
Stealing Machine 
Learning Models via 
Prediction APIs
F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart
SEC'16: Proceedings of the 25th USENIX Conference on 
Security Symposium

20180391 Oh SeongRyong



Introduction

ML Model

Feature Vector
Labels

SVM Logistic 
Regression

Neural 
Network

Decision 
Tree

High precision confidence values

“Cat”

 86%



Introduction

Pay-per-query deployment increase !

Commercially 
Valuable 

model

Cloud based service

Money + queries 

This can be..

Not perfect features

Confidential value
 
Class label



Introduction

Adversary !

Commercially 
Valuable 

model

Cloud based service

Money + queries

M
odels

data

Confidential value
 
Class label

Not perfect features



Model Extraction Attacks Scenarios
(Why adversaries perform this attack)

1. Avoiding query charges 

Model extraction ⇒ model inversion (#)

2. Violating training-data privacy (privacy-abusing attack)

3. Stepping stone to evasion (evasion attack)

If you steal ML model, then subsequent query is free..!

An adversary may use knowledge of ML model to avoid detection by 
model (spam, malware classification)

(#) FREDRIKSON, M., JHA, S., AND RISTENPART, T. Model inversion attacks that exploit 
confidence information and basic countermeasures. In CCS (2015), ACM, pp. 1322–1333.



Background

fX = X1 × X2 ×···×Xd. Y (Class)exM (input)

Feature map

T{(xi, yi)}
Function ( f )

Training algorithms

Data



Attack models in this paper

(Case1) Logistic regression  
confidence value : 1/(1+e^(−(w·x+β)) )  [d+1 unknown parameters w , β]
d + 1 input query ⇒ define model

(Case 2) multi class logistic regression, Neural network

With equation - solving attacks

(Case 3) decision tree ⇒ adaptive, iterative search algorithm ⇒ paths in tree.



Key idea

equation - solving attacks



(Case1) Logistic Regression Model 
ExtractionTask: binary classification (A? or B?)
Goal: learn close approximation of f using a few queries as possible

f(x) = σ(w · x + β)

Query d+1 random points ⇒ solve a linear system of d+1 unknowns (w and b)

x

f(x)

solvingf ’

d+1 inputs



Multiclass LR (MLR)
Generalize to c > 2 classes with multinomial logistic regression
⇒  ~ 1 query per model parameter of f.

Multilayer Perceptrons (MLP)
Since MLP has non-linear function, MLP is more complex than MLR.
⇒ Adversary need more query

(Case2) Logistic Regression Model Extraction



(Case3) Extracting a Decision Tree
Confidence value derived from class 
distribution in the training set

x x ’

y y ’

Different leaves are 
reached ⇔ Tree “splits” 

on this feature
Input x and x’ differ 
in a single feature

Previous work Kushilevitz-Mansour (1992)

- Poly-time algorithm with membership queries only
- Only for Boolean trees, impractical complexity

Online attacks on BigML.

All tree leaves have 
unique confidence 

values



Online Model Extraction Attacks

BIG_ML (Decision Tree) 

Amazon Web Services (classification)

Train and extract | Setup : black box model
As a result(consider the monetary cost)

expect to run over 1,150 queries ⇒ Extraction attack is better

This contain the Two feature extraction technique (one-hot-encoded, Quantile 
binning)

They do reverse engineering + extraction model



Extraction Given Class Label Only

{class label only, not confidence value}

Attack on Linear Classification [Lowd,Meek -2005]

Classify as “+” if w*x +b >0 
and “-” otherwise

d+1 parameters w, b

f(x) = sign(w*x+b)

1. Find points on decision boundary (w*x+b =0)
- Line search between the two points (“+” and “-”)

2. Reconstruct w and b (up to scaling factor)



Extraction Given Class Label Only

Extend the Lowd-Meek approach to non-linear models
Active Learning:

Query points close to “decision boundary”
Update f’ to fit these points

Multinomial Regressions, Neural Networks, SVMs:
> 99% agreement between f and f’
= 100 queries per model parameter of f ⇒ expensive, less efficient

However, cannot prevent attack perfectly



Other Extraction Countermeasures

● Rounding confidences.

● Differential privacy

● Ensemble methods.



Related Work (previous work)

Algorithms for learning with membership queries & Learning 
algorithm that provide labels only.

- LOWD, D., AND MEEK, C. Adversarial learning. In KDD (2005), ACM, pp. 
641–647.

- KUSHILEVITZ, E., AND MANSOUR, Y. Learning decision trees using the 
Fourier spectrum. SICOMP 22, 6 (1993), 1331–1348.

- BSHOUTY, N. H. Exact learning boolean functions via the monotone theory. 
Inform. Comp. 123, 1 (1995), 146–153



Related Work (future work)

(future work) Membership Inference Attacks against Machine 
Learning Models  Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov

⇒ try to attack more complicate models (such as GPT model)

(future work) Robust Physical-World Attacks on Deep Learning 
Visual Classification (CVPR), 2018

(future work) Certified Defenses for Data Poisoning Attacks (NIPS 
2017)

https://arxiv.org/search/cs?searchtype=author&query=Shokri,+R
https://arxiv.org/search/cs?searchtype=author&query=Stronati,+M
https://arxiv.org/search/cs?searchtype=author&query=Song,+C
https://arxiv.org/search/cs?searchtype=author&query=Shmatikov,+V


Conclusion

How the flexible prediction APIs exposed by current ML-as-a-service 
providers enable new model extraction attacks

⇒ subvert model monetization
⇒ violate training-data privacy
⇒ model evasion

Real-World Online Model Extraction Attack

Suggest countermeasures



Good Question

1. (허현) Is there any follow-up research that prevents the model 
from being leaked by an attacker?

- D-DAE: Defense-Penetrating Model Extraction Attacks
- QuSecNets: Quantization-based Defense Mechanism for Securing Deep 

Neural Network against Adversarial Attacks

2. (김호빈)
Why is the confidence value presented to the user in ML models? 
Can another problem occur if there is a reasonable justification 
for the omission of confidence values from the service?



Best Question
1. (정기원) Is there any future works to detect malicious model extraction attack 

attempt by using ML models?

2. (박승민) To extract a high-accuracy model through this attack, it seems that 
many queries must be requested through the API. If we limit the number of 
queries that can be sent consecutively at a time, can it be an effective defence 
strategy for this attack?

3. (Valetin) Trade-offs between utility and security are widely discussed in
rounding confidences or DP for example. How can we assess the correct
balance for these defenses in real-world deployment scenarios where
both security and accuracy are to be considered?



Thanks


