are limited number of paths that actually contribute \rightarrow Critical Path

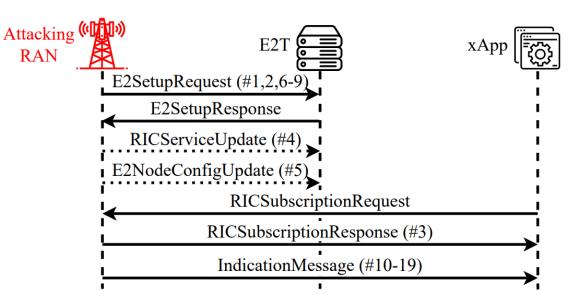

Using path conditions, generate input "constraints" for each components

"With critical path and input loops, we can find out the target component"

ORANalyst – Runtime analysis (C2 & C3)

- Generate input messages by mutating fields with ASN.1 grammar
- Iteratively run feedback loops to calculate the code coverage

"Focuses on testing components at a time, shallow to deeper ones"


Evaluation

• Setup

- 4 xApps and 6 platform components
- 2 Open RAN RIC implementations
- 24-hour period for each component

Results

- 19 issues across 7 components
 - 17 led to crashes,
 - 2 led to the blockage of communication
- Types of issues
 - Memory issues, improper error handling
 - All those vulnerabilities were able to crash and DoS the RIC and RAN

2 Network and System Security Laboratory

Evaluation

• Comparison with fuzzing tools

• With adjustments to support Open RAN implementation

O-RAN-SC Component E2T				Kpimon						
Fuzzer	crashes	corpus	cover	% decoded	crashes	corpus	bb cover	edge cover	% reaching xApp	% decoded
ORANalyst	3	2149	4326	72.35	3	73	1838	910	100/100	55.64
ORANalyst w/o input constraints	3	2149	4326	72.35	1	47	1828	907	47.27/59.01	53.50
ORANalyst w/o grammar	0	1433	4647	3.9	1	59	1831	906	40.64/80.81	16.76
AFLNET	0	245	3663	21.78	0	41	1824	901	32.81/97.83	12.37
BooFuzz	1	427033*	3655	81.96	1	427033*	1824	899	10.71/11.65	33.40
Radamsa	0	1323	3916	3.76	0	66	1827	901	11.39/78.20	4.40
Radamsa-filter	0	137	3467	100	1	35	1820	896	62.54/62.54	86.13

"ORANalyst without input constraints fail to effectively generate inputs"

Conclusion & Remarks

• ORANalyst

- First end-to-end testing framework for Open RAN implementation
- Utilizes static analysis and dynamic trace analysis
- Was able to generate 19 vulnerabilities, which can lead to DoS and crashing RIC

• Pros

- Dependency tracing and targeting specific components seems to be a good approach
- Can be applicable to not only O-RAN testing, but other microservice architectures as well

• Cons

- Honestly speaking, nothing seems new
 - C2: Implemented just ASN.1 protocols, C3: Capture process related system calls + logs [5]
- One component at a time, not multiple
- No consideration on "states"

Related Works (Before)

• LTE

- [USENIX SEC'22] DoLTEst: In-depth Downlink Negative Testing Framework for LTE Devices
- [IEEE S&P'21] Bookworm Game: Automatic Discovery of LTE Vulnerabilities Through Documentation Analysis
- [MobiCom'19] A Systematic Way to LTE Testing
- [NDSS'18] LTEInspector: A Systematic Approach for Adversarial Testing of 4G LTE

• 5G

- [CCS'19] 5GReasoner: A Property-Directed Security and Privacy Analysis Framework for 5G Cellular Network Protocol
- [IEEE Access'24] Formal-Guided Fuzz Testing: Targeting Security Assurance From Specification to Implementation for 5G and Beyond

Related Works (After)

• LTE

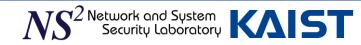
- 5G
 - [USENIX SEC'24] Logic Gone Astray: A Security Analysis Framework for the Control Plane Protocols of 5G Basebands (Same authors)
 - [IEEE Access'24] Formal-Guided Fuzz Testing: Targeting Security Assurance From Specification to Implementation for 5G and Beyond
 - IEEE WONS'24] AMFuzz: Black-box Fuzzing of 5G Core Networks
 - [WISEC'24] Security Testing The O-RAN Near-Real Time RIC & A1 Interface
 - [Arxiv 2024] CovFUZZ: Coverage-based fuzzer for 4G&5G protocols

Good Questions

- To solve the path explosion problem in static analysis, the authors selectively analyze some functions and ignore others. Can this lead to false negatives in their approach?
- How does ORANalyst ensure coverage for rarely occurring edge cases in real-world RAN interactions?
- The paper targeted RIC in O-RAN. Also, O-RAN uses a unified interface. What is the difference between O-RAN and other fuzzing papers?
- How is it that there is no standardized protocol? Is O-RAN a small field? What might be the reasons for the absence of a standardized protocol?
- What are the limitations in applying this methodology to proprietary O-RAN deployments instead of open-source ones?

Best Questions

Wonyoung Kim


• Unlike Traditional RAN, O-RAN allows eNBs to be configured in software, which I believe makes them more vulnerable to physical attacks. For example, a modern operating system can be used in O-RAN, which provides a high advantage to developers as well as attackers. This allows the attacker to conduct more malicious acts. If a base station is compromised, could vulnerabilities related to privilege management be more impactful than memory vulnerability attacks?

Younghyo Kang

ORANalyst does not appear to include verification for 'false-negatives.' If this fuzzer were to
incorporate a verification step comparing the output against a specification, similar to DoLTEst, it
could become a more rigorous fuzzer. Do you think this would be feasible in practice?

Sihun Yang

 How does ORANalyst differentiate between critical vulnerabilities and those that might not be exploitable in real-world scenarios? Can ORANalyst evaluate the practicality of the found vulnerabilities?

Thank You

