Tractor Beam: Safe-hijacking of Consumer Drones with Adaptive GPS Spoofing

Juhwan Noh, Yujin Kwon, Yunmok Son, Hocheol Shin, Dohyun Kim, Jaeyeong Choi, Yongdae Kim

Presenter: Pierre Noyer

Motivation

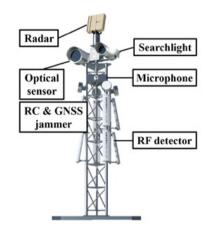
- Consumer drone market is booming
- used for terrorists attacks

April 2015

Motivation

• Some anti-drone services exist but are inadequate

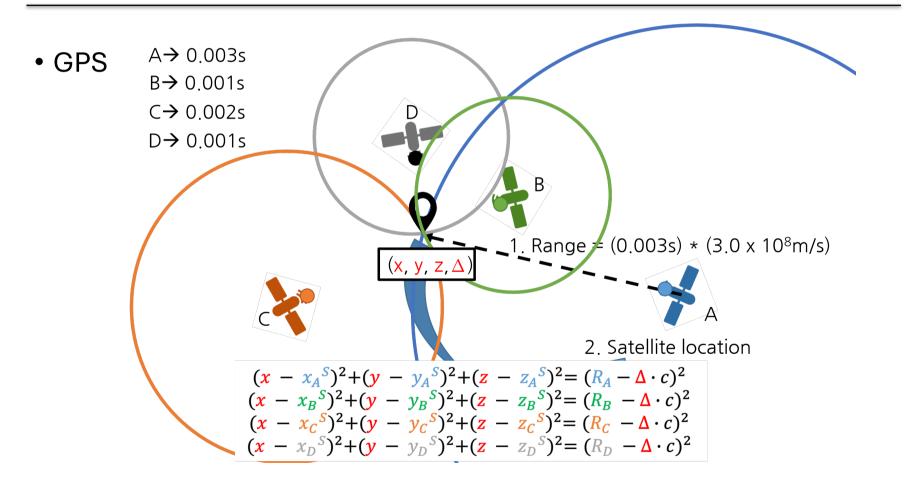
Shooting nets


Radio control and GNSS jamming

Laser attack

Introduction

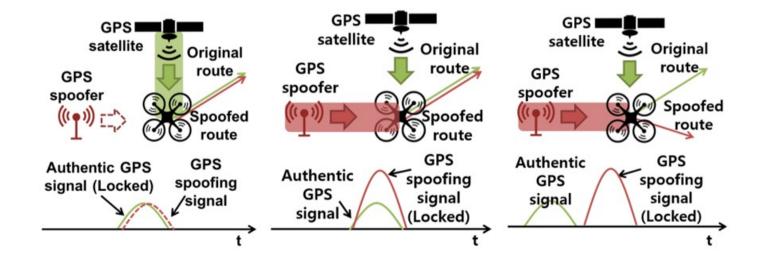
- On protected areas, Radio control jamming is always present, making remote control unsuable for attackers drones
- Use of GPS-autopilot
- Existence of fail-safe mode and recovery behavior after recovering GPS signal



Introduction

 Vulnerability: GPS communication is neither encrypted nor authenticated → enabling GPS spoofing

• Goal: use GPS spoofing to move the drone to the desired location according to its different fail-safe mechanism


Background

Background

7

• GPS-spoofing, 2 types: Soft and Hard GPS Spoofing

Background

• What is fail-safe

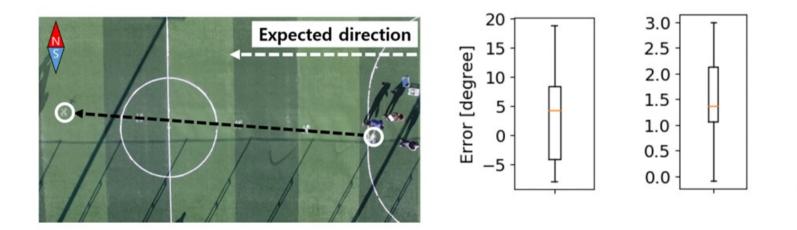


Contribution

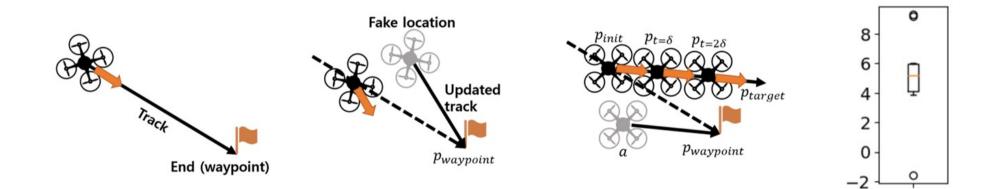
- analyze fail-safe mechanisms used in different drones
- design mechanisms to bypass/misuse those fail-safe mechanisms to hijack consumer drones
- confirm those mechanisms through real-world experiments.

GPS fail-safe mechanisms

- Dynamic analyses by transmitting hard GPS spoofing signal (black-box setting)
- Analysis of 3DR Solo source code

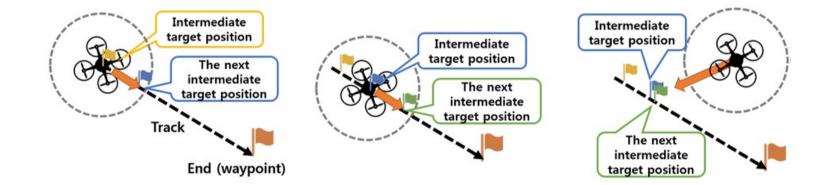

GPS fail-safe mechanisms taxonomy

Drone type	GPS fail-safe flight mode	Behavior after GPS recovery	Belonging consumer drones
I.	Positioning mode (non-GPS)	Positioning mode (GPS)	DJI Phantom 3 & Phantom 4
II		Autopilot (GPS)	Parrot Bebop 2
III		Continue fail-safe	3DR Solo
IV	Landing		-


Safe-hijacking strategy

Drone	GPS fail-safe	Behavior after	Corresponding	Belonging
type	flight mode	GPS recovery	safe-hijacking strategy	consumer drones
т		Positioning	Stratogy A	DJI Phantom 3
1	Positioning	mode (GPS)	Strategy A	& Phantom 4
II	mode (non-GPS)	Autopilot (GPS)	Strategy B	Parrot Bebop 2
III		Continue	Strategy C	3DR Solo
IV	Landing	fail-safe	Sualegy C	—*

Case study for Strategy A


Case study for Strategy B

Case study for Strategy B

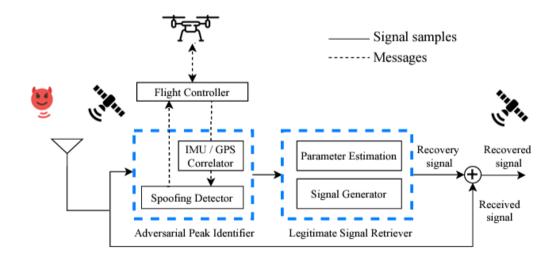
Case study for Strategy C

Case study for Strategy C

Discussion

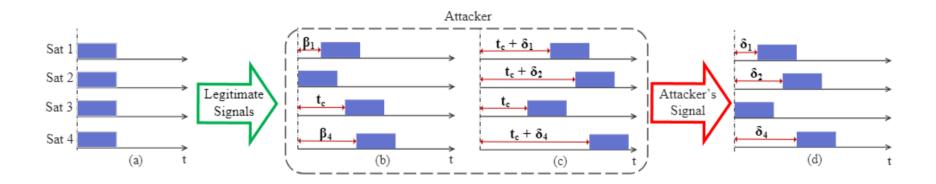
• Mitigation of GPS spoofing threats to legitimate consumer drones

• Legal and Safety issues of GPS spoofing


Related Work (before)

• On the requirements for successful GPS spoofing attacks. CCS '11

• Unmanned Aircraft Capture and Control via GPS Spoofing. J. Field Robot. 31, 4 (2014)


Related Work (after)

• SemperFi: Anti-spoofing GPS Receiver for UAVs. NDSS (2022)

Related Work (after)

• Location-independent GNSS Relay Attacks: A Lazy Attacker's Guide to Bypassing Navigation Message Authentication. ACM WiSec 2023

Conclusion

- analyze fail-safe mechanisms used 4 popular drones via white and black box analyses to develop a drone taxonomy
- Developed safe-hijacking strategies for fail-safe mechanism
- Demonstrated the efficacy of those mechanisms through realworld experiments.

Good Questions

- This attack can be used to compromise the smartcar's GPS system in auto driving mode and it can cause significant car accidents.
- Is it possible to shoot directional GPS spoofing signal so that it only affects the target drone and causes less collateral damage?
- For defense against hard GPS spoofing, can we utilize techniques like dead reckoning using IMU and refrain from reconnecting to GPS after entering fail-safe mode?
- Would it make sense to incorporate authentication in the C/A code signals to prevent GPS spoofing? If not, what would be the main constraints preventing it?

Best questions

- *Ilman Mohammad Al Momin* :Given that 3DR Solo relies on an EKF algorithm for GPS-IMU integration, could predictive modeling of EKF outputs serve as an early detection method to counter adaptive spoofing strategies?
- **Changgun Kang:** Is it possible to hijack multiple drones simultaneously?
- **Hyunmin Ju**: Given the adaptive nature of this GPS spoofing method, how feasible would it be for consumer drones to use real-time cross-verification between multiple sensors as a lightweight yet effective solution? I am curious to hear the presenter's thoughts on this.