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Introduction

v High-level autonomous driving vehicles are already providing services 
without safety drivers.
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Question: Could planning (critical driving decision-making) also be 
vulnerable and thus exploitable to external attackers?

v We have witnessed security problems in high-level AD systems. 



Background
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Example

As a human driver, how should 
you react to this scenario?

v Ignore them?

v Slow down?
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Example



Contribution
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v Formulate the problem with a domain-specific vulnerability 
definition and a practical threat model

v Design PlanFuzz, a dynamic testing approach to systematically 
discover vulnerabilities

v Evaluate PlanFuzz on 3 different planning implementations

v Case studies
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2.11m

1.2m lateral safety buffer

Drivable
area

Drivable area (minimal value is (3.5 - 2*1.2)) < car width (2.11m)
The AD vehicle thinks there is not enough space

Permanent Stop

DoS Vulnerability of Behavioral Planning

DoS Vulnerability of BP (Behavioral Planning):
Weakness in BP that disrupts decision-making, causing overly cautious actions 
and leading to mission failure or degraded performance.
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Threat Model
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- e.g., dumped cardboard boxes, parked bikes on the road side

Common objects

Control

Overly-Conservative Behavior
- e.g., unnecessary sharp braking, stopping, 
giving up mission-critical driving decisions.

v Attack vector: attacker-controllable common roadside objects



Solution: Simulation-based Testing
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v Real world testing is…

- Expensive

- Dangerous

- Time consuming

Simulation-based testing can address above issues!!

Question: How can we generate vulnerable scenario effectively?

Answer: Use guided fuzzing technique!



Design Challenges
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Planner
Executor

Input generator

Seed selection

Evolutionary testing loop

Challenge 1: How to 
judge a driving 

decision is overly-
conservative?

Challenge 2: How to 
generate inputs that 

satisfy domain 
constraints?

Challenge 3: How to 
design feedback to 
efficiently guide the 

testing ?
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Solution: Planning Invariant (PI)

v To address challenge 1 (lack of testing oracles for semantic DoS 
vuln), we design planning invariant

- Planning Invariants (PI) = planning scenario + desired planning 
behavior + attacker-controllable changes

STOP

∀!"#"$%_'()*%"∀+'$," 𝑑𝑖𝑠𝑡 𝑐𝑒𝑛𝑡𝑒𝑟_𝑙𝑖𝑛𝑒, 𝑝𝑜𝑖𝑛𝑡 >
1
2
𝑙𝑎𝑛𝑒_𝑤𝑖𝑑𝑡ℎ → ¬ 𝑠𝑡𝑜𝑝
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Solution: Planning Invariant (PI)

v Systematically define PIs under 8 diverse scenarios with temporal logic to 
constraint static objects, and moving pedestrian/vehicles
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Solution: PI-Aware Object Generation

PI-aware physical-object generation

Static property generation PI-constraint enforcement Dynamic property generation
Input generation:
- Satisfy domain-

specific 
constraints

- Maintain diversity 
and inheritance 
during mutation
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Solution: BP Vulnerability Distance

v To address challenge 3 (lack of efficient guidance)
- We propose BP vulnerability distance, which is a gray-box guidance.

if (drivable_space > car_width)

Keep driving Stop

True False

Key idea: Use the distance 
between operands in decision-

related predicates to guide driving 
decision changes

Unexpected driving decision

Offline static analysis:
- Extract control/data dependency
- Generate BP vuln. distance profile for 

instrumentation 
Online dynamic analysis:
- Calculate BP vuln. dist. at runtime 

Tiny fraction of Apollo lane changing 
control flow graph
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PlanFuzz

Evolutionary testing loop
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Evaluation
v 9 previously unknown semantic DoS vulnerabilities from 3 BP implementations

of Baidu Apollo and Autoware.AI (full-stack open-source AD software)
- Causes: 1 due to implementation bug, 8 due to overly-conservative planning 
parameters (e.g., safety buffer, angle threshold) & overly-conservative estimation 
of surrounding object intentions (e.g., from pedestrians, parked bicycles)

Lane following Lane borrowing

Lane changing

Intersection passing
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Evaluation

v Diverse driving scenarios
- 28,789 BP decision snapshots from 40 
driving traces & 8 different scenario types



Case Study
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Real-world setup

AD vehicle
Trash can

Cardboard
box

Autoware

AD vehicle makes 
stop decision

Stop sign scenario

Parked bicycles

Permanent stop Lane-changing
scenario

Fail to change lane 
(due to following vehicle)



Limitations and Future Work
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v Testing Method: E2E vs Module Testing
- Result from module testing ≠ real-world vulnerability

v Input Generation
- Driving scenarios with 40 driving traces
- Uncovered scenario still exists.. (etc. Emergency scenarios in Baidu 
Apollo)



Related Work – Testing Framework for ADS
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Conclusion

v First to perform AD planning-specific semantic vulnerability 
discovery with a domain-specific vulnerability definition and a 
practical threat model

v Design PlanFuzz, a novel dynamic testing approach that addresses 
various problem-specific design challenges

v Evaluate PlanFuzz on two practical open-source full-stack AD 
systems and discover 9 previously-unknown DoS vulnerabilities

v Perform exploitation case studies of diverse driving scenarios with 
simulation and driving traces collected from a real AD vehicle



Good Questions
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v How can this approach to locating semantic DoS vulnerabilities be extended to aerial or 
marine autonomous systems or multi-agent AD?

v Wouldn't some of these attacks happen without anyone intending to (a real cardboard box on 
the side of the road), and in fact could happen rather frequently? Doesn't this paper hit the 
reputation of the AD systems by showing big flaws in their system?

v This paper highlights the challenge of overly conservative decisions in autonomous driving 
systems, leading to semantic DoS attacks. However, it doesn’t fully explore how vehicle-to-
vehicle (V2V) or vehicle-to-infrastructure (V2I) communication could be leveraged to mitigate 
these vulnerabilities. How could future research focus on using real-time communication 
networks between vehicles and traffic systems to provide additional context for decision-
making, ensuring that an autonomous vehicle’s behavior is aligned with its surroundings?

v Would the approach in this paper still be effective if the autonomous driving system were 
proprietary and the safety buffer algorithm were considerably more complex?



Best Questions
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v Donghyun Kim: The paper focuses on how AD systems can be too careful. But is it possible 
that the opposite could happen? Could an attacker trick the car into thinking the road is clear, 
making the car drive too aggressively or even cause an accident? What protections are in 
place for this kind of problem?

v Younghyo Kang: Vulnerabilities can arise at various stages in the production and 
standardization of products due to reasons such as incorrect design, standard vulnerabilities, 
insufficient test case definitions, incorrect understanding, implementation vulnerabilities, and 
incorrect implementation. In the case of the vulnerability caused by overly conservative 
settings discussed in the paper, which stage would it belong to? I personally see it as an 
issue stemming from the absence of established standards (e.g., the range of safety margin 
settings). If this is the case, wouldn’t it be more appropriate to attribute the problem not to a 
specific program but to the lack of established procedures in the process itself?



Best Questions
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v Sihun Yang: What are the challenges in making PlanFuzz scalable to detect vulnerabilities 
across a variety of AD systems? How can PlanFuzz be extended or generalized to 
accommodate a variety of AD systems?


