Stealing Machine Learning Models via Prediction APIs

F Tramèr, F Zhang, A Juels, MK Reiter, T Ristenpart

USENIX Security '16

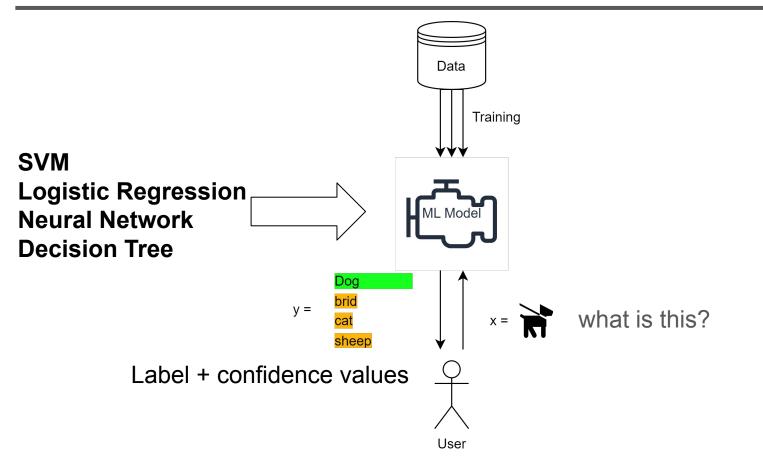
Presentor : Donghyeon Kim

Introduction

Paper Title	Author	Year	Attack Type
Explaining and Harnessing Adversarial Examples	Goodfellow et al.	2014	Adversarial Attack
Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures	Fredrikson et al.	2015	Model Inversion Attack
Towards Evaluating the Robustness of Neural Networks	Carlini & Wagner	2017	Adversarial Attack
Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks	Shafahi et al.	2017	Data Poisoning Attack
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain	Gu et al.	2017	Backdoor Attack
Robust Deep Reinforcement Learning with Adversarial Attacks	Anay et al.	2017	Adversarial Attack
Trojaning Attack on Neural Networks	Liu et al.	2019	Backdoor Attack
Privacy-Preserving Deep Learning	Hard et al.	2019	Federated Learning Attack
Adversarial Policies : Attacking Deep reinforcement Learning	Adam et al.	2019	Adversarial Attack

What assumptions are made in these papers?

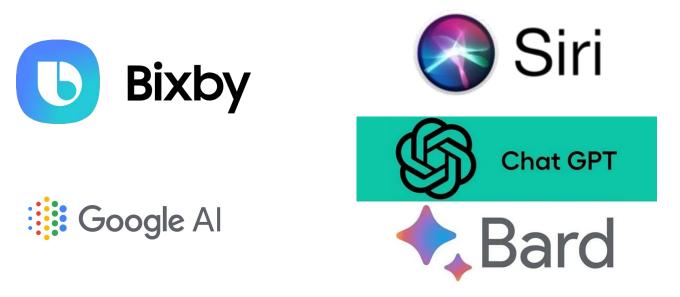
Introduction



Introduction

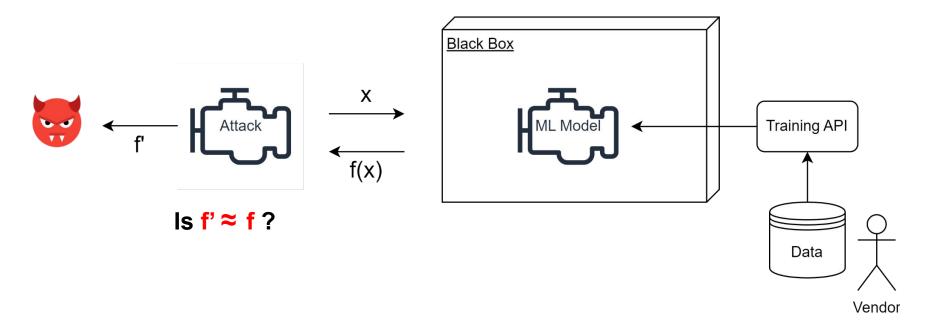
All the attacks introduced in the papers assume that the model is publicly accessible.

However, in reality...



What would be realistic methods for conducting an attack?

The goal is for an adversarial client to learn a **close approximation** of the function f by using as few queries as possible.

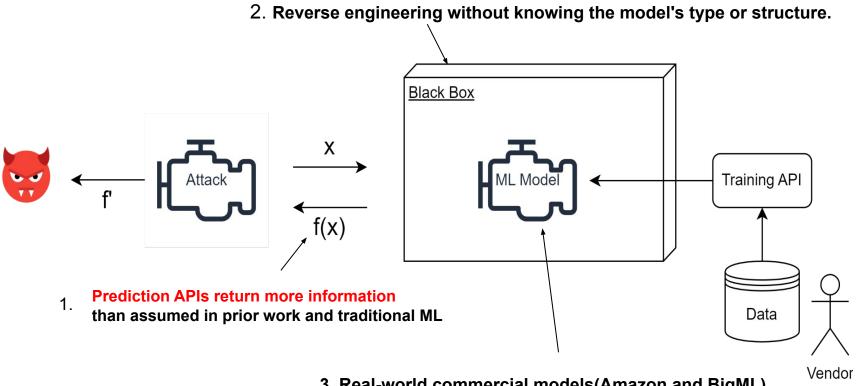


Why adversaries perform this attack ?

- 1. Avoid charges Once you steal the ML model, future queries are free!
- Violating training-data privacy
 Model extraction ⇒ You can model inversion (#)
- 3. Evasion attack

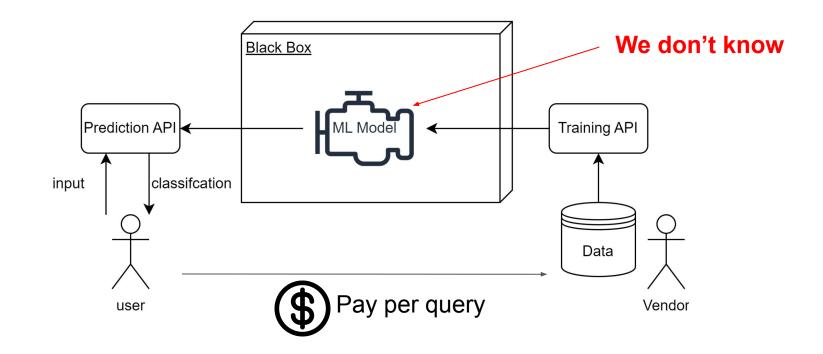
An attacker can use knowledge of the ML model to bypass detection

Prior work



3. Real-world commercial models(Amazon and BigML)

Machine Learning as a Service (MLaaS)



MLaaS's goal

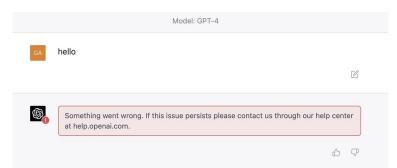
MLaaS has the following two goals:

Goal 1: Rich Prediction APIs

- Highly Available
- High-Precision Results

Goal 2: Model Confidentiality

- Model/Data Monetization
- Sensitive Data



MLaaS Vendor

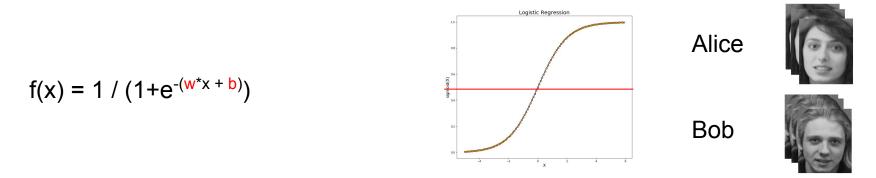
Service	Model types
Amazon	Logistic regressions
Google	??? (announced : logistic regressions, decision trees, neural network, SVMs)
Microsoft	Logistic regressions, decision trees, neural network, SVMs)
PredictionIO	Logistic regressions, decision trees, SVMs(white-box)
BigML	Logistic regressions, decision trees

Target

Target

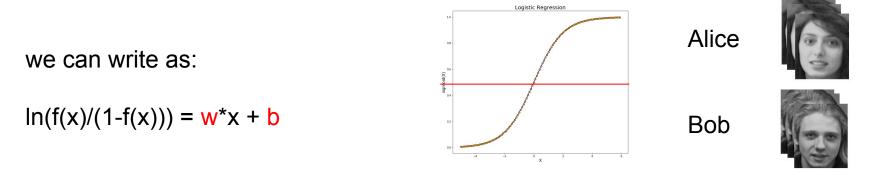
- 1. Logistic Regression
- 2. Multiclass Logistic Regression
- 3. Decision Tree

Task : Facial Recognition of two people (binary classification)



Learning f is equivalent to finding values for the vector w and the vector b.

Equation solving attack



Querying n+1 random points allows us to solve a linear system of n+1 equations.

Multi class LR (MLR)

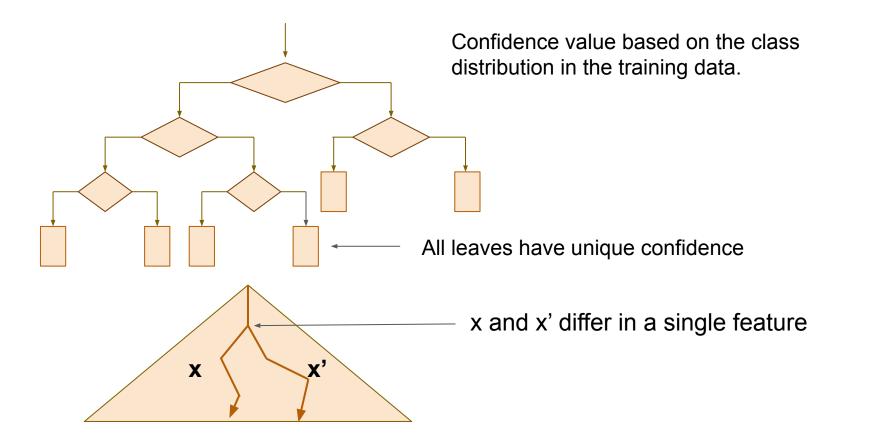
Generalize to c > 2 classes $\rightarrow ~ 1$ query per model parameter of f

The system of equations is nonlinear

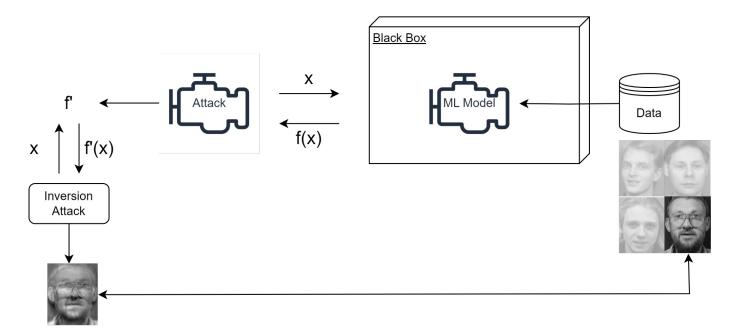
For instance, in the case of the softmax model, the equations take the following form:

$$\frac{e^{w_i \cdot x + \beta_i}}{\sum_{j=0}^{c-1} e^{w_j \cdot x + \beta_j}} = f_i(x)$$

Attack 3 : Decision Tree

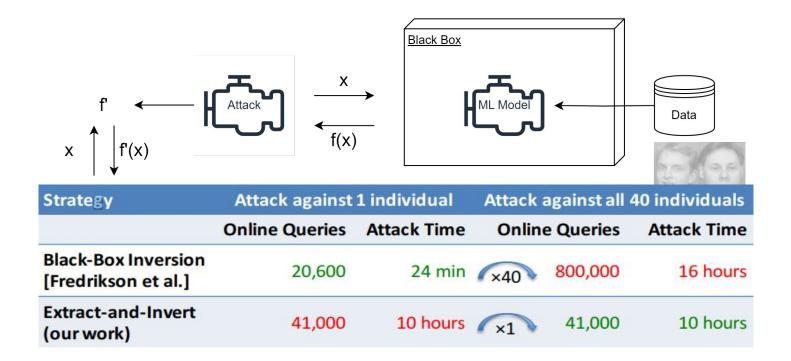


Attack with inversion attack



Model extraction can enhance inversion attacks, potentially leaking training data.

Attack with inversion attack



Target : Decision trees

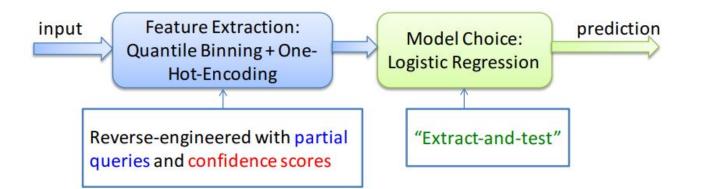
Traing data : German Credit

Run over 1000~2000 queries \Rightarrow Extraction attack is better

Case study : AWS

Two feature extraction technique:

- 1. One hot encoding
- 2. Quantile binning



Model	OHE	Binning	Queries	Time (s)	Price (\$)
Circles	-	Yes	278	28	0.03
Digits	-	No	650	70	0.07
Iris		Yes	644	68	0.07
Adult	Yes	Yes	1,485	149	0.15

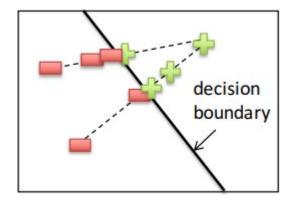
Table 7: Results of model extraction attacks on Amazon. OHE stands for one-hot-encoding. The reported query count is the number used to find quantile bins (at a granularity of 10^{-3}), plus those queries used for equation-solving. Amazon charges \$0.0001 per prediction [1].

Model extraction can be done at a very **low cost**.

Defense

Simple method : **Remove confidence values** \rightarrow Prediction = class label only $f(x) = sign(w^*x + b)$

1. Find points on decision boundary $(w^*x + b = 0)$ 2. Reconstruct w and b



Removing the confidence values \rightarrow **100 times more** gueries per model parameter

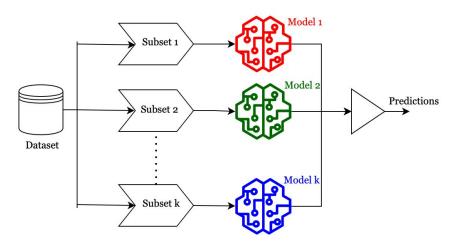
Defense

Rounding confidences

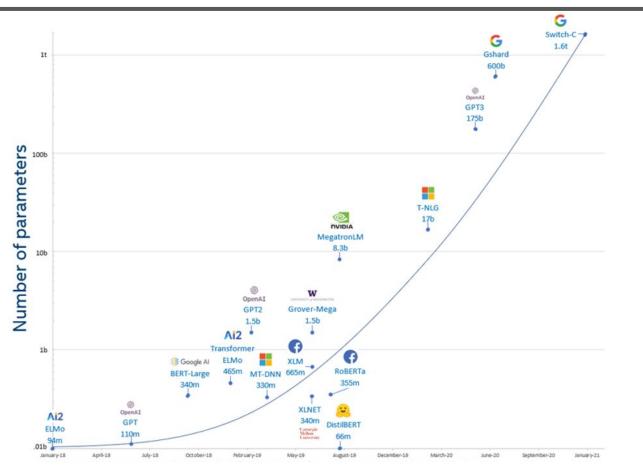
Output Randomization

Differential privacy

Ensemble methods

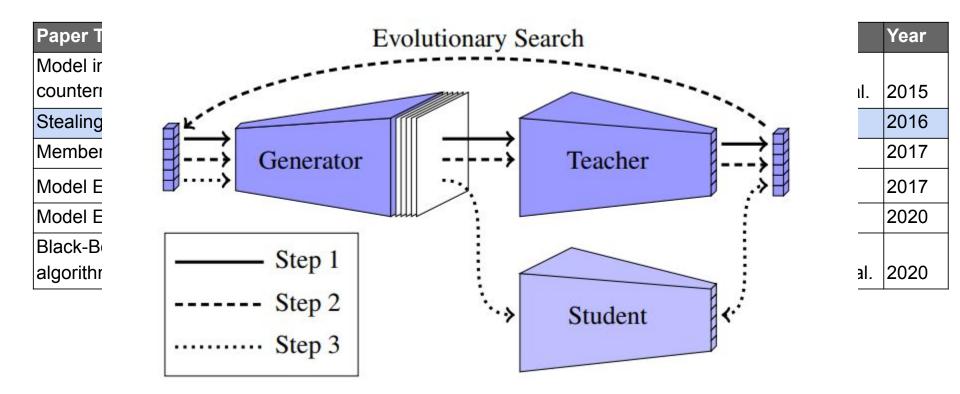


Is model extraction useful?



Paper Title	Authors	Year
Model inversion attacks that exploit confidence information and basic		
countermeasures	Fredrikson et al.	2015
Stealing Machine Learning Models via Prediction APIs	Tramèr et al.	2016
Membership Inference Attacks Against Machine Learning Models	Shokri et al.	2017
Model Extraction Attacks Against Black-Box Machine Learning Models	Papernot et al.	2017
Model Extraction Using Active Learning and Unannotated Public Data	S Pal et al.	2020
Black-Box Ripper: Copying black-box models using generative evolutionary		
algorithms	A Barbalau et al.	2020

Related works



Conclusion

Efficient Model Extraction Attack.

- Target : Logistic Regressions, Neural Networks, Decision Trees, SVMs
- Active learning attacks in membership-query setting

Performed real-world online Model Extraction Attack

The presenter's opinion

But it seems difficult to apply to commercial models at the moment.

Good Question

- What types of information should be protected in an LLM service to prevent model leakage? For example, could access to Attention information, specific layer outputs, or intermediate computation values make model leakage feasible?
- The most complex model used in this paper had about 400k parameters. With the age of Transformers upon us, is such an attack really feasible today?

- The process of obtaining input-output samples appears similar to a brute force attack. In that case, could countermeasures for brute force attacks be used to reduce the attacker's efficiency?

Best Question

Zunnoor Fayyaz Awan

Can we implement anomaly detection that combines these temporal and non-temporal signatures to detect an ongoing extraction attack?

Pierre Noyer

As models are frequently updated or retrained overtime. Would this attack still work in the long-term: would it be necessary to re-do the attack from scratch every time the model evolves, or would the old copy be a good starting point for the new attack?

Additional

How can security be strengthened for on-device AI models?

Unlike cloud-based services, on-device AI models reside on the device itself. Does this protect them from model extraction attacks?

What effective countermeasures can on-device AI employ to prevent model extraction attacks?

Since the model operates locally, attackers may not have access through APIs. Is additional protection still necessary for on-device AI models?