


Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi Ma, and Qi Alfred Chen

Presenter: SangminWoo@Syssec





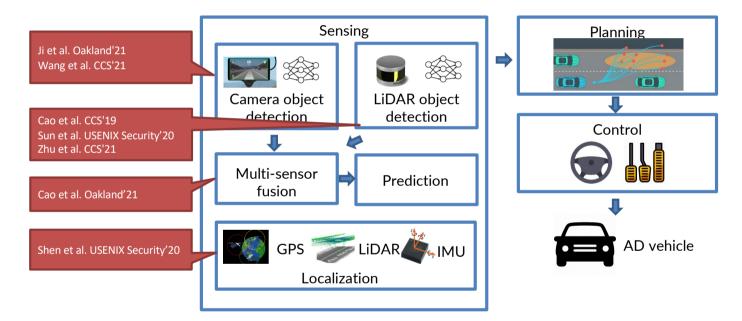




### Introduction

#### High-level autonomous driving vehicles are already providing services without safety drivers.

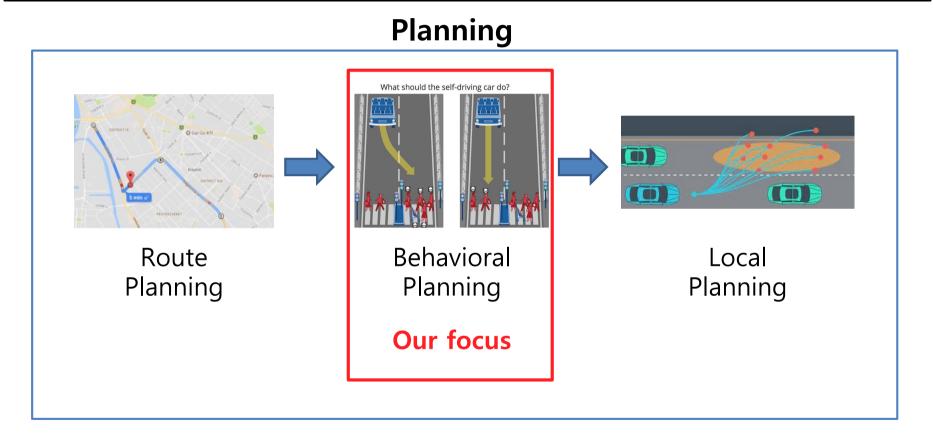









# Introduction


✤ We have witnessed security problems in high-level AD systems.



**Question:** Could planning (critical driving decision-making) also be vulnerable and thus exploitable to external attackers?



# Background





### Example



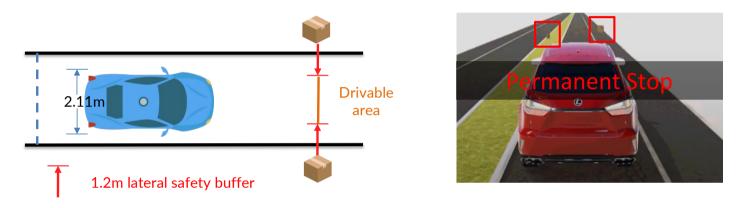
As a human driver, how should you react to this scenario?

- ✤ Ignore them?
- Slow down?



#### Example

# Attack Scenario Setup




### Contribution

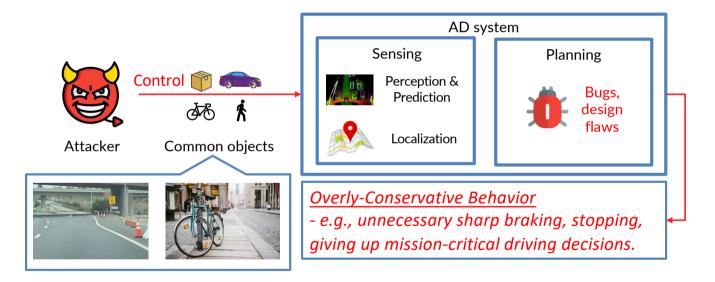
- Formulate the problem with a domain-specific vulnerability definition and a practical threat model
- Design PlanFuzz, a dynamic testing approach to systematically discover vulnerabilities
- Evaluate PlanFuzz on 3 different planning implementations
- Case studies



# **DoS Vulnerability of Behavioral Planning**



Drivable area (minimal value is (3.5 - 2\*1.2)) < car width (2.11m) <u>The AD vehicle thinks there is not enough space</u>


#### **DoS Vulnerability of BP (Behavioral Planning):**

Weakness in BP that disrupts decision-making, causing overly cautious actions and leading to mission failure or degraded performance.



### **Threat Model**

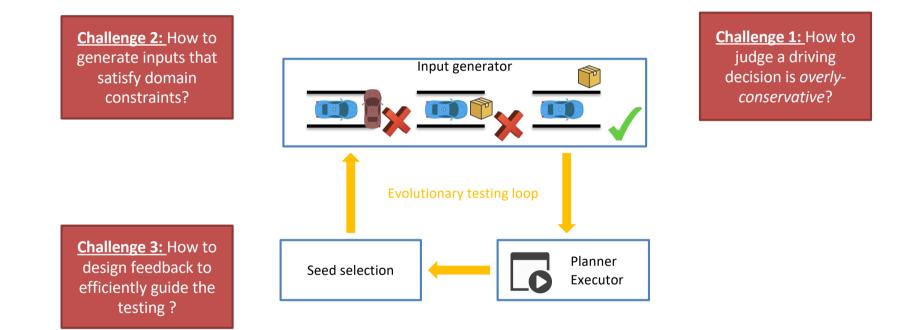
Attack vector: attacker-controllable common roadside objects
 - e.g., dumped cardboard boxes, parked bikes on the road side





### **Solution: Simulation-based Testing**




- ✤ Real world testing is...
  - Expensive
  - Dangerous
  - Time consuming

Simulation-based testing can address above issues!!

**Question:** How can we generate vulnerable scenario effectively? **Answer:** Use guided fuzzing technique!



# **Design Challenges**





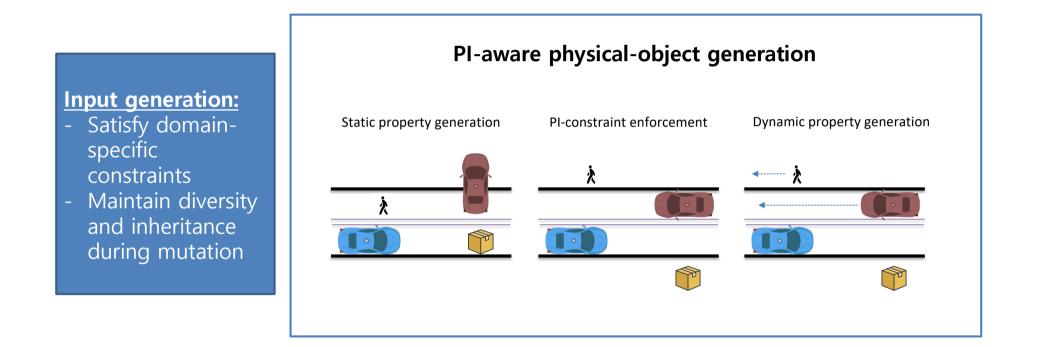
# Solution: Planning Invariant (PI)

To address challenge 1 (lack of testing oracles for semantic DoS vuln), we design planning invariant

Planning Invariants (PI) = planning scenario + desired planning
 behavior + attacker-controllable changes



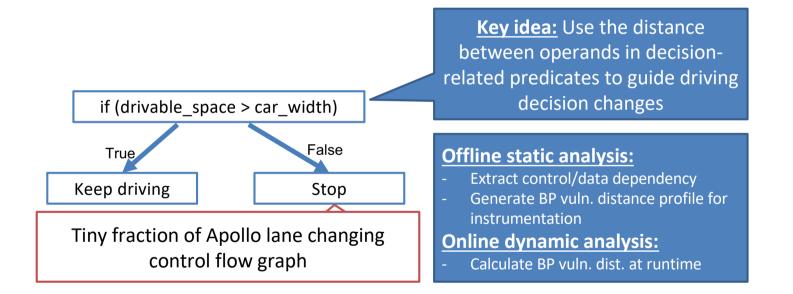



# Solution: Planning Invariant (PI)

 Systematically define PIs under 8 diverse scenarios with temporal logic to constraint static objects, and moving pedestrian/vehicles

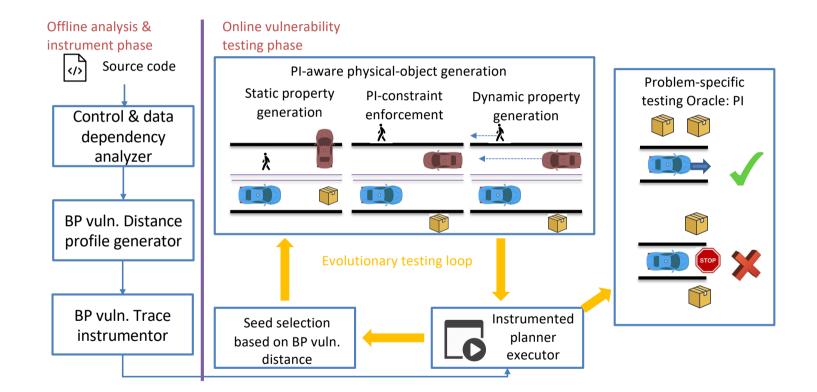
|         |                                             | Table IV: Summ                                                  | ary of Planning Invariants (PI) identified and used in the paper.                                                                                                                                                                                                                                                                              |                                                                |         |                                |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |
|---------|---------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| PI Inde | x Planning Scenario                         | Object Type                                                     | Constraints on Physical Objects                                                                                                                                                                                                                                                                                                                | Desired Planning Behavior                                      |         |                                | Static obstacles                                                                                                                                                                                                                                       | PI-C1. Off-road and w/o any violation of the boundaries<br>of the lanes the AD vehicle plans to drive on                                                                                                                                                                                                                                                                                                                     |                                                                |
| PI1     | Lane following<br>(single-lane road)        | Static obstacles<br>Vehicles<br>Pedestrians                     | <ul> <li>PI-C1. Off-road and w/o any violation of the boundaries<br/>of the lanes the AD vehicle plans to drive on</li> <li>PI-C2. Follow the AD vehicle</li> <li>PI-C3. Drive on reverse lane</li> <li>PI-C4+5. Off-road and w/o any intention to move towards to<br/>the AD vehicle or the lanes the AD vehicle plans to drive on</li> </ul> | Keep cruising in the current lane                              | P15     | Intersection w/ stop sign      | Action w/ stop sign<br>Vehicles<br>Vehicles<br>Vehicles<br>PI-C2. Follow the AD vehicle is going to pass<br>PI-C2. Follow the AD vehicle<br>PI-C3. Drive on other lanes except current and targe<br>PI-C4+5. Off-road and w/o any intention to move to | and the intersection the AD vehicle is going to pass                                                                                                                                                                                                                                                                                                                                                                         | ls to                                                          |
| PI2     | Lane following<br>(multiple-lane road)      | Static obstacles<br>Vehicles<br>Pedestrians<br>Static obstacles | of the lanes the AD vehicle plans to drive on<br>PI-C2. Follow the AD vehicle<br>PI-C3. Drive on other lanes<br>PI-C4+5. Off-road and w/o any intention to move towards to<br>the AD vehicle or the lanes the AD vehicle plans to drive on<br>PI-C1. Off-road and w/o any violation of the boundaries                                          | Keep cruising in the current lane                              | PI6     | Intersection w/ traffic signal |                                                                                                                                                                                                                                                        | <ul> <li>PI-C1. Off-road and w/o any violation of the boundaries of the lanes the AD vehicle plans to drive on and the intersection the AD vehicle is going to pass</li> <li>PI-C2. Follow the AD vehicle</li> <li>PI-C3. Drive on other lanes except current and targeted lanes</li> <li>PI-C4+5. Off-road and w/o any intention to move towards to the AD vehicle or the lanes the AD vehicle parts to drive on</li> </ul> | Pass intersection w/ traffic signal following the traffic rule |
| PI3     | Lane changing                               | Vehicles<br>Pedestrians                                         | of the lanes the AD vehicle plans to drive on<br>PI-C2. Follow the AD vehicle<br>PI-C3. Drive on other lanes except current and targeted lanes<br>PI-C4+5. Off-road and w/o any intention to move towards to<br>the AD vehicle or the lanes the AD vehicle plans to drive on                                                                   | , men enmene is no merer ime                                   | <br>PI7 | Bare intersection              |                                                                                                                                                                                                                                                        | PI-C1. Off-road and w/o any violation of the boundaries<br>of the lanes the AD vehicle plans to drive on<br>and the intersection the AD vehicle is going to pass<br>PI-C2. Follow the AD vehicle                                                                                                                                                                                                                             | Pass the bare intersection                                     |
| PI4     | Lane borrow<br>(due to a blocking obstacle) |                                                                 | PI-C1. Off-road and w/o any violation of the boundaries<br>of the lanes the AD vehicle plans to drive on<br>SP-PI-C1. On-lane and in front of the blocking obstacle<br>PI-C2. Follow the AD vehicle                                                                                                                                            | Finish borrowing the reverse lane<br>and pass blocking vehicle |         |                                | Vehicles<br>Pedestrians                                                                                                                                                                                                                                | PI-C2. Follow the AD venicle<br>PI-C3. Drive on other lanes except current and targeted lanes<br>PI-C4+5. Off-road and w/o any intention to move towards to<br>the AD vehicle or the lanes the AD vehicle plans to drive on                                                                                                                                                                                                  |                                                                |
|         |                                             | Vehicles<br>Pedestrians                                         | PI-C3. Drive on other lanes except current and targeted lanes<br>SP-PI-C2. On-lane and park in front of the blocking obstacle<br>PI-C4+5. Off-road and with any intention to move towards to<br>the AD vehicle or the lanes the AD vehicle plans to drive on                                                                                   |                                                                | PI8     | Parking                        | Vehicles                                                                                                                                                                                                                                               | SP-PI-C3. Placed on other parking spots<br>SP-PI-C4. Parked on other parking spots<br>SP-PI-C5. Walking pedestrians moving away from AD vehicle                                                                                                                                                                                                                                                                              | Park into an empty<br>targeted parking spot                    |




### **Solution: PI-Aware Object Generation**






# **Solution: BP Vulnerability Distance**

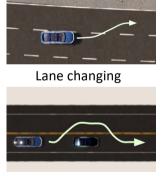
- To address challenge 3 (lack of efficient guidance)
  - We propose **BP vulnerability distance**, which is a **gray-box** guidance.





#### PlanFuzz






#### **Evaluation**

- 9 previously unknown semantic DoS vulnerabilities from 3 BP implementations of Baidu Apollo and Autoware.AI (full-stack open-source AD software)
  - Causes: 1 due to <u>implementation bug</u>, 8 due to overly-conservative <u>planning</u> <u>parameters</u> (e.g., safety buffer, angle threshold) & overly-conservative <u>estimation</u> <u>of surrounding object intentions</u> (e.g., from pedestrians, parked bicycles)



Lane following

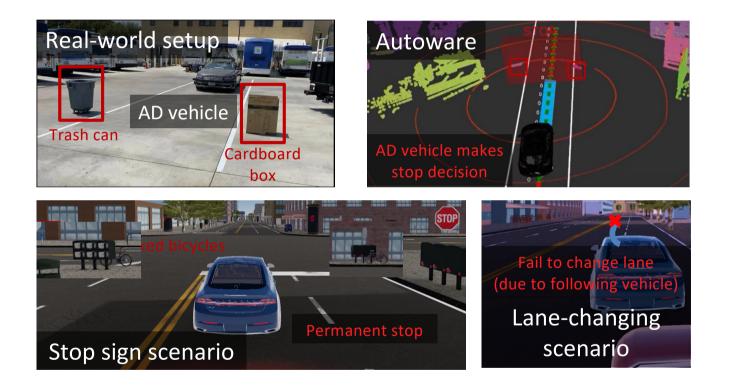


Lane borrowing



Intersection passing



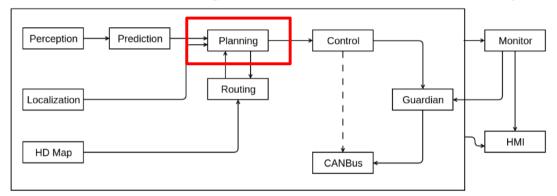

#### **Evaluation**

| Scenario            | Driving Behavior                                           | Мар               | Vehicle         | Duration (# of Planing Decisions |
|---------------------|------------------------------------------------------------|-------------------|-----------------|----------------------------------|
|                     | Follow a 1-lane straight narrow road                       | Single-lane road  | Apollo: Lincoln | 15.0s (133)                      |
|                     | (2.7m lane width)                                          | Single-Talle Toau | Autoware: Lexus | 25.4s (2394)                     |
|                     | Follow a 1-lane straight medium road                       | Single-lane road  | Apollo: Lincoln | 14.3s (121)                      |
|                     | (3.0m lane width)                                          | Single-fane foad  | Autoware: Lexus | 23.8s (2241)                     |
| Lane Follow         | Follow a 1-lane straight wide road                         | Single-lane road  | Apollo: Lincoln | 18.6s (157)                      |
|                     | (3.5m lane width)                                          | Single-lane road  | Autoware: Lexus | 24.6s (2037)                     |
| (Single lane road)  | Follow a 1-lane left-curved road                           | CubeTown          | Apollo: Lincoln | 21.3s (209)                      |
|                     | Follow a 1-lane left-curved road                           | Cube Iown         | Autoware: Lexus | 18.3s (1749)                     |
|                     | Follow a 1-lane right-curved road                          | CubeTown          | Apollo: Lincoln | 17.6s (172)                      |
|                     | Follow a 1-lane right-curved road                          | Cube Iown         | Autoware: Lexus | 21.3s (1978)                     |
|                     |                                                            | 0                 | Apollo: Lincoln | 18.7s (177)                      |
|                     | Follow a 2-lane straight road                              | San Francisco     | Autoware: Lexus | 15.4s (1379)                     |
|                     | <b>F B B B B B B B B B B</b>                               |                   | Apollo: Lincoln | 14.3s (121)                      |
|                     | Follow a 3-lane straight road                              | Modern City       | Autoware: Lexus | 21.3s (1840)                     |
|                     | E.B. (1) 1.6 1.1                                           |                   | Apollo: Lincoln | 18.7s (181)                      |
| Lane Follow         | Follow a 4-lane left-curved road                           | San Francisco     | Autoware: Lexus | 19.8s (1679)                     |
| Multiple lane road) |                                                            |                   | Apollo: Lincoln | 21.5s (208)                      |
|                     | Follow a 4-lane right-curved road                          | San Francisco     | Autoware: Lexus | 25.9s (2379)                     |
|                     |                                                            |                   | Apollo: Lincoln | 13.4s (129)                      |
|                     | Follow a 4-lane straight road                              | San Francisco     | Autoware: Lexus | 19.5s (1437)                     |
|                     | Right change on a straight road                            | San Francisco     | Apollo: Lincoln | 21.2s (203)                      |
|                     | Left change on a straight road                             | San Francisco     | Apollo: Lincoln | 15.7s (138)                      |
| Lane Change         | Left change on a left-curved road                          | San Francisco     | Apollo: Lincoln | 13.4s (130)                      |
| Lane on Br          | Right change on a left-curved road                         | San Francisco     | Apollo: Lincoln | 18.7s (172)                      |
|                     | Left change on a right-curved road                         | San Francisco     | Apollo: Lincoln | 16.4s (159)                      |
|                     | 0 0                                                        | San Francisco     | Apono. Enicom   | 10.45 (159)                      |
|                     | Borrow lane on a straight narrow road<br>(2.7m lane width) | Single-lane road  | Apollo: Lincoln | 25.9s (238)                      |
|                     | Borrow lane on a straight medium road<br>(3.0m lane width) | Single-lane road  | Apollo: Lincoln | 28.7s (279)                      |
| Lane Borrow         | Borrow lane on a straight wide road<br>(3.5m lane width)   | Single-lane road  | Apollo: Lincoln | 30.5s (317)                      |
|                     | Borrow lane on a left-curved road                          | CubeTown          | Apollo: Lincoln | 27.3s (262)                      |
|                     | Borrow lane on a right-curved road                         | CubeTown          | Apollo: Lincoln | 33.2s (329)                      |
|                     | Turn left at a 4-way intersection                          | San Francisco     | Apollo: Lincoln | 47.1s (453)                      |
| Traffic Signal      | Turn right at a 4-way intersection                         | San Francisco     | Apollo: Lincoln | 36.8s (329)                      |
| Intersection        | Go straight at a 4-way intersection                        | San Francisco     | Apollo: Lincoln | 27.9s (288)                      |
| Intersection        | Turn right at a 3-way intersection                         | San Francisco     | Apollo: Lincoln | 26.4s (233)                      |
|                     | Go straight at a 3-way intersection                        | San Francisco     | Apollo: Lincoln | 31.9s (308)                      |
|                     | Turn left at a 4-way intersection                          | Shalun            | Apollo: Lincoln | 32.3s (334)                      |
|                     | Turn right at a 4-way intersection                         | Shalun            | Apollo: Lincoln | 27.9s (255)                      |
| Stop sign           | Go straight at a 4-way intersection                        | Shalun            | Apollo: Lincoln | 23.8s (220)                      |
| Intersection        | Turn right at a 3-way intersection                         | Shalun            | Apollo: Lincoln | 33.2s (329)                      |
|                     | Go straight at a 3-way intersection                        | Shalun            | Apollo: Lincoln | 29.7s (283)                      |
|                     | Turn left at a 4-way intersection                          | GoMentum Station  |                 | 37.9s (361)                      |
|                     | Turn right at a 4-way intersection                         | GoMentum Station  |                 | 42.3s (391)                      |
| Bare Intersection   | Go straight at a 4-way intersection                        | GoMentum Station  |                 | 42.38 (391)<br>30.1s (287)       |
| Intersection        | Turn right at a 3-way intersection                         | GoMentum Station  |                 | 29.2s (288)                      |
|                     | Go straight at a 3-way intersection                        | GoMentum Station  |                 | 29.28 (288)<br>38.5s (379)       |
|                     | <i>v</i> ,                                                 |                   | 1               |                                  |
|                     | Park to a front parking spot                               | GoMentum Station  |                 | 23.4s (228)                      |
| P 11                | Park to a left close parking spot                          | GoMentum Station  |                 | 30.5s (309)                      |
| Parking             | Park to a right close parking spot                         | GoMentum Station  |                 | 27.6s (263)                      |
|                     | Park to a left far parking spot                            | GoMentum Station  |                 | 24.3s (231)                      |
|                     | Park to a right far parking spot                           | GoMentum Station  | Apollo: Lincoln | 17.9s (163)                      |

- ✤ Diverse driving scenarios
  - **28,789** BP decision snapshots from **40** driving traces & **8** different scenario types



#### **Case Study**

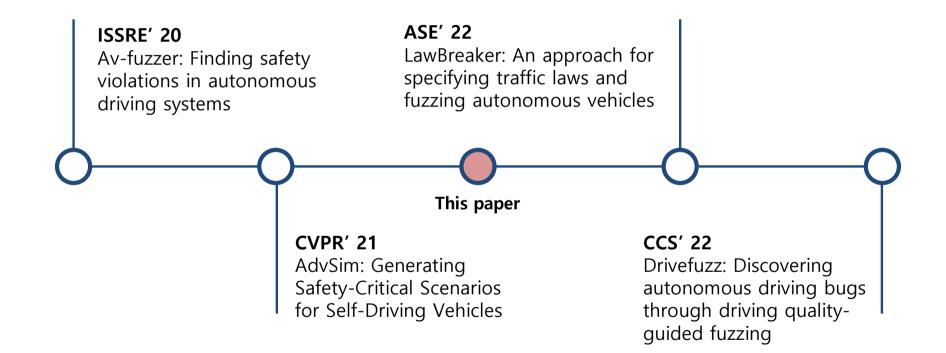





# **Limitations and Future Work**

#### \* Testing Method: E2E vs Module Testing

- Result from module testing ≠ real-world vulnerability




#### **\*** Input Generation

- Driving scenarios with 40 driving traces
- Uncovered scenario still exists.. (etc. Emergency scenarios in Baidu Apollo)



### **Related Work – Testing Framework for ADS**





# Conclusion

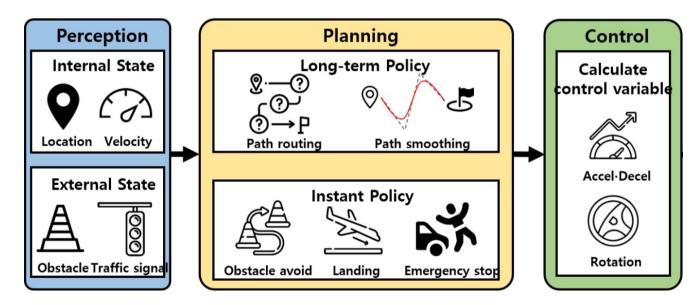
- First to perform AD planning-specific semantic vulnerability discovery with a domain-specific vulnerability definition and a practical threat model
- Design *PlanFuzz*, a **novel dynamic testing** approach that addresses various problem-specific design challenges
- Evaluate *PlanFuzz* on **two** practical open-source **full-stack** AD systems and discover **9** previously-unknown DoS vulnerabilities
- Perform exploitation case studies of diverse driving scenarios with simulation and driving traces collected from a real AD vehicle



# **Good Questions**

- How can this approach to locating semantic DoS vulnerabilities be extended to aerial or marine autonomous systems or multi-agent AD?
- Wouldn't some of these attacks happen without anyone intending to (a real cardboard box on the side of the road), and in fact could happen rather frequently? Doesn't this paper hit the reputation of the AD systems by showing big flaws in their system?
- This paper highlights the challenge of overly conservative decisions in autonomous driving systems, leading to semantic DoS attacks. However, it doesn't fully explore how vehicle-tovehicle (V2V) or vehicle-to-infrastructure (V2I) communication could be leveraged to mitigate these vulnerabilities. How could future research focus on using real-time communication networks between vehicles and traffic systems to provide additional context for decisionmaking, ensuring that an autonomous vehicle's behavior is aligned with its surroundings?
- Would the approach in this paper still be effective if the autonomous driving system were proprietary and the safety buffer algorithm were considerably more complex?




#### **Best Questions**

- Donghyun Kim: The paper focuses on how AD systems can be too careful. But is it possible that the opposite could happen? Could an attacker trick the car into thinking the road is clear, making the car drive too aggressively or even cause an accident? What protections are in place for this kind of problem?
- Younghyo Kang: Vulnerabilities can arise at various stages in the production and standardization of products due to reasons such as incorrect design, standard vulnerabilities, insufficient test case definitions, incorrect understanding, implementation vulnerabilities, and incorrect implementation. In the case of the vulnerability caused by overly conservative settings discussed in the paper, which stage would it belong to? I personally see it as an issue stemming from the absence of established standards (e.g., the range of safety margin settings). If this is the case, wouldn't it be more appropriate to attribute the problem not to a specific program but to the lack of established procedures in the process itself?



#### **Best Questions**

Sihun Yang: What are the challenges in making PlanFuzz scalable to detect vulnerabilities across a variety of AD systems? How can PlanFuzz be extended or generalized to accommodate a variety of AD systems?



